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Abstract 

We describe a model of a stockmarket in which independent adaptive agents can buy and sell stock on a 
central market. The overall market behavior, such as the stock price time series, is an emergent property of the 
agents’ behavior. This approach to modelling a market is contrasted with conventional rational expectations 
approaches. Our model does not necessarily converge to an equilibrium, and can show bubbles, crashes, and 
continued high trading volume. 

1. Approaches to economic theory 

In recent years the prevailing rational expecta- 
tions approach to economic theory has been chal- 
lenged from several quarters, and increasing in- 
terest has been shown in an alternative evolution- 
ary economics viewpoint. In this paper we de- 
scribe and contrast these paradigms, and discuss 
our artificial stockmarket model as an example 
of the evolutionary approach. Our approach is 
fundamentally based on the inductive theory of 
learning described in Arthur ( 1992 ) [ 11. This 
stockmarket model may also be seen as a case- 
study in artificial life; from a random soup of 
simple rules an intelligent system spontaneously 
organizes, and develops more and more sophis- 
ticated behavior as time goes on, rather like life 
emerging from a prebiotic soup. 

We emphasize the background and general 
structure of our model, only indicating results 
in general terms. Related papers [ 1,2] provide 
further details. The paper is written for physical 
scientists, without assuming any background in 
economics. 

1.1. Rational expectations theory 

In conventional economic theory the standard 
approach to most problems is fundamentally 
based on Rational Expectations (RE) theory. 
According to RE theory, agents deduce their 
optimum behavior by logical processes from the 
circumstances of any situation, assuming that 
other agents do likewise. Here an agent might be 
an individual, a firm, a state, etc. This seemingly 
reasonable approach in fact involves several 
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strong (and unreasonable) assumptions, and 
has a number of undesired consequences. Nev- 
ertheless it has long been the regnant paradigm, 
perhaps in part because it leads to very appeal- 
ing mathematics. 

Among the assumptions normally made in RE 
theory are: 

(i) Complete Information. All agents are as- 
sumed to have full knowledge of the prob- 
lem. 

(ii) Perfect Rationality. All agents are assumed 
to be perfectly able to deduce their opti- 
mum behavior, no matter how complex the 
computational problem. 

(iii) Common Expectations. All agents are as- 
sumed to know that all others are work- 
ing with the same information on the same 
“perfectly rational” basis. And they know 
that the others know this too, and that the 
others know that they know they know, and 
so on ad infinitum. 

As a simple example, imagine 20 computer 
companies who are independently considering 
the adoption of a new standard 2 for a graph- 
ical user interface. A marketing analysis might 
show that all would benefit if at least 15 adopted 
Z, but that the adopters would experience a net 
loss if fewer than 15 adopted it. RE theory pre- 
dicts that all companies will adopt Z immedi- 
ately, because they will all reason as follows. If I 
were the 15th-20th company to consider adop- 
tion, it would obviously be in my interest to do 
so. If I were the 14th, I would adopt because then 
it would be advantageous for the 15th-20th to 
do so. If I were the 13th, I would do so because 
then the 14th would do so, by the preceding ar- 
gument. As so on, all the way down to the first 
adopter. Since all will perform this reasoning, all 
will be ready to be first, and all will jump in im- 
mediately (and will expect the others to do so 
too). Note that the agents figure out the solution 
initially (“at time O”), and that there is no sub- 
sequent dynamics, learning, or evolution. 

Of course this outcome is not what would be 
expected in practice, partly because of the failure 

of the above assumptions, and partly because of 
other factors not included in our simple model. 
However it still serves to illustrate both the as- 
sumptions and the flavor of an RE argument, 
although in most applications the mathematical 
optimization problem is far more complicated. 

In complex problems, RE theory runs into a 
number of difficulties, especially because the 
three assumptions listed above are typically not 
satisfied. 

(i) Lack of Complete Information. Agents may 
have to learn about the context or about 
the other agents while the “game” is being 
played out. Problem contexts may them- 
selves not be fully defined initially, only be- 
coming explicit through the choices of the 

agents. 
(ii) Lack of Perfect Rationality. Real persons 

and firms often aren’t clever enough - or 
don’t have enough computational power - 
to compute a true optimum. And even if 
they have the power, they may not use it, 
preferring instead rules of thumb that have 
worked elsewhere. 

