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Abstract 

This paper reviews Goldstein’s ‘growth constancy index,’ .$, a measure of tracking which can be used to determine 
whether or not individuals maintain their relative positions in the distribution of a given measurement as that distribu- 
tion changes over time. We suggest that F is an appropriate measure of tracking when the (standardized) measurements 
arise in the context of a Model I ANOVA, but that the intraclass correlation coefficient, r,, may be preferred when 
a Model II ANOVA is applicable. We also describe - and make available - a PC program which allows the user 
to choose between Model I and Model II, and computes the appropriate tracking index and confidence intervals for 
the corresponding parameter. 
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1. Introduction 

Goldstein’s [l] growth constancy index is a mea- 
sure of tracking, the tendency of individuals to 
maintain their relative positions in a response dis- 
tribution as that distribution changes over time. A 
number of approaches to the quantification of this 
phenomenon have been taken [2-41 and a good 
overview of these is available [5]. In addition, pro- 
grams implementing several of these methods have 
been written and made available to the biomedical 
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research community [6-lo]. The purposes of the 
present paper are to describe Goldstein’s index, 
which we call [; to note that it is equal to a perhaps 
more familiar quantity, t2, the correlation ratio; 
to suggest that while 4 is appropriate in the context 
of a Model I ANOVA, the intraclass correlation 
coefficient, rh may be preferred in the more fre- 
quently encountered (in the context of tracking) 
case of a Model II ANOVA; and to describe and 
illustrate a stand-alone, menu-driven PC program, 
written in GAUSS [l 11, which can be used to com- 
pute either or both of these quantities and confi- 
dence intervals for the corresponding parameters. 
We begin by outlining the development of [. 
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2. Goldstein’s growth constancy index 

We consider one-sample longitudinal data sets 
of the form 

XNI xW2 *. . XNT 

where xii denotes the value of the measurement 
on the ith individual (i = 1,2,...,N) at time tj 
(j = 1,2 ,..., 7’). The times of measurement tl,t2 ,..., 
tT need not be equally spaced but are assumed to 
be the same for each of the N individuals. The first 
step in computing the growth constancy index is to 
replace the data matrix X by Z where Z contains 
the standardized scores for each individual at each 
time of measurement. That is, 

zij = Xlj - X.j 

(2) 
3 

where 51, is the mean of the N measurements at 
time 5 and sj the corresponding standard devia- 
tion. To the extent that these values remain cons- 
tant over time for a given individual, that 
individual is tracking by maintaining his/her posi- 
tion in the (standardized) response distribution. A 
measure of the departure from tracking for this 
individual is 

T 
0’ = c (zij - Tl.)2 

j=l 

where 

(3) 

describing it as, ‘the proportion of the total varia- 
tion T(N - 1) not attributable to individuals’ vari- 
ations about their mean (standardized) measure- 
ment.’ He also noted that the individual values 
Di2 are measures of each individual’s tracking be- 
havior, allowing the comparison of individuals or 
groups of individuals. 

This index has value 1 when tracking is perfect 
(i.e., when C Di2 = 0) but can assume positive 
values in situations representing no tracking, e.g., 
when the correlations between the successive z- 
values are all zero [ 1,3]. Accordingly, Goldstein [l] 
also considered the modified index 

4* = 
4 - l/T 

1 - 1/T 
(6) 

which continues to equal unity when tracking is 
perfect, but has value zero when the correlations 
between the successive z-values are zero. Indeed, 
4* = F where i: is the average value of these corre- 
lation coefficients [ 1,3]. He also noted that, at least 
for certain types of measurements, it might be 
desirable to recognize that some of the variation in 
growth may be due to ‘measurement error’ and to 
‘disattenuate the intercorrelations by subtracting 
known or estimated measurement error variances 
from the between-individual variances.’ Note that 
Equation (6) also shows that .$ = l/T when the cor- 
relations are all zero. Thus [* is analogous to the 
chance-corrected tracking index based on the 
kappa statistic [4,7]: it represents the amount of 
tracking possible beyond chance that was realized 
in the data. 

