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INTRODUCTION

Let R be a crystallographic root system of rank » in a real Euclidean
space V. The hyperplanes orthogonal to the roots of R define a simplicial
fan @, in V. The simplicial decomposition of the unit sphere induced by
this fan is the Coxeter complex 4,. The Weyl group W of R acts on &,
and hence on the associated toric variety X, and hence also on the
rational cohomology H*(X g, Q). The main result of this paper is the fact
that the representation of W carried by H*(X 4, Q) is isomorphic to (the
literarization of) a certain permutation representation 7, of W.

We prove a number of interesting properties of n, even though we lack
an explicit construction of it. For example, the degree of ny is ||, the
number of orbits is 2", and the isotropy groups of n, (i.e., the stabilizers
of points) are generated by reflections, but not necessarily simple reflec-
tions. If R is irreducible, then even more can be said. For example, we
prove that the isotropy groups of m, for irreducible R are generated by
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reflections corresponding to subsets of the extended diagram of R. These
subgroups are the stabilizers of nonempty faces of the fundamental alcove
for the affine Weyl group attached to R.

Since we lack an explicit construction of n,, we are forced to study it
indirectly through the linear (rather than permutation) action of W on
H*(X g, Q). By a fundamental theorem of Danilov, one knows that the
cohomology ring of the toric variety of a simplicial fan @ is isomorphic to
a quotient of the face ring Q[ 4] (where 4 is the simplicial complex of the
fan) by a certain natural system of parameters @. Hence, for the purpose
of studying the action of W, one can replace H*(X ., Q) with Q[4:1/6.
This is the point of view we adopt in this paper.

It should be noted that the Weyl group representations under considera-
tion here bear a superficial resemblance to another family of representa-
tions that have previously been considered by Bjorner [Bj, §6], Garsia and
Stanton [GS], Solomon [S], and Stanley [St2, §§4, 6]. This other family
is also obtained as a quotient of Q[4;] by an appropriate system of
parameters, but the distinction (and it leads to results of a completely dif-
ferent nature) stems from the fact that the systems of parameters in the two
cases are not equivalent as W-modules. In our case, the action of W on the
parameters is isomorphic to the reflection representation of W, whereas, in
the other case, the parameters are fixed pointwise by W. Furthermore, in
this latter case, the structure of the W-representation carried by the
quotient ring is simply a multi-graded refinement of the regular representa-
tion.

Precedents

At the 1985 Durham Symposium on the Symmetric Group, Procesi
proved a character formula for the W-representation carried by H*(X 5, Q)
and derived a more explicit formula in the special case R = A4,,. The details
appear in [P].

From the point of view of combinatorics, the toric varieties X, are of
interest because their Betti numbers (essentially Weyl group analogues of
the Eulerian numbers) provide examples that fit into Stanley’s scheme for
proving unimodality of sequences via the Hard Lefschetz Theorem. In this
particular case, one can also use the presence of a Weyl group action to
give an isotypic refinement of the unimodality of the Betti numbers. That
is, one can show [St5, p. 528] that for each irreducible representation p of
W, the multiplicity of p in each (even) degree of H*(Xg, Q) forms a
unimodal sequence. In 1988, Stanley translated Procesi’s result for 4, into
the language of symmetric functions, and included the “isotypic” Betti
numbers implicit in these symmetric functions as examples in his survey of
unimodal sequences [St5, p. 529]. Brenti later gave an elementary proof of
their unimodality in [Br].
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In Stanley’s presentation of the Procesi formula, it is self-evident that in
the A4, case the character of the cohomology of the toric variety is a per-
mutation character. This observation was first made explicit in [Ste3],
where this author posed the question of finding a geometric explanation of
this fact.

Recently, Dolgachev and Lunts gave a recursive, geometric technique for
generating H*(X g, Q) in the case of R=A4, and R=C, [DL], and from
this it is not difficult to deduce that the action of the Weyl group is indeed
isomorphic to the linearization of a permutation representation in these
cases. They also gave an independent proof of a character formula for
Q[ 4;]/@ for arbitrary R that is closely related to the one of Procesi. Their
results suggested to this author the possibility of finding permutation
representations in the general case.

Organization

In Section 1, we consider group actions on complete simplicial fans. If
the group action satisfies a certain axiom (see (G1)), then we are able to
prove a simple character formula (Theorem 1.4) for the representation
carried by the cohomology of the associated toric variety (or equivalently,
the representation carried by the face ring modulo ©). This is a slight
generalization of the formulas previously given by Procesi [P] and
Dolgachev and Lunts [DL].

In Section 2, we provide a collection of formulas for the A-polynomials
of the Coxeter complexes 4z, as well as for the subcomplexes invariant
under given elements of the Weyl group. We also give formulas for the
number of maximal faces in these complexes. These data are needed so that
we can apply the character formula of Section 1. We remark that these
invariant subcomplexes of Coxter complexes (and their underlying hyper-
plane arrangements) have been previously considered by Orlik and
Solomon [OS].

In Section 3, we provide an explicit basis for the W-invariants of
Q[A4:]/@. A corollary of this result is the fact that the number of orbits of
ng is 2%

In Section 4, we give the precise statements of the main results of this
paper. After reading this Introduction, it should be feasible for the
impatient reader to skip directly to this section.