(iii) Lack of Common Expectations. Different 
agents may well have different information 
about a situation, and may well use differ- 
ent approaches. They cannot rely on others 
to duplicate their own reasoning. 

These difficulties lead in turn to predictions 
that do not always fit observed outcomes. And 
even when final outcomes are correctly predicted 
by RE theory, the theory is silent about the dy- 
namical process (typically involving trial and er- 
ror, and learning) that agents actually take to 
reach that solution. 

1.2. Evolutionary economics 

In part because of the difficulties with the stan- 
dard RE theory, in recent years many researchers 
have investigated alternative approaches. Some 
have attempted to perturb away from the perfect 
rationality ideal with a variety of bounded ratio- 
nality theories. These theories impose an inten- 
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tional limitation on some aspect of an agent’s 
task, such as the available knowledge, the com- 
putational time or complexity, the memory ca- 
pacity, the forecasting repertoire, etc. One diffi- 
culty is that there are many dimensions in which 
to bound rationality, and no clear guiding prin- 
ciple for how to set the direction and distance 
from the zenith of perfect rationality. 

Another approach, into which the current 
work falls, is to start from the opposite end of 
the scale with agents who initially have little 
rationality or specialized knowledge. The agents 
are then allowed to adapt, or learn, or evolve, 
eventually becoming reasonably expert in their 
own domains. There are a number of advantages 
to this approach, including 
- None of the three assumptions discussed 

above for RE theory is required. 
- Even the modeler does not need to have the 

knowledge or computational power to derive 
an optimum solution for each agent. 

- The evolutionary approach is generally induc- 
tive, not deductive; the agents typically gen- 
eralize patterns observed in the past to guide 
their behavior in the future. This inductive ap- 
proach is much closer to normal human be- 
havior than the deductive one of deriving par- 
ticular choices from general principles [ 1,8 1. 

- The general approach is applicable even in 
situations where conventional RE theory pro- 
duces no answers, e.g., due to lack of a single 
well-defined equilibrium solution. 

- The approach can predict and interpret dy- 
namical behavior, not just final outcomes. 

- Agents can continue to adapt in a changing or 
ill-defined world (perhaps of their own mak- 
ing) whose characteristics cannot - or are not 
- known in advance. 
The biggest disadvantages of the evolutionary 

approach are the general lack of analytic meth- 
ods - most work is largely computational - and 
the plethora of possible algorithms for learning 
and adaptation. The field is presently in an ex- 
ploratory phase, determining by explicit simu- 
lation the potentials and limitations of particu- 

lar evolutionary models. A narrowing of options 
and more rigorous results can be expected in the 
future. 

2. An artificial stockmarket 

2.1. General framework 

Turning specifically to financial markets, we 
first construct the framework of a simple kind 
of stockmarket, and then consider different ap- 
proaches (RE and evolutionary) to the agents’ 
decision problem. Our market will have S kinds 
of stocks labelled by Q = 1, 2, . . ., S, and N 
agents labelled by i = 1, 2, . . ., N. The agents 
are not necessarily homogeneous; they may have 
quite different operating principles. For simplic- 
ity we make time t discrete, so t = 0, 1, 2, . . ., 

and refer to the interval from t - 1 to t as the tth 
period. There is no predelined time horizon; in 
principle the market continues for ever. 

At each time t, each agent i has some num- 
ber of shares (or holding) hq (t ) of each stock CL 
There are no complex instruments such as op- 
tions, and no direct interaction between pairs of 
agents. The agent’s essential problem is to choose 
hy (t) at each time t, given various constraints 
such as a finite net wealth. The goal might be 
to maximize expected (mean) profit, or might 
involve a more complicated “utility function” 
which takes risk into account. The price pa (t) 
per share of each stock depends mainly on the 
overall buying and selling behavior of the agents. 
The companies issuing the stocks may also pay 
cash dividends d” (t) per share to each stock- 
holder, in an amount depending on company 
success and policies. Agents can thus make profit 
in two ways, through the dividend stream and 
through speculation, relying on price changes of 
their shares. 

