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Abstract 

Two stand-alone, menu-driven PC programs, written in GA USS386i, which compare groups of growth curves in a 
completely randomized design using either (a) exact or (b) approximate randomization tests, are described, illustrated, 
and made available to interested readers. The programs accomodate missing data in the context of studies planned 
to have common times of measurement, but where some of the measurement sequences are incomplete. The measure- 
ment whose growth is being monitored need not have a Gaussian distribution. We consider the hypothesis that the 
mean growth curves in G groups are the same; and either compute the exact P value (exact test), or estimate, and pro- 
vide a confidence interval for, the P value (approximate test). 
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1. Introduction 

A number of methods for estimating and com- 
paring the average polynomial growth curves 
(AGCs) in several groups of individuals exist when 
subjects are measured at identical times, modeled 
with polynomials of the same degree, and when 
multivariate normality of the repeated measure- 
ments can be assumed. Among these are the 
methods by Potthoff and Roy [l], Rao [2,3] and 
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Khatri [4], and we have written programs to carry 
out several of these analyses using SAS and/or 
GAUSS [5-lo]. These methods and programs are 
able to provide considerable insight into growth 
and developmental processes whenever the condi- 
tions mentioned above are satisfied, but practical 
circumstances often preclude their application. 
The assumption of common times of measurement 
is especially troublesome: individuals invariably 
miss one or more appointments. Excluding such 
individuals from the analysis wastes information; 
estimating the missing values so that they may be 
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included is difficult, and may introduce additional 
(strong) assumptions into the analysis which many 
researchers would rather avoid, although techni- 
ques for accomplishing this do exist [l 11. 

Fortunately, there are procedures which do not 
make any of the above assumptions and conse- 
quently are of great potential value to those who 
must deal with all of the practical problems in- 
herent in collecting and analysing longitudinal 
data sets. Zerbe and Walker [ 121 and Zerbe [ 131 
developed randomization tests for the analysis of 
growth curve responses arising in the context of a 
completely randomized design, and this method- 
ology has been extended to more complex experi- 
mental designs [14]. The general theory of 
randomization tests is described elsewhere 
[15-171; here we consider only those tests dealing 
with longitudinal data collected in accordance 
with a completely randomized design. Our discus- 
sion parallels that given by Zerbe and Walker [ 121, 
but we maintain the notation established in a num- 
ber of other papers [5-l 11. We describe two menu- 
driven PC programs, written in GAUSS386i, im- 
plementing the exact and approximate forms of 
this procedure, and copies of the programs are 
made available to interested readers. Information 
concerning hardware requirements and obtaining 
copies are given in Appendix 1. 

2. Randomization tests for longitudinal data 

Suppose N subjects are randomly assigned to G 
groups, ng to the gth group, 

i nR = N, 
g= I 

and that the planned times of measurement are 

Then, following the methods previously outlined 
by us [18-211, we compute the distances between 
the growth curves for all pairs of individuals, 
where the distance between the growth curves of 
the ith subject in the gth group and the kth subject 

the Ith group over the time interval (a&) is defined 
(12,131 by: 

[S 
b 1 l/2 

d(xi,y, Xkl) = big(‘) - X/cdt)l*dt (1) 
a 

Our programs are limited to the case where the 
Xig(t) are polynomials. Determination of the 
appropriate degrees of these polynomials, and the 
structure of these parts of our programs were 
detailed by Schneiderman et al. [ 18,191. The hypo- 
thesis that the mean growth curves in the G groups 
are equal over the interval (a,b), namely, 

Ho: p,(t) = p*(f) = . . . = &t) for all t E (a&) (2) 

may then be tested [ 12,131 using the statistic 

z= 5 1-4 
g=l % 

where 

zgg = C d2(Xig(t),Xkg(t)) 
i<k 

(4) 

i.e. ZRR is the sum of the squared distances be- 
tween all possible pairs of individuals in group g. 