3. The standard error of t* 

yi,= _L 
T j_, ‘ii c (4) 

is the mean value of the standardized observations 
for the ith individual over the T time points. For 

N 
the sample as a whole, c # then provides a 

i=l 

measure of non-constancy and 
his growth constancy index as 

[=I- l ;Lli 
(N - 1)T i=, 

Goldstein defined 

(5) 

Goldstein proposed the use of a technique 
known as the jackknife [12,13] to obtain the stan- 
dard error of the estimator of his stability index 
and hence confidence intervals for it. As im- 
plemented in our program, the jackknife can be 
described as follows. Let [* be the value of the 
estimator (6) based on all N observations. Now 
delete the ith observation and let E*_, denote the 
value of the estimator based on the remaining 
N - 1 observations. Define 

i? = N[* - (N - I)[*-1 (7) 
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for i = 1,2,...,N. The jackknifed estimator of ,$* is 
then 

(8) 

and, for large N, an approximate 95% confidence 
interval for ,$* is 

P* 1.96JW (9) 
1=I 

If (a, b) is the 95% confidence interval for g,* the 
95% confidence interval for g is [a(r - 1) + 11/T 
c [ < [b(T - 1) + 11/T. We might note that, in 
our program, to enhance the accuracy of the jack- 
knife procedure [13, p. 1401 we jackknife logit 
([*) = ln[{*/(l - ,$*)I instead of f* itself. 

In any event, our program provides the overall 
estimates [ and [*, the jackknifed estimates i and 
p and 95% confidence intervals for both g and 
9 The jackknifed estimators not only allow us to 
compute the corresponding confidence intervals; 
they also reduce any bias that [ and [* may have 
[l]. We also print the occasion-to-occasion corre- 
lation matrix, R. While we know [* = F, inspec- 
tion of R may reveal patterns among the 
correlations which can be exploited in further 
analysis [14, p. 2251. 

This, then, is a description of Goldstein’s 
growth constancy index. We next relate it to one- 
way ANOVA in order to show the circumstances 
in which it may best be used and to offer an alter- 
native which may be more useful in certain 
situations. 

4. Formulation of f in terms of ANOVA 

While Goldstein did implicitly suggest that [ 
could be related to ANOVA by noting that it had 
an interpretation in terms of the proportion of the 
total variability not due to departures from track- 
ing, he did not pursue this tack. In order to com- 
plete the characterization of [ in terms of the 
ANOVA, we view the data matrix Z as consisting 
of N groups of observations, T observations per 

group. The measurements zii are assumed to have 
the structure 

zv = 7j + Eij (10) 

where ri may be viewed as the steady-state or 
‘true’ value for the ith individual [14, p. 21, and the 
eij values are random quantities, usually described 
simply as ‘measurement error.’ In both Model I 
and Model II ANOVA we assume eii - N(0, a,*). 
The difference arises in how the ri are structured 
and interpreted. 

In Model I (or fixed-effects ANOVA), the ri are 
considered to be (unknown) constants; in Model II 
(or random-effects ANOVA) they are considered 
to be random variables. In the latter situation we 
assume the 7i are normally distributed, in- 
dependently of the eij, with variance c,‘. The gen- 
eral form of the ANOVA is much the same in 
Models I and II: the partioning of the sums of 
squares (SS) is the same, SST = SSB + SSW; the 
corresponding numbers of degrees of freedom are 
the same; and in both cases the expected value of 
MSW is a,*. The major difference is in MSB 
which in Model I estimates a,* + TC T~*/(N - 1); 
but in Model II estimates a,* + Ta,'. One conse- 
quence of this difference is that in Model I, in- 
ferences are limited to the N cases (individuals) 
actually included in the study; in Model II, in- 
ferences apply to the population from which in- 
dividuals represent a random sample. Another 
concerns the way in which one estimates the pro- 
portion of the total variability due to individual 
differences [ 15, p. 3821. The concept remains the 
same, but different methods of estimation are 
employed. In Model I, an appropriate measure 
[IS, p. 3491 of the extent to which ‘treatments’ (in 
our case, individuals) are accounting for variance 
in the dependent variable is v2 = SSBISST, which 
is sometimes referred to as the ‘correlation ratio.’ 
It is easy to see that this is the same as [. Simply 
recognize C Df as SSW and since SST = SSB + 
SSW = T(N - l), 

4 _ T(N - 1) -c Df _ SSB 
T(N - 1) SST 

(11) 