In Section 5, we note that a corollary of one of the results in Section 4
is the fact that if we W belongs to no proper reflection subgroup of W,
then det(1 —w) is the index of the root lattice in the weight lattice. In the
special case for which w is a Coxeter element, this fact can be found as an
exercise in [B], but we are unaware of a similar proof of the more general
statement.

The proofs of the main results are distributed throughout Sections 6-10
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on a case-by-case basis. At first it may seem strange that we have separate
sections for the root systems of type is B, and C, -they have the same
Weyl group, the same Coxeter complex, and the same linear representa-
tions on Q[ 4;]/@. However, the implications of our main results in these
two cases are not identical, since it turns out that m, and ., are not
isomorphic as permutation representations. For example, it is possible to
assign a grading to 7, that is compatible with K[A4;1/@ if R= C,,, but not
if R=B,.

Our proofs for the exceptional root systems are computer-assisted. The
details of how the calculations were carried out are discussed in Section 10.

There are two appendices. In the first, we list the extended diagrams of
the irreducible root systems. Although these diagrams can be found else-
where (e.g., [B, H]), we have included them here for the convenience of the
reader. In the second appendix, we list the multiplicities and types of
the transitive permutation characters that occur in n, for each of the
exceptional root systems.

1. GrROUP ACTIONS ON SIMPLICIAL FANS

We first need to review some of the basic algebraic properties of simpli-
cial complexes. Further details can be found in [St3].

Let 4 be an abstract simplicial complex with vertex set /. Thus 4 is a
collection of subsets (faces) of I such that for all Fed, F'c F implies
F'ed. Recall that dim F=|F|—1, and that dim 4 is the maximum
dimension of any face of 4. Henceforth we assume that 4 is finite and
(n — 1)-dimensional.

Let f(4)=(f_\, fo, - fn—:) denote the f-vector of 4, so that f; is the
number of i-dimensional faces of 4. (In particular, f_, =1.) One may
define the h-vector h(4)= (h,, ..., h,) and h-polynomial P ,(gq) in terms of
the f-vector via

™M=
bl

P,y(g)= =Y fiqd(1—q) "
i=0

i=0

Let K be a field of characteristic zero, and let {x,:7e I} be a set of inde-
pendent indeterminates. The support of a monomial []; x¥ is defined to be
{iel:x;>0}. The face ring K[A] (or Stanley—Reisner ring) is defined to
be K[x;:iel]/¥, where ¥ denotes the ideal generated by monomials
whose supports are not faces of 4. The monomials with support in 4 form

a K-basis for K[ 4], and therefore

P,(q) q'" q
o™ p%(l = Zf_l s (1.1)

is the Hilbert series for K[4].
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A (homogeneous) system of parameters for K[ 4] consists of a sequence
&=(,,..,0,), with each §,e K[ 4] homogeneous of positive degree, such
that K[4]/€ is finite-dimensional as a K-vector space. In particular, this
requires that 6,, .., 0, be algebraically independent over K. By abuse of
notation, we identify @ with the ideal it generates in K[ 47]. One says that
K[A47 (or simply 4) is Cohen-Macaulay if for some (equivalently every)
system of parameters 0, K[A4] is a free module over the polynomial sub-
ring K[@]. If each 6, has degree 1 (and 4 is indeed Cohen—Macaulay), it
is easy to show that P,(g) is the Hilbert series for K[4]/@ (cf. (1.1)). In
particular, the A-vectors for such complexes are nonnegative.

Simplical Fans

Let V be an n-dimensional real Euclidean space, and let @ be a
polyhedral decomposition of V. By this we mean that & is a collection of
pointed convex polyhedral cones in V' with apex at the origin, such that

(FO) V= &.
(F1) Every face of every cone Ce @ is also in .
(F2) If C,, C,e®, then C,n C, is a face of both C, and C,.

This paper is concerned only with decompositions @ that are simplicial;
1., each /-dimensional cone is generated by i vectors. In such cases, the
intersection of @ with the unit sphere in V yields an (» — 1)-dimensional
simplicial complex 4 in which the i-dimensional, cones of @ correspond to
(i — 1)-dimensional faces of 4.

If, in addition, the cones of ¢ are generated by vectors belonging to
some lattice L in V, then @ defines a (complete) simplicial fan in L [O].
We also describe this condition by saying that @ is integral with respect
to L.

Group actions

Let G be a finite subgroup of the orthogonal group O(¥V), and suppose
that G acts as a set of automorphisms of some simplicial decomposition @
of V. Note that G also acts on the associated complex 4. We say that @
carries a proper action of G if

. (G1) Forevery Ce @ and we G, w(C)= C implies that w fixes every
face of C.

In other words, if w fixes a cone C setwise, then it must fix C pointwise.
Under these circumstances, it follows that the vertices (one-dimensional
cones) of @ fixed by w must span V, = {ve V:wv=rv}, and therefore the
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restriction of @ to V, yields a simplicial decomposition @* of V. In
particular, the simplicial complex associated with @* is the 4-subcomplex

A¥:={Fed:w(F)=F}.