In addition to stock holdings we need to take 
into account other assets of each agent, so that 
not all wealth needs to be invested in stock. For 
simplicity we regard all other assets collectively 
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as cash, or money A4i (t ) . An agent’s total wealth 
wi (t) at any time t is thus given by 

wi(t) = Mi(t) + Chy(t)pa(t). 
a 

(1) 

During the tth period, the price per share of stock 
cr changes from pa (t - 1) to pa (t ) and a div- 
idend d”(t) is declared. We also assume that 
the agent’s cash is invested in a fixed-rate fund 
such as a savings account, which pays an inter- 
est rate r per period so that Mi (t - 1) becomes 
( 1 + r )Mi (t - 1). Accounting for these changes, 
the agent’s wealth at the end of a period is given 

by 

Wi(t) = (1 + r)Mi(t - 1) 

+ ~h:(t- O[p”(t) + d*(t)], (2) 
a 

which is a net change of 

Awi(t) c w,(t) -wi(t - 1) = rMi(t - 1) 

+ xhp(t - U[p”tt) + d”(t) -p”(t - I)] 
a 

(3) 

from the beginning of that period. 
Before the next period begins the agents have 

an opportunity to change their holdings, choos- 
ing hp (t) and Mi (t) subject to the constraints: 

(i) 

(ii) 

(iii) 

Fixed total wealth: Eq. (1) must apply at 
every t. Given the new wealth Wi (t ) from 
Eq. (2), this budget constraint is just a lin- 
ear condition on Mi (t) and the hp (t )‘s. 
Positivity: Mi (t) 2 0, and h?(t) 2 0 for all 
cy. Actually these constraints can be relaxed 
to allow borrowing (possibly with a larger 
value of r when Mi (t ) is negative) or sell- 
ing short (negative holdings), but we still 
need lower bounds on A4i ( t ) and hy ( t ) for 
stability. 
Market clearing conditions: Individual 
agents may not be able to achieve the stock 
holdings they desire, because for every 
seller there must be a buyer, and vice- 
versa; the total number of shares of each 
stock is fixed: 

x/q(t) = H” Vt. 

There are a number of ways to implement mar- 
ket clearing conditions, but here we only describe 
the simplest in detail. For each stock, each agent 
can submit either a bid to buy by (t ) shares, or 
an offer to sell 05 (t ) shares - in both cases at 
the current price pa (t ) - or neither. We define 
b; (t ) = 0 and/or 0; (t ) = 0 for the remaining 
cases. Bids and offers need not be integers; the 
stock is infinitely divisible. Then 

Ba(t) = cby(t), 
i=l 

w(t) = $op(t) (6) 
I=1 

are the totals of the bids and offers for stock (Y 
at time t. If B” (t) = 0” (t), then all bids and all 
offers are fully satisfied, giving 

h?(t) = h:(t - 1) + b;(t) -o?(t) (7) 

(where either bq (t ) or og (t ) is zero for each 
a). If, however, B”(t) > 001(t), then all offers 
are fully satisfied, and a fraction o* ( t )/B* ( t ) of 
each bid is filled, giving 

h:(t) = h:(t - 1) + sb:‘(t) -o;(t). (8) 

Similarly if B” (t ) < 0” ( t ) , then all bids are fully 
satisfied, and a fraction B” ( t ) /o(l ( t ) of each of- 
fer is filled, giving 

B”(t) 
h?(t) = hp(t - 1) + b;(t) - O,Ct)op(t). (9) 

All these cases can be subsumed into 

va(t) h;(t) = hq(t- 1) + - Ba(t)b?(t) 

VO(t) -- ,(,)“?(t)> (10) 

where P(t) c min(B”(t),O*(t)) is the num- 
ber of trades (or volume) in stock a. 
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This rationing scheme is far from satisfactory 
in general, both because of lack of realism, and 
because it can lead to violations of the positivity 
constraints. For example, an agent could plan to 
sell a large amount of stock A to raise the funds 
to buy B, but end up with M, (t) < 0 because 
the sale of A was rationed while the purchase of 
B was not. A better scheme is to relax the con- 
straint (4), allowing temporary imbalances be- 
tween stock purchases and sales to be made up by 
changes in the stock inventory of a market spe- 
cialist. The specialist - an actual person in many 
real markets - has to control the price so that his 
or her inventory stays within acceptable bounds. 
Another more elaborate possibility is to have the 
agents engage in an iterative auction-like process 
to buy or sell stock, adjusting the price until sup- 
ply 0” (t ) and demand B” (t ) are equal. We will 
report on these and other options elsewhere [ 21; 
here we use only the simple rationing scheme, 
and will ultimately avoid the positivity problem 
by limiting ourselves to a single stock. 