Thus ,$ is an appropriate measure in the case of 
Model I. 
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In the case of Model II ANOVA, where the in- 
dividuals are viewed as a random sample, and the 
variance of an observation zij is V(z& = ~7,~ + ae2, 
the appropriate measure of variance accounted for 
is the intraclass correlation coefficient, rl, defined 
by 

2 
0, rr= _ _ (12) 

a’, + a: _ I  

i.e., the proportion of variance in an observation 
due to subject-to-subject variability in their 
steady-state scores. This is estimated by [14, p. 11; 
15, p. 382; 16, p. 1261 

5. Confidence intervals for r~ 

In constructing confidence intervals for Z: and/or 
t*, jackknifing was used to estimate the correspon- 
ding standard error. An advantage of using the in- 
traclass correlation coefficient (when appropriate) 
is that a closed form expression for confidence in- 
tervals exists. If the 7i and eij are normally distri- 
buted, (1 - a) x 100% confidence intervals for rI 
can be constructed from [15, p. 383; 17, p. 6521 

L U 

L+l 
arts u+l (14) 

;i = 
MSB - MSW 

MSB + (T - l)MSW (13) 

which is somewhat different than [ 111. The rela- 
tionship between the two may be seen from 

t 
SSB SSB z---z 
SST SSB + SSW 

(N - 1)MSB 
= (N - 1)MSB + N(T - l)MSW 

MSB 
= MSB + (T - l)MSW 

i.e., for large N, t is essentially the same as the in- 
traclass correlation except that MSW has not been 
subtracted from MSB in the numerator. Since 
MSW estimates ue2, this is presumably the sense 
in which Goldstein noted that < ‘has not been cor- 
rected’ for measurement error: Goldstein’s ‘disat- 
tenuated’ version of ,$ is simply the intraclass 
correlation coefficient. Note that [ L it, i.e., that 
if [ is used when in fact Model II is appropriate, 
4 will overestimate stability. This is not surprising 
since measurement error inflates SSB (recall MSB 
estimates Tu,~ + uc2). 

In any event, we should note that it is not 
necessary to ‘correct’ ii as in Eq. (6): when 
F = 0, Fi = 0 [16, p. 1261. The statistic ii also has 
an interpretation in terms of the average occasion- 
to-occasion correlation coefficients: ii = J when 
the pooled estimate of variance is used in the 
denominator of all the correlations [16, p. 1261. 

1 

’ F(l 
-1 

-(r/2; N - 1, N(T - 1)) 

and 

1 
-1 

F(cx/~; N-l, N(T - 1)) 
I 

Some investigators might prefer to use the one- 
sided version of this confidence interval: the one- 
sided (1 - CY) x 100% confidence interval for rt is 
given by [14, p. 121: 

MSB 
~ - F(l - (Y; N -1, N(T - 1)) 
MSW 

rI 2 

z+(T- l)F(l -cr; N- 1, N(T- 1)) 

(15) 

In the above, F(ar, dfl, dl2) denotes the ath per- 
centile of the F-distribution with dfl and df2 
degrees of freedom. To compute values not 
generally tabulated, the reader may use the rela- 
tionship F, (dfl, df2) = l/F, _ u (df2, dfl). For ex- 
ample, F.025 (11,48) = 1/F.975 (48,ll) = 0.33. 

6. An example 

We illustrate the methods and our program 
using the data consisting of T = 5 measurements 
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of mandibular ramus height in N = 12 young male 
rhesus monkeys previously considered in [ 181 and 
shown below: 

Monkey Time 1 Time2 Time3 Time4 Time5 
1 25.2 29.0 33.6 35.2 35.8 
2 27.3 32.1 37.0 41.8 43.5 
3 26.3 30.7 36.1 38.0 38.9 
4 26.0 34.5 39.0 42.3 44.4 
5 25.5 29.5 34.4 38.3 37.9 
6 28.2 32.5 36.3 42.3 43.8 
7 25.4 33.4 38.0 42.7 43.1 
8 27.2 34.8 37.2 44.0 44.0 
9 26.0 34.5 38.0 43.5 43.8 

10 28.5 33.8 38.0 39.2 42.0 
11 27.0 31.2 36.0 41.7 43.8 
12 26.0 33.0 40.2 42.5 43.8 

The program is invoked by the command 

GSRUNI GTRACK. 