The action of G on 4 induces a graded KG-module structure on K[4].
In order to simplify the description of decompositions of graded modules,
let us adopt the convention that if U is a KG-module, then ¢’U denotes the
graded KG-module obtained by assigning degree j to every element of U.
Formal sums of such objects should be interpreted as (external) direct
sums. Also, if G acts by permutations on some set S, let us denote by
K{S> the KG-module obtained by extending the action of G linearly to the
vector space freely generated by S.

LemMMa 1.1. Let @ be a simplicial decomposition of V with associated
complex A. If @ carries a proper G-action, then as graded KG-modules we
have
g'"!

K[4]= Y -K(wF:weG),

1F]
Fe4/G (1 - q)
where F ranges over a set of orbit representatives for G on A.

Proof. Let # denote the basis of K[ 4] consisting of monomials with
support in 4. Note that K[4] =~ K{.# ) as graded KG-modules, since G
permutes the vertices of @, and hence also .#. For F € 4, let .# denote the
set of monomials with support F. Since the action of G is proper, each
G-orbit on # contains at most one member of .#.. Furthermore, the
action of G on the orbit of any monomial in .4 is isomorphic to the action
of G on the orbit of F, since w.#r= #, . Therefore, the graded KG-module
generated by .# is isomorphic to Pr(q) - K{wF:we G), where Pr(q)=
¢'F'(1 — q) ! denotes the generating function for monomials in .. |

If U=@, U, is any graded KG-module, let x[U, ¢q] denote the graded
character of U. In other words, for we G, let us define

LU, g1(w) =3 ¢’ try, ().

LEMMA 1.2, If @, A, G are as above, then for we G,

P (q)

x[K[4], CI](W)=(T_—q—)T(,.—.,,

where §{w):=1+dim A4*=dim V.
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Proof. Continuing the notation of the previous proof, note that
x[ K[ 47, g](w) is the generating function for monomials in .# fixed by w.
Since the action of G is proper, a monomial with support F is fixed by w
if and only if F is fixed by w. Hence, y[K[4], ¢}{w) is the Hilbert series
for K[4™]. 1

For any Fed, let G.={weG :w(F)=F} denote the isotropy group
of F.

CorOLLARY 1.3. If @, 4, G are as above, then for we G,

Pulg)= Y q"(1—g)* 111G (w).
FeA/G
Proof. The G-character of K(wF:weG) is 1gr, the induction of the
trivial character from G, to G. Now compare the formula for y[K[ 4], ¢]
in Lemma 1.2 with the one implicit in Lemma 1.1. |

Let (., -> denote the inner product on V, and let ¢,, .., &, be a basis for
V. Regarding the vertex set I of A as a subset of V, let us define (cf.
(D, §10.7])

8,=3 <v,e)>x,eK[4]. (12)

vel

In general, the scalar products (v, ¢;) could be arbitrary real numbers, and
so we have to assume that K is the real field in such cases. However, if &
is integral with respect to some lattice L, then we may assume /< L and
choose ¢, ..., €, to be a basis for the dual lattice L*. In that case, all of the
coefficients (v, g;> would be integral, and thus (1.2) would be a valid
definition over any field.

It is easy to show (e.g., using [Stl, p.150]) that @=(0,,..,0,) is a
homogeneous system of parameters for K[ 4] of degree 1. Note that for
we G, we have

wl, = Z KU, &) Xy = Z wlv, g0 x, = Z v, we;) x,. (1.3)

vel vel vel
Hence, the K-span of 8, ..., 8, is G-stable. In particular, the ideal @ is also
G-stable, so K[4]/© carries a graded KG-module structure.

THEOREM 14. If &, A, G are as above, then for we G,

det(1 —gw)

x[K[4]/6, g](w) =P 4.(q) ( _q)a(w) :
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Proof. Since 4 is a triangulation of a sphere (essentially by definition),
it follows by a theorem of Reisner [St3,§I1.4] that K[4] is Cohen—
Macaulay. Hence K[ 4] is free as a module for K{®]. We claim that this
implies

K[4]=K[4]/@®K[O] (14)

as graded KG-modules. To see this, note that since G is finite, any
surjective homomorphism of KG-modules splits. In particular, there is a
graded KG-module injection g: K[4]/@ — K[ A] that inverts the natural
projection K[4] — K[4]/6. Since K[A] is free, it follows that ¢ maps
K-bases for K[A4]/0 to (free) K[@]-bases for K[4]. Hence, there is a
graded KG-module isomorphism from K[4]/@ ® K[@] to K[ 4] in which
u®ars ac(u) for ue K[41/6, ac K[@].

Now by (1.3), we see that the action of G on the K-span of 4, .., 8, is
isomorphic to the action of G on V. Hence the KG-module structure
carried by K[@] is isomorphic to the symmetric algebra of V. In par-
ticular, x[K[©@1, ¢](w)=det(1 —gw)'. Using Lemma 1.2 to compare the
graded characters of the two expressions in (1.4), we thus obtain

P (q)

'1__—"]")'?sTE=X[K[A]/99 ql(w)- |

1
( det(1 —gw)’
Let |4d|=f,_,(4)=P,(1) denote the number of maximal faces of the
complex 4, and let y“ denote the ungraded G-character of K[4]/6; ie.,
x?:=x[K[4]/6,1]. Note that (1 —gq) °" det(1 —gw) is essentially the
characteristic polynomial of w on V', since (w)=dim V. Therefore, in
the limit g — 1, we obtain

COROLLARY 1.5. For we G, we have x*(w)=|4"| -det,+(1 —w).