To complete our specification of the market, 
we need to detail how the dividends d” (t ) and 
prices pa(t) are fixed. For the dividends we 
choose a purely stochastic process, entirely in- 
dependent of the agents’ actions. In a sense the 
dividend stream is a noise source, somewhat like 
a physical temperature, that drives the market. 
We have explored a number of different random 
processes for d” (t) including: simple random 
number generators without any t + t + 1 corre- 
lation; regular ramps and square waves (to see if 
our agents can learn simple periodicities); and 
various Markov processes in which d* (1) de- 
pends on d* ( t - 1). The simplest case having any 
claim to realism is a discrete colored noise pro- 
cess (or, equivalently, an Ornstein-Uhlenbeck 
process, or an AR ( 1) process) for the logarithm 
of d”(t)/P (where da simply sets the scale): 

d”(t) 
log -&- (I 

= a logd”(t- l) 
d -u + bar”(t). (11) 

Here <* (t ) is a Gaussian noise source with mean 
0 and variance c$, and a, and b, are positive 

parameters such that ai + bi = 1. It is easy to 
show that log d” (t ) /da has mean 0, variance r~,‘, 
and an exponentially decaying autocorrelation 
function with correlation time r, = l/ log a,. 

The prices p” (t ) must depend on the bids and 
offers of the agents. The price of a stock should 
rise if the demand for it exceeds the supply 
(more agents wanting to buy than to sell), and 
fall if the supply exceeds the demand. Choice 
of a detailed mechanism is interrelated to the 
way bids and offers are matched; an iterative 
auction process, for example, would inherently 
determine prices itself. For the rationing scheme 
chosen here we use a very simple price adjust- 
ment scheme, based solely on the excess demand 
P(t) -On(t): 

p’“(t + 1) = p”(t). (1 + q[B”(t) - O”(t)l). 
(12) 

The parameter q is a crucial determinant of the 
ultimate behavior; small q leads to very slow ad- 
justment of prices, while large q gives large os- 
cillations. In most cases we have instituted an 
adaptive mechanism for q itself, based on feed- 
back from the number of recent reversals in di- 
rection of the price trend, and aiming to keep 
the response near to critical damping. But here 
we will keep q fixed, and small enough so that 

q[B”(t) - Oa(t)] < 1. 
This completes our specification of the mar- 

ket itself. All that is undetermined is the way in 
which individual agents choose their bids by ( t ) 
or offers op (t), based on the information avail- 
able to them. We assume that that information 
consists of the entire past history of the market, 
including prices p” (t’ ) and dividends d* (t’ ) for 
t’ <_ t, and total bids B* (t’ ) and offers O* (t’ ) 

for t’ < t. We also sometimes introduce a purely 
random sunspot variable y (t ). Although I,Y (t ) is 
not causally connected to the market, the prices 
can nevertheless become correlated with ly (t ) if 
agents “believe” that it has predictive power and 
coordinate their actions around its fluctuations. 
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2.2. Rational expectations approach 

A simple (“risk free”) RE approach to the 
market just described would be based on a be- 
havioral equation of the form [ 1,111 

p”(t) = PE[f(t + 1) + d”(t + l)lZ(t)l, (13) 

where p = l/(1 + r), and E[.lZ(t)] means an 
expected value (prediction) given all the infor- 
mation Z(t) available at the current time t. We 
assume the efjcient market hypothesis that the 
price reflects (i.e., values appropriately) all ac- 
cessible information about the future. Eq. (13) 
says that the current price p” (t) per share of 
stock a: should reflect the best estimate of its 
valuep”(t+ 1) +d”(t+ 1) attheendofthepe- 
riod, discounted by the factor /3 to allow for the 
increase in the value of money implied by the 
interest rate r. The reasoning behind Eq. ( 13) is 
that any other value for p” (t ) would represent 
an opportunity to make a profit, which rational 
agents would take (if they care nothing about 
risk). If, for example, the actual price of a stock 
were lower than given by Eq. ( 13), then many 
agents would attempt to invest in it, thus driving 
the price up until Eq. ( 13) was satisfied. This is 
called arbitrage. 