.- 

Monkey Zl 22 23 24 z5 z D2 
1 -1.245 -1.742 -1.823 -2.162 -2.179 -1.830 0.582 
2 0.692 -0.161 0.009 0.316 0.498 0.271 0.486 
3 -0.23 1 -0.8755 -0.476 -1.111 -1.101 -0.759 0.614 
4 -0.507 1.062 1.087 0.504 0.811 0.591 1.730 
5 -0.968 - 1.487 -1.392 -0.998 -1.449 -1.259 0.258 
6 1.522 0.042 -0.368 0.504 0.603 0.461 2.010 
7 -1.061 0.501 0.548 0.654 0.359 0.200 2.033 
8 0.600 1.215 0.117 1.142 0.672 0.749 0.800 
9 -0.507 1.062 0.548 0.954 0.603 0.532 1.545 

10 1.799 0.705 0.548 -0.660 -0.023 0.474 3.347 
11 0.415 -0.620 -0.530 0.278 0.603 0.029 1.274 
12 -0.507 0.297 1.733 0.579 0.603 0.541 2.584 

asked (1) what is the name of the ASCII file con- 
taining the data (the file name must have the ASC 
extension); (2) what is the number of time points, 
T. The program determines the number of sub- 
jects, N; The user is then asked to choose between 
MODEL I (fixed-effects ANOVA) and MODEL 
II (random-effects ANOVA). If I, Goldstein’s in- 
dices are computed and confidence intervals for 
them are produced by jackknifing. If II, the in- 
traclass correlation is computed and confidence in- 
tervals constructed according to [14] and [ 151. 

The output then appears on the screen and is 
simultaneously written to a output tile on disk in 
ASCII format named GTRACK.OUT. This file 
may be annotated and printed using most word 
processors or the DOS [PRN] utility. 

For the example data [ 181, where we view the 12 
monkeys as comprising a sample from some larger 
population and hence choose Model II, the output 
is as follows. The Z matrix, the individual standar- 
dized means, and the D2 values are given by 

The user is then prompted for some basic infor- 
mation regarding the longitudinal data set to be 
analyzed and how it is to be analyzed. The user is 

The user is given the opportunity to save the D2 
values in an ASCII file for further analysis. Note 
that, in this example, these values readily 
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distinguish those individuals who are tracking 
from those who are not. The usual ANOVA table 
is then printed 

Source df SS MS 

Between 11 37.737 3.431 

Within 48 17.263 0.360 

Total 59 55 

From this we compute 7, = 0.631 and the two- 
sided 95% confidence interval is 

0.390 s rI I 0.848. 

The corresponding one-sided 95% confidence 
interval for the intraclass correlation coefficient is 
rl 2 0.431. We also print the T x T inter-period 
correlation matrix 

Time Tl T2 T3 T4 T5 
Tl 1 
T2 0.340 1 
T3 0.156 0.821 1 
T4 0.253 0.817 0.703 1 
T5 0.440 0.832 0.772 0.942 1 

7. Discussion 

The intraclass correlation coefficient, the appro- 
priate index for use when the monkeys are con- 
sidered to represent a random sample, has value 
i, = 0.631. If we would have used instead the 
analogous form (the one with an interpretation as 
the proportion of variance accounted for) of 
Goldstein’s stability index we would obtain 
4 = 0.686.5, as noted earlier, overestimates stabili- 
ty. On the other hand, the corrected form of 
Goldstein’s index (6) has the value [* = 0.608. It 
may also be noted that 5* = 7, the average of the 
correlation coefficients in the above table. The 
jackknifed estimators and corresponding 95% con- 
fidence intervals are, respectively, 0.705 (0.442, 
0.897) and 0.631 (0.303, 0.871). 

It may be of interest to compare these values 
with those of other tracking indices. For the index 
based on Cohen’s kappa statistic using 3 tracks 

[7], K = 0.242 with 95% confidence interval (0.113, 
0.372). For the unstructured form of the Foulkes- 
Davis tracking index [2,8], also considered in [l], 
the value is FDI = 0.394 and the corresponding 
confidence interval is (0.245, 0.543). For the more 
structured form of this index, where polynomials 
are fit before the number of crossings are counted 
(D = 2 is satisfactory at a = 0.05) FDII = 0.530 
and (0.400, 0.660). While these indices are not in 
‘good agreement’, differences between them may 
be expected since they measure different aspects of 
‘tracking behavior’ [1,6]. In the case of the kappa 
index, the value before chance-correction is 0.500, 
which is more in line with the values of the other 
indices. 