Now let us suppose that @ is integral with respect to some lattice L in
V. In that case, there is a toric variety X, associated with @ (e.g., see [O]),
and a theorem of Danilov [D, §§10.8, 10.9] asserts that the cohomology
ring H¥(X4)=H*(X4, K) is a quotient of the face ring. To be more
precise (taking into account the fact that the cohomology is nonzero only
in even degrees), we have a graded ring and KG-module isomorphism

H*(X,)=K[4]/6, (1.5)
provided that we assign degree 2 to the generators of K[4]. As an

immediate corollary, we thus obtain the following slight generalization of
a result of Dolgachev and Lunts [DL] and Procesi [P, §2].
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COROLLARY 1.6. Let @ be a complete simplicial fan with associated
complex A. If @ carries a proper G-action, then for we G,

2 bl
ALH*(X,0), q)(w) = 7[K[4/0, 41(0) = P e (g?) f'flt(_l*qf(—",)
As will become clear in what follows, a natural question to ask is
whether the ungraded KG-module H*(X,, K) is in fact a permutation
module. That is, does H*(X,, K) (or equivalently, K[4]/@) possess a
K-basis that is permuted by G? The following result shows that the
character is integral and nonnegative—an obvious necessary condition.

ProrosSITION 1.7. If @ is integral, then x*(w)eN for all weG.

Proof. Letv,,..,v,eV be a basis for L. Any chamber (maximal cone)
of @ is generated by »n independent vectors in L, and hence these vectors
have coordinates that are integral with respect to v, ..., v,. In particular,
since any we G maps chambers to chambers, it follows that the repre-
senting matrix for w on V is rational with respect to this basis. Therefore,
det,1(1 —w) is rational. However, character values are algebraic integers,
SO y“f’(w) =|4"]-det,:(l —w) must be integral To prove the non-
negativity, note that since w is of finite order, the eigenvalues of w on ¥ are
roots of unity. Therefore, aside from + 1, they can be arranged in conjugate
pairs ¢*™ for « e R. Since (1 —e™)(1 —e ™)=2—2cos a0, it follows that
detyi(1—w)=0. |

2. THE CoxeTER COMPLEX

We now specialize to the setting of root systems. For definitions, see [B]
or [H]

Let V continue to denote an »-dimensional real Euclidean space, and let
R be a reduced (not necessarily crystallographic) root system of rank » in
V. For nonzero a € ¥V, let s, € O(V) denote reflection across the hyperplane
at; ie, s,(v)=v—[{o,v]a, where [o,v]}:=2¢a, v>/{(a,a). Let S=
{o), ., 2, ) = R be a set of simple roots, and let W be the finite group
generated by the reflections {s,:ae€ R}. We write s,, .., s, for the reflec-
tions corresponding to , ..., &,.

Associated with the root system R is a hyperplane arrangement
{a*:ae R}. These hyperplanes define a simplicial decomposition @, of V;
the associated complex 4 is known as the Coxeter complex [Bj, H].

Let Co={veV: a;,v)=0, i=1, .., n} denote the fundamental cham-
ber of @, relative to the choice of S. It is well-known that the action of W
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on the chambers of &, is simply transitive. Furthermore, C, is a
fundamental domain for W on V' i.e., the W-orbit of each ve V contains
exactly one point of C; (e.g, [H, §1.12]). An immediate consequence of
this is the fact that the action of W on @4 is proper.

Let @, .., w, denote the basis of V that is “dual” to S via the Cartan
form [, -]; i.e., the basis defined by the conditions [«;, w;]=4,. Note that
C, is the cone spanned by w, .., ®,. By transitivity, it follows that the
vertices of &, are the W-orbits of R*w,, .., R*w,. More generally, the
W-orbits of faces are indexed by subsets of S; indeed, one may take

C,={veCy:(a,v)=0forael}

as a representative of the face-orbit indexed by a given J < S. Note that this
labeling scheme has the property that J indexes a cone of codimension |J|.

If R is crystallographic; ie., [a, f]1eZ for all o, fe R, then w, .., ®,
generate a W-invariant lattice A, in V (viz,, the weight lattice). Thus in
such cases, @ is integral with respect to A .

By a theorem of Bjorner [Bj], it is known that Coxeter complexes are
shellable, and from the shelling one may easily obtain a simple com-
binatorial description of the h-polynomials Pg:=P,, as follows. For
we W, let I(w) denote the length of w with respect to S; i.c., the minimum
length / of any factorization w=s, s, ---5,. The descent set of w is defined
to be D(w)={i:l(ws;)<I(w)}; this generalizes the usual notion of the
descent set of a permutation.