If we iterate Eq. ( 13), using the law of it- 
erated expectations E[E[xlZ(t + l)]lZ(t)] = 
E[xlZ(t)], we obtain 

p”(t) = f+[d”(t + n)lZ(t)], (14) 
PI=1 

so that the price today should just depend 
on an appropriately discounted series of ex- 
pected future dividends. If the dividend se- 
ries had a constant expected value, so that 
E[d”(t + n)lZ(t)] = da Vn, this would reduce 
to 

p*(t) = @jr, (15) 

which gives the fundamental value of stock Q in 
this approximation. Note, however, that a col- 

ored noise process such as Eq. ( 11) does not sat- 
isfy this constant expected value assumption, 

More sophisticated RE approaches are possi- 
ble. In particular we could allow for risk aver- 
sion in the agents. Typically this would lower 
the price pa(t) from that given by Eq. ( 13) or 
Eq. ( 15) by an amount proportional to the vari- 
ance of the prediction for p” (t + 1) + d” (t + 1); 
riskier returns are worth less. But the essential 
flavor of the approach is not changed by such 
improvements. 

The RE approach implicitly assumes that all 
agents compute the same expectation values 
E[p”(t + 1) + d”(t + l)lZ(t)] for each stock; 
otherwise the arbitrage argument fails. This 
assumes not only that they all have the same 
information Z(t), but also that they form ex- 
pectations in the same way, and indeed know 
that others will do so too. In practice these as- 
sumptions will fail; no two agents are likely to 
have exactly the same information, and agree 
that there is a unique objective way to compute 
the required expectation value, and know what 
that unique method is. Moreover, individual 
agents cannot form their expectations in a fully 
rational way unless they know how others form 
theirs, so all are reduced to subjective beliefs 
about each other’s behavior. In Keynes’ words 
[ 91, they must “devote [their] intelligences to 
anticipating what average opinion expects the 
average opinion to be.” 

These fundamental difficulties of the RE ap- 
proach lead in turn to predictions that do not 
correspond to the empirical behavior of real 
markets [4]. In particular the RE theory pre- 
dicts low trading volume; there is no reason for 
agent A to sell shares to agent B if they both 
have the same information and expectations. 
Further, there is no room for market bubbles 
or crashes, or any sort of market psychology 
or moods. Finally, it should not be possible to 
make any profit by technical trading - attempt- 
ing to predict future stock prices by recognizing 
and exploiting patterns in past prices - since 
any such opportunities should be removed by 
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arbitrage; this is a direct consequence of the 
efficient market hypothesis. 

In real markets there is much higher trading 
volume than RE predicts, there are bubbles, 
crashes, and moods, and many traders seem 
to live by technical trading. These and other 
anomalies can be reconciled with the RE ap- 
proach only by extending or modifying it, for 
instance by introducing heterogeneous expec- 
tations [ 61, or by allowing Bayesian learning 
of parameters [ 3 1. However none of these ap- 
proaches is entirely satisfactory, and none pro- 
vides a truly dynamical picture of the market. 

2.3. Evolutionary approach 

Instead of the RE approach, we propose an in- 
ductive model in which we start with agents who 
have little knowledge or reasoning ability. The 
agents trade on the basis of internal models or 
rules that are initially very poor. By observing 
the success or failure of these internal models the 
agents can improve them, select among alterna- 
tives, and even generate totally new rules. Thus 
over time their behavior becomes more sophis- 
ticated, and they become able to recognize and 
exploit many patterns in the market. The stock 
prices p” (t ) themselves reflect the aggregate be- 
havior of the agents; phenomena like bubbles, 
crashes, and market moods can emerge as collec- 
tive phenomena. Because they both create and 
exploit the prices series, the agents are essentially 
coevolving, even though they do not interact di- 
rectly with one another. 