Goldstein also compared his stability index to 
FDI and FDII. He computed these indices for 
height, weight and skinfold measurements and 
found: 

Height 
Weight 
Skinfold 

4 FDI FDII FDII 
(D = 1) (D = 2) 

0.97 0.85 0.88 0.86 
0.95 0.82 0.86 0.85 
0.75 0.58 0.70 0.64 

It is seen that the values of the indices con- 
sidered can vary markedly and depend on such 
factors as the nature of the measurement con- 
sidered, the number of tracks for kappa [6,7], the 
time interval over which the measurements are 
taken, and the degree of the polynomial Iit to 
smooth the data. 

In the context of the indices (5), (6) and (12), the 
value will also depend on whether Model I or 
Model II is selected by the user. While we suspect 
that in most applications of our program Model II 
will be appropriate (and hence rI will be com- 
puted), there are situations in which Model I is ap- 
propriate and [ and/or t* should be computed. As 
an example, consider a university official in the 
state of Michigan who is interested in seeing 
whether a defined set of state-supported schools 
track with respect to their annual appropriations. 
Since this official is interested only in these partic- 
ular schools (and does not intend to generalize to 
other schools), Model I is appropriate and t 
and/or [* should be used. We might note that 
t (= #) is not the only measure which could have 
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been used for the stated purpose in Model I situa- 
tions. Indeed, perhaps the most widely used is o2 
[ 19, p. 231. Hays [ 15, p. 2901 defines this in general 
terms as 

i.e., the proportion of variance in the dependent 
variable (Y) accounted for by the independent 
variable (x). He notes [ 15, p. 2911 that w2 is close- 
ly related to q2 and rI, but that these, ‘were 
developed for and used in somewhat different con- 
texts.’ q2 is shown to be appropriate for Model I 
[15, p. 3491; rl in Model II [15, p. 3821. A good 
description is available in [20, p. 89ffl. Other alter- 
natives, including q2 and rI, are discussed in [21]. 

Returning to the Model II situation, an impor- 
tant use of.@SW was noted by Fleiss [14, p. 111. 
For a single subject, the steady-state score r may 
be considered an unknown parameter. If a single 
observed measurement, z, is available on that indi- 
vidual, an approximate 95% confidence interval 
for his/her true value of r is z f 2 m. 
If the individual is measured T times, and has 
mean Z, an approximate 95% confidence interval 
for 7 is 

MSW 
T&:2 - 

$_ T 

Consider, e.g., a ‘new’ monkey, measured at but a 
single point in time, for which z = 1. Recalling that 
MSW = 0.36, the 95% confidence interval for this 
monkey’s steady-state value, r, is (-0.2,2.2). If in- 
stead T = 4 time points had been available, the 
corresponding interval would have been (0.4, 1.6). 
It is thus seen that the methodology developed 
above may have application in diagnostic/predic- 
tive contexts. 

8. Availability 

A full set of PC programs for longitudinal data 
analysis, including this program, can be obtained 
on 5.25” or 3.5” diskettes (please request type) by 
sending $25 to defray the cost of handling and 

licensing fees. These programs require a 80386 or 
80486 based personal computer (PC) running the 
MS-DOS operating system (version 5.0 or higher 
is recommended, although versions as low as 3.3 
will suffice). 80386 computers must also be equip- 
ped with a 80387 math coprocessor. At least 4 MB 
of memory is required, and must be available to 
GAUSS386i, i.e., not in use by memory resident 
programs such as Windows. EGA or VGA graphic 
capabilities are required to display the color 
graphics; VGA or SVGA is suggested to display 
optimally the graphic results. Runtime modules 
are supplied with the programs so that no ad- 
ditional software (i.e., compiler or interpreter) is 
required to run these programs. One can create 
and edit ASCII data sets for use by these programs 
using the full screen editor supplied with MS-DOS 
version 5.0. The programs are written and compil- 
ed using GAUSS386i, version 3.0, require no ad- 
ditional installation or modification, and are run 
with a single command. When requesting the pro- 
grams, address inquiries to the corresponding 
author and make checks payable to Baylor College 
of Dentistry. 
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