THEOREM 2.1 (essentially [Bj, Theorem 2.17). Pr(g) =3, cw q'?"\

In order to explicitly determine the W-character of K[4;]/@ via
Theorem 1.4, we need to know the A-polynomials of more than just the
Coxeter complexes—we also need the h-polynomials of the w-fixed sub-
complexes 4% for all we W. It is often the case that these complexes are
isometric to Coxeter complexes of smaller rank, but not always. A more
reliable way to obtain their A-polynomials is by means of Corollary 1.3. In
the following, we take this as the starting point, and subsequently derive a
number of simplifications in special cases.

For any J= R, let W, denote the subgroup of W generated by
{s,:aeJ}. In the case J= S, W, is known as a parabolic subgroup. In
these latter cases, it is sometimes more convenient to regard J < {1, ..., n},
with the obvious identification i & «,.

PrROPOSITION 2.2. Let R be a root system for the reflection group W.
(a) For we W, Pyy(q)=X,c5q" (1 —q)™ " .11 (w),
(b) Po(q)=X,csq" - [W:W,]
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Proof. (a) Apply Corollary 1.3, using the fact that the orbits of faces
are indexed by subsets J of S, and the fact that the isotropy group of C,
is W, [H,p.22].

(b) Specialize to the case of the identity element. ||

For i<j, let W, denote the parabolic subgroup generated by
5i, Siy1s - §;, With the convention that W7, ;; is the one-element group.
In case the Coxeter diagram of R has no forks, the latter of the above two
formulas can be expressed as a determinant of order n+ 1.

ProposITiON 2.3. If S can be linearly ordered so that {a;, a;> =0 for

li—j|>1, then

qPr(q)=|W| 'det[a[i]OSi.an’
where a;=0 for i—j>1, ay=q—1 for i—j=1, and a;=q/| W, ;| for
i<j.

Proof. The expansion of det[a,] is indexed in an obvious way by per-
mutations n of {0, 1, ..., n}. Since a,; =0 for i— j> 1, it is easy to chack that
Qo z0) " A x(ny Will be zero unless 7 is composed of disjoint cycles of the
form (j, j—1,..,{) for i< j There is a one-to-one correspondence © « J
between such permutations and subsets J of {1, .., #n} in which J¢ consists
of the minimal nonzero elements of the cycles.

Suppose that n is one of the above permutations and that

O0=1iy<i; < .-+ <i,are the minimal elements of the cycles of n (and hence,
J =iy, ..., i;}). Since a;=q—1 for i—j=1, we have

Sg(T) g n(o) "+ Ay = (— 1 )'JI (g— 1)”' Aioin— 19 61" Qypn- (2.1)
However, since {x;, «;» =0 for [/~ j| > 1, it follows that
Wo= Wi i - X Wriisnp—11% - X Wi ay
Since a; = q/| W, ;| for i< j, we therefore have
g T W T =G i

Thus by (2.1) we obtain

det[aij':l:q 2 qnim(l_‘])m ‘WJ|71~

JoS§

Using Proposition 2.2(b), this can be readily identified as
(W1~ qPg(q). |
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For example, in the case R= H; (so that ¥ is the symmetry group of an
icosahedron), this result implies

g 4/2  4/10 ¢/120

g—1 ¢ q/2  q/6
0 g¢-1 g 4q/2
0 0 g¢g-1 q

P, (q)=120g " -det =1+59g+59¢*+q°.

Remark 24. 1f we modify the definition of the matrix [a;] so that
a;=t,—1fori—j=1,and a;=1,/|W,, ;| for i<, then essentially the
same argument shows that the polynomial Pg(z,, .., 1,) defined by

toPr(ty, . t,)=|W]-detla;lo<; <n

is the fine A-polynomial of 4, (for the definition, see [Stl, p. 146]). By
Theorem 2.1 of [Bj], it follows that the number of we W with descent set
{i), ... i,} is the coefficient of ¢, ---1, in Pg(t,, .., t,). In the special case
R=A,, this fact is essentially equivalent to Example 2.2.4 of [St4].

Now consider the equivalence relation on W in which w=w’ if there
exists some x € W such that V' = xV .. This relation is coarser than con-
jugacy in W. Since @Y% is the restriction of @, to V,, it follows that if
waw', then 4% = 4% . Thus, for the purpose of computing the A-polyno-
mials of the w-fixed subcomplexes, it suffices to restrict our attention to a
set of equivalence-class representatives for ~.

For Jc S, let V,={veV:{a,v)=0 for e J} denote the vector space
spanned by C,, and let w, denote a Coxeter element for W,, ie., the
product of the reflections s, for € J, taken in any order.

LEMMA 2.5. Let we W.

(a) V,=xV, for some xe W and J< S such that we xW,x~ 1,

(b) Ifw=w, for some J< S, then V = V,.

Proof. (a) Let C be a chamber of @%. Some cone in the W-orbit of
C must belong to Cg; ie., C=xC, for some xe W and J< S. Therefore
V,=xV,, since C spans V, and C, spans V,. Furthermore, since w
belongs to the isotropy group of C, it follows that x ~'wx belongs to W,,
the isotropy group of C,.