The inductive approach provides a dynamical 
picture of a market and avoids most of the pre- 
viously discussed problems of RE theory. It is 
also inherently closer to the way humans typi- 
cally make decisions in complex situations [ 8 1. 

They start by making mental models or hypothe- 
ses, based on past experience and training. These 
models may directly imply a course of action, or 
they may let them anticipate the outcome of var- 
ious possible actions, on which basis a choice can 
be made. In any case, humans also observe their 

own successes and failures, learning to modify 
or abandon unsuccessful mental models, and to 
rely more strongly on successful ones. 

Our present approach is computational. We 
define a framework for the agents’ behavior in 
which learning and adaptation is possible, and 
then we run simulations of a whole market to 
see how both the agents and the market behave. 
Some analysis and interpretation is certainly 
possible, but no detailed analytic theory is yet 
to hand. There are some rigorous results for 
simpler systems of adaptive economic agents 
[ 10,121, and of course there is much work on 
learning systems in general, but none of this 
is directly applicable to entire markets. Thus 
an exploratory computational approach seems 
appropriate. 

2.4. Condition-action agents 

To implement an inductive approach we must 
specify in detail how agents choose their bids 
or offers. We have been experimenting with a 
number of approaches, including agents who ex- 
plicitly forecast the future and perform a risk- 
aversion computation to choose their optimum 
holdings [ 21. But here we describe only a sim- 
pler class of agents, based on a classifier system 
and a genetic algorithm [ 5,7]. 

Before proceeding, we specialize to a single 
stock, and drop the Q superscripts. Most phe- 
nomena of interest are already present with a 
single stock, and the restriction removes the dif- 
ficulty with the positivity condition. We now re- 
duce the bid/offer decision to a simple ternary 
choice: 
(i) Bid to buy one share: hi(t) = 1, oi(t) = 0. 
(ii)Offertoselloneshare:oi(t) = l,bi(t) = 0. 
(iii) Neither: hi(t) = oi(t) = 0. 

Provided one period (from t to t + 1) repre- 
sents a short interval in terms of the dividend 
autocorrelation time T and the price adjustment 
timescale (set by q ), the restriction of demand to 
& 1 is not serious; larger changes can be achieved 
by a sequence of smaller ones. 
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In the spirit of a classifier system, each agent the rule is poor it will sink to negative strength 
has many condition-action rules. We typically use and never be selected. If it is good it will gain 
R = 60 rules per agent, labelling rules by k = strength and may come to be used as a basis for 

1, 2, . . .) R. Each agent i has its own set of rules, a decision. For example, there could well be two 
independent of all other agents, so there are NR rules with identical conditions but opposite ac- 
rules in all, labelled by ( i, k ) . Each of these rules tions, but only one would come to have positive 
has three components: strength. 

(i) A condition part, that governs when (un- 
der what market conditions) the rule is ac- 
tivated. We discuss this further in a mo- 
ment. 

(ii) An action aik = f 1, representing either 
buy ( + 1, bid one share) or sell (- 1, offer 
one share). 

(iii) A strength Sik (t), representing how suc- 
cessful the rule has been at suggesting 
wealth-increasing actions in the past. 

Each time that the agent has to make a deci- 
sion it first lists those of its rules that are acti- 
vated and have Sik (t) > 0. Next it selects one 
of these randomly, with probability proportional 
to strength. The action of this selected rule then 
gives the agent’s decision: buy or sell. If the list 
is empty, then the agent makes neither a bid nor 
an offer. 

The condition part of each rule consists of a 
string of symbols such as ***l*O***ll**, drawn 
from the ternary alphabet { 0, 1, *}. These strings 
are matched against a single binary string (with 
0 and 1 symbols only) that represents the current 
state of the market. O's and l's in the condition 
string only match O'S and I’s respectively in the 
market string, whereas *‘s are don’t care symbols 
that match either o or 1. Thus, for example, the 
above condition string matches a market state of 
0101001101101 but not 1001011100101. 