The exact P value for the test may then be 
obtained by evaluating Z for each of the 

N! 
R= G (5) 

n ng! 
g= I 

possible random assignments of N individuals to G 
groups (fixed ng). If M of these are less than or 
equal to Z,, the observed value of Z from the 
original assignment, the P value is 

P = MIR (6) 

Since R may be quite large in practice and the eval- 
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uation of every possible 2 prohibative, a random 
sample of assignments may be taken. If in r 
assignments, m values of 2 are less than or equal 
to Z,, the P value (Eq. 6) is estimated by 

P = mlr (7) 

If, as in our program, the sampling of assignments 
is done with replacement (i.e. if the same assign- 
ment may be made more than once), m has a 
binomial distribution with parameters m and P, 
and so confidence intervals for P are easily con- 
structed [22], or read from tables [23], or charts 
[24]. The interpretation of this confidence interval, 
however, deserves some comment. If, say, the 95% 
confidence limits for P include values all less than 
0.05, then 95% is the ‘confidence’ that examination 
of all R assignments would have resulted in the 
same decision (to reject Ho at the 5% level of 
significance). More generally, as long as the conli- 
dence interval does not include our prespecitied 
level of significance (o), we would be 95% confi- 
dent that that examination of all R assignments 
would have resulted in the same decision. Should 
the interval contain (Y, the decision based on all R 
assignments might differ from the one reached on 
the basis of the sample of r assignments. The 
choice of r, then, should be large enough to ensure 
that the width of the resulting confidence interval 
is sufficiently narrow, but not so large as to require 
excessive computing time. 

In any event, we provide (1 - a) x 100% conti- 
dence intervals for P of the form (PL,Pu), where 
t221 

m 
PL = 

m+(r-m+ 1)Fr 

Pu = (m + ~)Fu 
r-m+(m+ 1)F” 

In the above, 

FL = ql - (r/2; 2(r - m + l), 2m] 

and 

Fu = fll - a/2; 2(m + l), 2(r - m)] 

representing the (1 - ar/2)th percentile of the F 
distribution with the indicated numbers of degrees 
of freedom. 

3. The programs 

The user is asked to prepare either an ASCII or 
GAUSS data set containing the values of the 
measurements for a study in which the times of 
measurement were planned to be the same for all 
individuals, but some data may be missing. 
Periods (‘.‘) are used to represent missing data. 
One column in the data set should be reserved for 
the group indicator variable. To illustrate, con- 
sider a study with planned times of measurement 
t = 1, 2, 3, 4, 5 and an individual from group g (= 
1, 2, . . . ) G’) with observations 20, 30, and 45 at 
times t = 1, 2, and 4. If the group indicator 
variable is put in the first column, the correspon- 
ding row in the data set would be 

g 20 30 .45 . 

Note that the (common) times of measurement are 
not part of the data set; they are entered (once) 
when running either program. 

The program performing the exact randomiza- 
tion test is invoked by the command gsruni zrte, 
and the program for the approximate test by gsruni 
zrta. In both cases the user provides the menu- 
driven program with information concerning the 
name and location of the data file, and the times 
of measurement. The total number of assignments 
of subjects to groups (R, the number of unique 
permutations) is printed. If the user is running the 
exact form of the test, we compute the distances 
(Eq. 1) and provide the exact P value as in Eq. 6. 
If the approximate form, the user specifies the 
number, r, of assignments to be sampled. Given r, 
the program treats the obtained result as the first 
data permutation and randomly permutes the data 
an additional r - 1 times. The output includes the 
estimated P value and the corresponding confi- 
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dence interval at the user-specified level of confi- 
dence (e.g. 0.95). The user then has the option of 
continuing the sampling process should he or she 
wish to obtain tighter confidence limits. One 
might, for example, initially choose r = 1000 and 
add to this if the resulting confidence interval was 
equivocal. 