(b) Clearly V,< V,,. For the converse, proceed by induction on |J|,
the cases |J| <1 being trivial. Without loss of generality, suppose that
J={a;,...,o;} and w=s,---5;. IfveV,, then s, (v)=s,---5,(v). However,
S8 (v)=v+ 00+ - +¢;a; and s5,(v)=v+c, o, for suitable scalars
c;€R, and therefore c,a, + -+ +c¢;a;=c,a,. However, the «,’s are linearly
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independent, so ¢;=0 and s,---s; (v)=15,(v) =v. Applying the induction
hypothesis to w'=s, ---s;, we conclude that each s, fixes v, so ve V,. |

LemMa 26. If I,J=S and xw,x ‘e W, for some xeW, then
xWx W,

Proof. If xw,x 'e W,, then xw,x ! fixes V', so w, fixes x ~'V,. There-
fore ¥,=xV,, by Lemma 2.5(b). Since each reflection s,:axe/ fixes V,
(and hence x'V,), it follows that each of xs,x ! fixes V,. Thus xW,x !
is contained in W,, the subgroup fixing V,. ||

Let ~ denote conjugacy of elements or subgroups of W, as appropriate.

CorOLLARY 2.7 [OS, p. 276]). If 1,J<= S, then w,~w, if and only if
W,~W,.

As a consequence of Lemma 2.5, we see that for every we W there exists
a subset J of S such that w~ w,. However, there may (and usually will) be
further equivalences among the w,’s. In any case, we need only to consider
the w-fixed subcomplexes for w=w,. Let us write P%(q) and 4% as
abbreviations for P,x(g) and 4% in such cases.

THEOREM 2.8. For any J< S, we have
|A%] = PRr(1)=[NW,): W,]-1{IcS: W,~W,}I
Proof. Let w=w,. By Proposition 2.2(a), we have
P.{{(q): Z qnfllf(l_q)lll’/|.1|,1w,(w)’ (22)
IS

since 6(wy=dim ¥V, =n—|J| by Lemma 2.5(b). The permutation character
1,5,V,,(w) is the number of cosets xW, fixed by w, so by Lemma 2.6,

Ly )=, " | {xeW:xw,x"'e W,}|
=W, {xeW : xW,x ' W,}| (2.3)

In particular, lp",ﬁl(w) will be nonzero only if there exists x € W such that
xW,x '< W,. In that case, by comparing the spaces of invariants of the
two groups, it follows that xV,= V,. This in turn forces |1} = |J|.

Now set ¢=1 in (2.2). The only surviving terms will have |I| = |J|. For
each x e W satisfying xW,x ' = W,, we must have xV,=V, since the two
spaces now have the same dimension. Hence, the two subgroups fixing V,
and V, are conjugate; i.e., W,~ W,. For such 7, (2.3) simplifies to

1y wy= W, "' I{xe Wi xW,x 'c W} =[NW,):W,]
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To complete the proof, note that there are now a total of |{/=S:
W,~ W,}| nonzero summands in (2.2), each contributing 1} (w). |

In case w is a reflection, the above formula simplifies.

COROLLARY 29. If w=s, and I=Rna*, then 4% =W, -|{o;€S:
Sa~ 51

Proof. Without loss of generality, assume a=a,, set J= {a,}, and
apply Theorem 2.8. In this case, the normalizer of W, is the centralizer of
w, so we have [N(W,): W,] =|W]/2 |C(w)|, where C(w) denotes the set of
conjugates of w. Since xs,x ™' =s,,, it follows that f+ s, defines a two-to-
one map from the W-orbit of « onto C(w). (Remember that s,(a)= —x, so
Wa= — Wa.) Therefore, [N(W,)}: W,]=|W|/|Wa| is the order of the
isotropy group of a. According to [H, p. 22], this subgroup is generated by
the reflections sg;e W such that {o, 5> =0. |}

We remark that by a result of Orlik and Solomon [OS], it is known
that the lattice of intersections of the hyperplane arrangement corre-
sponding to 4% has a characteristic polynomial with integer roots; these
roots provide a factorization for |4%].

3. THE W-INVARIANTS OF K[4,]/©

As in the previous section, R continues to denote a root system of rank
n in the Euclidean space V, with associated reflection group W, simple
roots S, Coxeter complex 4, and system of parameters @ as defined in
(1.2). It is convenient henceforth to use y[ R, ¢] as an abbreviation for the
graded character x[K[4.:]1/0, q].

Recall that for every J< S there is a corresponding face C, of 4, in the
fundamental chamber C,, and that every W-orbit of faces contains exactly
one of the faces C,. Let x,e K[4,] denote the unique square-free
monomial whose support consists of the vertices of C,, and define

V5= Z W(XJ)EK[AR]W-

we W

THEOREM 3.1. The elements y, (mod @) for J=S are a basis for
(K[4:1/6)".

Given a shelling order for 4,, it is possible to write down an explicit
basis for K[4,]/@ consisting of certain square-free monomials (e.g., see
Theorem 1.7 of [Bj], or Theorem 4.2 of [G]). However, in order to prove
Theorem 3.1, we only need the following weaker result.
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LemMMa 3.2 (Danilov [D, §10.7.1]). K[A4;1/© is spanned by square-free
monomials.

Proof of Theorem 3.1. Any square-free monomial in K{4.] belongs to
the W-orbit of some monomial x, for J< . Since the operator X, .y w
acts as a projection onto the space of W-invariants, Lemma 3.2 implies that
the elements y, must span the W-invariants of K[4;]/@. Thus, we need
only prove that the elements y, are linearly independent modulo 6.