The number and meaning of the bits in the 
market state string can be adjusted to give the 
agents more or less information. We typically 
use strings of length 70-80 symbols, providing 
a mixture of short-term and long-term informa- 
tion, such as: 
- The price is above 1.2 times fundamental 

The strengths of all activated rules (not just 
selected ones) are updated at the end of the pe- 
riod according to: 

value (as given by Eq. 15 ) . 
- The dividend went up two periods ago. 
- The loo-period moving average of price went 

Sik(t) = (1 -c)Sik(t- 1) + 
up (compared to the previous 100 periods). 

- The 20-period moving average of price is 

caikb(t) - (1 + r)p(t- 1) + d(t)]. (16) 

The term in square brackets represents the net 
profit made by investing in one share of stock for 
the past period, rather than leaving the money in 
the bank; compare Eq. (3). c is a small param- 
eter (e.g., 0.01) so that Sjk (t) accumulates over 
a long period an exponentially-weighted moving 
average of the net profit potential of the rule’s 
action under circumstances in which it is acti- 
vated. To avoid occasional problems we restrict 
strengths to Smin 5 Sjk (t) 5 Smax. 

above the loo-period moving average. 
In each case the appropriate bit is 1 if the cor- 

responding statement is true, o if it is false. 

Note that any rule can be injected into the 
population (with initial strength 0, say) with- 
out negatively affecting the agent’s behavior. If 

The structure described so far is a simple 
classifier system; the rules classify the states 
of the environment (market state) into many 
categories, depending on which are activated, 
and then provide probabilities for each possible 
action to be taken in each category. By itself it 
simply assigns strengths to a pre-defined set of 
rules. But this is easily extended by adding a 
genetic algorithm which generates new rules, so 
that the population of rules can evolve towards 
ever better ones. Our genetic algorithm is ap- 
plied at random times (in a Poisson process) to 
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each agent, and has the effect of replacing lo- 
20% of its rules by new ones. It selects some of 
the weakest rules for replacement, and initially 
makes copies (clones) of some of the strongest 
rules to replace them, selecting candidates with 
probability proportional to their strength. The 
clones may then be modified by random mu- 
tation and crossover. Mutation means that a 
few symbols are randomly changed, with prob- 
abilities adjusted so that the average number 
of don’t care symbols stays constant. Crossover 
means that a pair of “parent” strings is selected 
(from among the clones) and used to generate 
two “offspring” strings, each of which gets its 
symbols partly from one parent and partly from 
the other; the idea is to combine good building 
blocks (substrings) present in the two parents 

151. 
We also apply two further operations to the 

whole new population. Firstly, rules that are par- 
ticularly weak (negative strength) have their ac- 
tions reversed; if buying was bad, then selling 
should be good. Secondly, rules that have not 
been activated in a long time are generalized, 
changing some of their specific O/I symbols to 
*‘s. 

3. Results and conclusions 

As stated initially, this paper describes mainly 
our rationale and overall design. Quantitative 
results will be presented elsewhere [ 21. Qualita- 
tively our main observations are as follows. 

(i) In sufficiently simple cases - with few 
agents, or few rules per agent, or a low- 
variance dividend stream - the agents 
converge to an equilibrium in which price 
tracks fundamental value (Eq. 15), vol- 
ume stays low, and there are no apprecia- 
ble anomalies such as bubbles or crashes. 
The agents become relatively homoge- 
neous, relying mainly on simple rules such 
as buy when the price is below fundamental 
value. The overall behavior is just what 

would be expected from RE theory and 
the efficient market hypothesis. 

(ii) On the other hand, in a richer environ- 
ment, there is no evidence of equilibrium. 
Instead we obtain what we call economic 
life; as described in the following observa- 
tions, there is rich evolving behavior that 
becomes more complex over time. 

(iii) Although the price frequently stays close to 
fundamental value, it also displays major 
upward and downward deviations which 
may be called bubbles and crashes. Of- 
ten these have no simple explanation; the 
effect is collective, and cannot always be 
traced to a simple rule or instability. It is 
reasonable to think of them as correspond- 
ing to moods of the market. But one mech- 
anism is clear; a set of condition-action 
rules can be collectively self-fulfilling and 
hence give positive feedback that amplifies 
any small fluctuatation from equilibrium. 
For example, a trend-following rule that 
simply suggests buying stock when the 
price is rising will, once triggered, create 
demand that drives the price up further. 