4. Examples 

We consider two examples, the first employing 
the exact test, the second the approximate test. 
Consider first the data set shown in Table 1, con- 
sisting of mandibular ramus height measurements 
(in mm) on N = 12 young male rhesus monkeys 
taken at the T = 5 time points t = 1(1)5. This data 
set was previously used by us for illustrative pur- 
poses [5,11]; here we have added a group indicator 
variable and discarded several observations. The 
number of ways to assign 12 subjects to two 
groups of 6 each is 924, and we choose the exact 
form of the test. The time required to complete the 
procedure will, of course, depend on the con- 
figuration of the machine used; but using a 486- 
based PC running at 33 MHz the elapsed time was 
approximately 30 s, and the resulting P value was 
P = 0.197. To give some idea of the time needed to 
complete analyses based on samples of assign- 
ments, for the above example, 200 took less than 
10 s; 400 less than 20 s; and 700 approximately 
25 s. 

Table I 
Data set used in the first example 

Group Time 

1 2 3 4 5 

1 25.2 29.0 33.6 35.2 35.8 
1 21.3 32.1 37.0 
1 26.3 30.7 36.1 
I 26.0 39.0 42.3 44.4 
1 25.5 i9.5 34.4 38.3 37.9 
1 28.2 32.5 36.3 42.3 43.8 
2 25.4 33.4 38.0 
2 21.2 34.8 31.2 44.0 44.0 
2 26.0 34.5 38.0 43.5 43.8 
2 28.5 33.8 38.0 39.2 42.0 
2 27.0 36.0 41.7 43.8 
2 26.0 40.2 42.5 43.8 

Our second example is based on the data 
previously considered by Ten Have and coworkers 
[9,25], consisting of three samples of children 
living in Guatemala which were studied in depth 
by Bogin et al. [26]. The children comprising these 
samples differ in socioeconomic status (SES) and 
ethnicity: one is of high SES Ladino children (G,); 
the second is of low SES Ladino children (Gz); 
and the third is of low SES Mayan children (G,). 
There are 20 individuals in each group and we 
analyse their statural growth, this being measured 
T = 6 times at ages 7, 8, 9, 10, 11 and 12 years. 
There are no missing data. We use this data set so 
as to be able to compare the results with those ob- 
tained via the Potthoff-Roy analysis [9], but the 
user is reminded that the program does ac- 
comodate data sets with missing values. 

The size of this data set is such that only the 
approximate randomization analysis is feasible. 
There are 60!/(20! x 20! x 20!) = 5.7783121 x 
1O26 possible assignments of 60 children to G = 3 
groups with 20 in each group, and it is neither 
practical nor necessary to perform the exact ran- 
domization test (see below). Following Ten Have 
et al. [9], we tit polynomials of degree D = 2 to 
each individual, and specify a sample of r = 1000 
random assignments of 20 children to each of the 
groups. In this case, the time required to complete 
the analysis was approximately 5 min; the 
estimated P value (Eq. 7) was Is = 0.001 and the 
corresponding 95% confidence interval was 
(0.000,0.006). This indicates that the overall form 
of the curves are different among the three groups. 
The Potthoff-Roy analysis [9] also showed differ- 
ences between the groups (P = 0.0001 for coinci- 
dence irrespective of the choice of the arbitrary 
matrix). 

The reader will have noted that the time re- 
quired to complete either the exact or approximate 
randomization test depends on the machine 
employed, and on the structure of the data set. It 
is difftcult to provide estimates covering all of the 
possibilities but, in both programs, the user is kept 
abreast of progress with a running display of: 

TOTAL NUMBER OF PERMUTATIONS SELECTED: 

CURRENTLY WORKING ON PERMUTATION # 

PERCENT CALCULATION REMAINING: 
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and may abort the program if his or her estimated 
time to completion exceeds expectation by 
simultaneously pressing the control and break 
keys. 