To prove the independence, it suffices to work over the complex field and
verify that the multiplicity of the trivial representation in C[4;]/€ is 2",
or more specifically, has Hilbert series (1 + ¢)". For this, apply Theorem 1.4
and Proposition 2.2(a) to obtain

(R g w)= Y ¢" V(1 —g) " 15 (w) - det(l — qw)

J=§

=2 ¢ M=) "M (w) - g [4(V), —q] (w),  (3.1)
JoS
where A(V)= @0 A*(V) denotes the exterior algebra of V as a graded
CW-module.

Now let 1, be the trivial character of W, and let {(y, ¢ up=
{W| 'S . wixlw) @(w) denote the standard Hermitian inner product on
complex W-characters (with @ denoting complex conjugation). For any
W-characters y and ¢, one has {y -, 1> p= {3 ¢ >, s0 (3.1) implies

IR g tudw= 2 ¢ M —g) "M Y (=g) <A1 S, (32)
Jes k=0

where A* denotes the W-character of A¥(V).
We claim that {A* 1} >, =(""). To prove this, first note that, by
Frobenius reciprocity, we have

A 1y w= A5, Ly, ) w, = dim AX(1)"".

The reflection group W, fixes a subspace ¥, and the roots of W, span V5.
By a result of Steinberg (see Chapter V, Exercise 2.3 of [B]), it follows that
the only W ,-invariants in A(¥ ;) occur in degree zero, and hence

AW = [AV )@ AV )1 = AV ).

Since dim V,=n —|J|, the claim follows.
Using this information in (3.2), we obtain

QLR g1 1w>w= 3 ¢ '=(1+9)" 1

Je S
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Since each orbit of a permutation representation includes one copy of the
trivial representation, we may conclude the following.

COROLLARY 3.3. If H*(Xy) carries a permutation representation of W,
then the number of orbits is 2", and if it carries a graded permutation
representation, then the number of orbits in degree 2k is (}).

4. THE MAIN REsSULTS

For the remainder of this paper, we assume that the root system R is
crystallographic. The simplicial decomposition &, is therefore a fan in the
weight lattice 4z, and so there is a toric variety X associated with @ .
Note also that the reflection group W is a Weyl group in this case. Our
main result is that the representation of W carried by the cohomology
ring of X, with the grading ignored, is isomorphic to a permutation
representation n, of W.

Before giving a more detailed statement of the result, we first need to
discuss some peculiarities of irreducible root systems (e.g., see [B, H]). If
R is irreducible then there is a unique highest root ay€ R; it can also be
described as the unique long root in the fundamental chamber C,. The
affine Weyl group W is generated by W, together with an affine reflection
across the hyperplane Hy= {ve V' : {ay, v> =1}. A fundamental alcove for
W is the simplex obtained by intersecting C, with the negative half-space
defined by H,. By examining the group generated by the (affine) reflections
fixing any given vertex of this simplex, one sees that any proper subset of
Su {—a,} forms a set of simple roots for some root subsystem of R. The
isomorphism classes of these subsystems can be readily determined by
deleting vertices from the extended diagram of R. For the convenience of
the reader, the extended diagrams are provided in Appendix 1.

We state the main results in two parts. In the first part
(Theorems 4.1-4.3), we describe conditions sufficient to uniquely determine
the permutation representation 7 .; this may be taken as the “definition” of
7. In the second part (Theorem 4.5, Corollary 4.6), we describe further
properties of . that are consequences of this definition.

THEOREM 4.1. Let R be a crystallographic root system with Weyl
group W. There is a permutation representation ng of W, unique up to
isomorphism, such that

(a) the KW-module generated by my is isomorphic to H¥*(Xg, K)
(ungraded).

(b) If R is reducible, say R=R,®R,, then np=ng @ nyp,. (Here @
denotes the outer tensor product of permutation representations.)
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(c) If R is irreducible with highest root a,, then the isotropy groups of
Ty are conjugate to Weyl subgroups W for Jo S U {—ua,}.

Note that the subgroups W, appearing in (c) need not be parabolic.
Following a suggestion of Haiman, we say that a subgroup of W is quasi-
parabolic if it is generated by a set of reflections by roots that belong to
Su{—ag}.

To clarify the meaning of this result, we need to discuss some properties
of permutation representations. Suppose we have a group G acting by per-
mutations on a finite set Y. Let Y=Y, U --- u Y, be the decomposition of
Y into G-orbits, and for each orbit Y, let G, be the isotropy group of some
x,€Y,. Each G, is well-defined up to conjugacy, and the multiset
{G,, .., G,} uniquely determines the permutation representation carried by
Y up to isomorphism.

The assertion that the linear representation of G carried by K(Y) is
isomorphic to some other KG-module does not in general determine the
isomorphism class of the permutation representation. Indeed, for “most”
finite groups, there are numerous linear dependencies among the characters
of the transitive permutation representations. Any such dependence rela-
tion gives rise to a pair of nonisomorphic permutation representations
whose linearizations are isomorphic over C.