(iv) The agents become quite heterogeneous, 
using very different rules. 

(v) Trading volume varies greatly, and is 
sometimes quite high. This reflects the het- 
erogeneity of the agents - a set of identical 
agents would never want to buy from one 
another. There tend to be long periods of 
relative calm, interspersed with episodes 
of high-volume activity. These episodes do 
not always coincide with the bubbles and 
crashes. 

(vi) Over time, the complexity of the agents in- 
creases steadily, even though the market- 
level phenomena appear relatively station- 
ary. One measure of agent complexity is 
the average number of non-* symbols in 
their rules. A steady increase in this mea- 
sure is fairly common in classifier systems, 
and might just reflect a random increase 
in the use of redundant bits, or the details 
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of the genetic algorithm. But more likely it 
reflects the discovery of addenda and ex- 
ceptions to gross responses uncovered early 
on, leading to a default hierarchy of rules 

[81. 
(vii) If a trained agent is extracted from the mar- 

ket and then reinserted much later, it tends 
to do rather poorly. The rules needed for 
success change in time -there is no station- 
ary optimum strategy. 

(viii) The ecology of agents can adapt to new sit- 
uations such as a changed dividend stream. 
They never get locked into a particular ap- 
proach, but automatically choose a balance 
between exploration of new rules and ex- 
ploitation of old successful ones. 

(ix) An initially uniform wealth distribution 
evolves into a wide distribution, with 
some agents becoming much more wealthy 
than others over long periods. This re- 
flects agent heterogeneity and “luck”; the 
chance discovery of good rules can make 
certain agents very rich for a while. How- 
ever over very long periods the identity of 
the winners and losers changes, although 
the statistical distribution remains approx- 
imately constant. 

It is worth noting explicitly the artiJicia1 life 
aspects of our model. We find the self-formation 
of an autonomous economy that bootstraps it- 
self up from randomized “stupid” behavior to 
organized mutually-adapted behavior. From a 
random soup of simple rules, an “intelligent” 
system spontaneously organizes. Thus we have 
modelled the origins of economic life among in- 
teracting agents in the same sense that others 
model the origin of biological life among organic 
molecules. What distinguishes this from stan- 
dard equation-based equilibrium economics is 
the ability of the agents to learn, and of the sys- 
tem to bootstrap itself to a high order of mutual 
behavior, rather than merely to implement some 
simple optimizing rule at an equilibrium. 

In all, our models of a stockmarket can re- 
produce the major features (as well as some de- 

tailed statistics, to be discussed elsewhere [ 21) 
of real markets, including dynamical and non- 
equilibrium phenomena. It does not require - 
and indeed rejects - the restrictive assumptions 
of rational expectations theory. Its relative dis- 
advantage is that it is largely a computational 
model, without immediate prospects for rigor- 
ous mathematical results, whereas rational ex- 
pectations theory leads to rich mathematical for- 
malism. 

We see our stockmarket model, and others of 
its class, as a fertile testbed for exploring mar- 
kets, adaptive agents, and a class (distinguished 
especially by the lack of direct agent-agent in- 
teractions) of artificial life. For example, we 
can explore the effect of changing the market 
mechanism, for instance by adding a special- 
ist with inventory, or by imposing transaction 
costs or price controls, and see how the market 
efficiency is affected. We can investigate what 
mechanisms would be effective for stopping or 
limiting bubbles and crashes. We can analyze 
various computerized trading schemes and eval- 
uate their effect on the stability of the market. 
We can explore the difference between homo- 
geneous and heterogeneous traders, and see the 
effect of adding naive “noise” traders who are 
not principally motivated by profit (and can 
therefore be exploited by others). 

We can also investigate many variations at 
the agent level, including different learning 
techniques and different goals (including risk 
aversion). We can inquire into the effect of giv- 
ing certain agents inside information. We can 
try limiting the computational ability of some 
agents. We can set up a framework in which 
agents can go bankrupt and be replaced by clones 
of better agents, so that the whole population of 
agents evolves. 

Some of these projects are already under way; 
others are on the distant horizon. We also expect 
to make public our software (which includes dy- 
namical displays of market and agent behavior) 
within the next year, so that others can share in 
the endeavor. 
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