5. Discussion 

Randomization tests are statistical tests in which 
the data are repeatedly divided, a test statistic is 
computed for each division, and the P value for 
the test equals the proportion of the data divisions 
with as small (or large, depending on context) a 
test statistic as the value determined from the orig- 
inal data. When all possible divisions or, in our 
case, assignments, are evaluated, we speak of sys- 
tematic data permutation, and exact randomiza- 
tion tests. When only a sample of assignments is 
evaluated, we use the terms random data permuta- 
tion, and approximate randomization tests. The 
exact test will be preferred, whenever feasible. 
Often, however, the user will have to choose the 
approximate procedure. There are two primary 
reasons for this, and these are considered in turn 
below. 

First, exact tests are feasible only for very small 
data sets. With moderate sample sizes, there may 
be so many possible assignments that it would not 
be practical to consider all data divisions, even 
with modern computers. There are, for example, 
over 5 trillion ways to assign 30 subjects to 3 
treatments with 10 subjects per treatment (Ref. 15, 
p. 20). In an application somewhat different than 
ours (Ref. 16, p. 14), it was noted that even if 1000 
of a total of 16! possible permutations could be 
generated and evaluated every second, it would 
take more than 6 centuries to exhaust the list. 

Second, random data permutation methods may 
be effective with as few as 1000 data permutations 
(Ref. 15, p. 43). It is also true that approximate 
tests are valid in the sense that if the level of signif- 
icance of the exact test is Q, the probability of a 
type I error using the approximate test will be no 
more than a. While random permutation methods 
are less powerful than systematic methods based 
on all possible assignments, increasing the number 
of samples increases the power, and there is often 
but little loss in power when the approximate test 
is used. It has been shown (Ref. 15, p. 45), for ex- 

ample, that if P = 0.01 using the exact test, then 
with probability 0.99, P c 0.018 for the approxi- 
mate test based on 1000 samples. Similarly, under 
the same specifications, if the exact P is < 0.05, the 
approximate P is r0.066. 

Finally, we note that we have presented only a 
brief sketch of Zerbe and Walker’s procedure. As 
shown by Zerbe and Walker [12], it can be 
developed in analogy with the simple one-way 
analysis of variance, where the total sum of 
squared distances (from the overall mean curve) is 
partitioned into sums of squared distances be- 
tween and within groups. In this formulation, Z, 
as given by Rao [3], corresponds to the within sum 
of squares. Since the total sum of squares is cons- 
tant for all assignments, small values of Z corre- 
spond to large values of the usual F statistic, and 
point to rejection of the null hypothesis. 
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Appendix 1 

Computer implementation 

A full set of PC programs for longitudinal data 
analysis, including these programs, can be obtain- 
ed on high density 5.25-inch or 3.5-inch diskettes 
(please request type) by sending $25 to defray the 
cost of handling and licensing fees. These progams 
require an 80386- or 80486-based personal compu- 
ter (PC) running the MS-DOS operating system 
(version 5.0 or higher is recommended, although 
versions as low as 3.3 will suffice). 80386 com- 
puters must also be equipped with an 80387 math 
coprocessor. At least 4 Mb of memory is required, 
and must be available to GAUSS386i, i.e. not in 
use by memory resident programs such as Win- 
dows. EGA or VGA graphic capabilities are re- 
quired to display the color graphics; VGA or 
SVGA is suggested to display optimally the gra- 
phic results. Runtime modules are supplied with 
the programs so that no additional software (i.e. 
compiler or interpreter) is required to run these 
programs. One can create and edit ASCII data sets 
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for use by these programs using the full screen 
editor supplied with MS-DOS version 5.0. The 
programs are written and compiled using GA USS- 
3863, version 3.0, require no additional installation 
or modification, and are run with a single com- 
mand. When requesting the programs, address 
inquiries to the corresponding author and make 
checks payable to Baylor College of Dentistry. 
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