It is easy to see that if we are in the reducible case, say R=R, ® R,,
then the associated Weyl groups are related by W=~ W, x W,, and we have
H¥(Xz)=H*(Xz)® H*(X,,) as KW-modules. Thus to establish the
existence of mg, it suffices to treat the irreducible case. For this, we claim
that it suffices to prove the following.

THEOREM 4.2. Let R be irreducible and crystallographic with highest root
%y, and set Sy:=Su{—ay}. The character y* of H*(Xy) satisfies a
relation of the form

f= 3 me())-15, (4.1)

J<= S
for suitable nonnegative integers mz(J).

To see that this does imply the existence of 7z, recall that the irreducible
representations of Weyl groups can be realized over Q [H, §8.10]. Bearing
in mind that (1.5) is valid for rational cohomology [D, §10.9], it follows
that the choice of field K is immaterial (provided that the characteristic
is 0). In particular, the KW-module generated by a permutation representa-
tion (or indeed, any K-linear representation) will be isomorphic to
H*(Xp, K) if and only if it has character y*.

The uniqueness of n, is a corollary of the following.
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THEOREM 4.3. Let R and S, be as above.

(@) For I,J<8,, we have 13, =1, if and only if W,~W,.
(b) For Jc S, the distinct characters 1}, are linearly independent.

Consequently, if we restrict the sum in (4.1) to a collection of conjugacy
clas representatives for the quasi-parabolic subgroups W, the multiplicities
mg(J) are uniquely determined.

Remark 44. (a) The restriction that R be crystallographic is essential.
Although we no longer have a toric variety without this assumption, we
may still consider the action of W on K[4,]/©@. However, in noncrys-
tallographic cases, the character y[ R, 1] need not be integer-valued, and
hence need not be a permutation character. For example, if R=H; and w
is a Coxeter element for W(H,), then an easy calculation (using
Corollary 1.5) shows that y[ R, 1](w)=3 —\/—5_.

(b) The fact that the grading of H*(Xy) has been ignored is also
essential. We will show that for the root systems of types 4 and C it is
possible to assign a grading to the orbits of n, so that the graded
KW-module generated by ng is isomorphic to H*(Xg). However, for the
exceptional root systems, the grading of H*(Xy) is not compatible with
any permutation representation of W (see Remark 10.2). In the cases of
type D, we prove that there does exist a graded permutation representation
of W(D,) whose graded KW-module is isomorphic to H*{X ), but it is not
isomorphic to 7.

The last of our results is concerned with the mulitiplicities m (/).

THEOREM 4.5. Let R and S, be as above, and assume R is of rank n. For
each r20 and each (2r + 1)-subset J of S,, one may choose an (r + 1)-set
J'cJ so that (up to conjugacy) the multiset of isotropy groups of mg is
{Ws,_s:J 8, |J| odd}.

COROLLARY 4.6. Assume R is irreducible and of rank n.

(a) The number of orbits of ng is 2"
(b) Every isotropy group of np is a Weyl subgroup having rank at
least nj2.
(c) The number of orbits of n whose isotropy groups have rank n—r
i‘f {Z"r-:ll "
Remark 4.7. (a) Corollary 4.6(a) is also a consequence of Corollary
3.3.

(b) To completely specify ng, it remains only to describe a rule for
choosing the (r+ 1)-subsets J’ from each (2r+ 1)-subset J of S,. Unfor-

607/106,2-8
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tunately, the only such rules we have found are ad hoc—we have one for
each infinite family A-D, and special ones for the exceptional root systems.

(c) There may be several possible rules for choosing J’ from J so that
Theorem 4.5 is satisfied. However, in the special case |J| =1, there is no
ambiguity—if J is a singleton, then J'=J. In other words, the rank n
isotropy groups that occur in 7, are obtained by deleting one root from S,
in each of the n+ 1 possible ways.

(d) In general, the representation z z depends on R itself, not just W.
Even though W(B,)= W(C,), 45 = 4., and the corresponding represen-
tations carried by their toric varieties are isomorphic, we claim that
my, ¥ We,. Indeed, by the previous remark and inspection of the extended
diagrams for B, and C, (see Appendix 1), one sees that W(D,) occurs as
an isotropy group in the case R=B8,, but not in the case R=C,,.

The proofs of Theorems 4.2, 43, and 4.5 are given case-by-case in
Sections 6-10.

5. A NOTE ON THE INDEX OF CONNECTION

In a crystallographic root system R, the index of connection f is defined
to be the index of the root lattice in the weight lattice, or equivalently, the
determinant of the Cartan matrix [B, p.224; H, p. 40]. In the following
digression, we derive another interpretation of f, by means of Theorem 4.5.

Let W continue to denote the Weyl group of R. We say that an element
we W is essential if it belongs to no proper reflection subgroup of W.

ProPOSITION 5.1.  Coxeter elements are essential.

Proof. Let w=y,---s5, be a Coxeter element for W, and let W’ be a
reflection subgroup containing w. Let R’ denote the root system of W', and
let N (resp., N’} denote the set of positive roots of R (resp., R') mapped to
negative roots by w. Using a well-known characterization of the length
function [H, §1.6], we have |N|=n. In fact, an easy inductive argument
shows that

N= {an’ Sn(anfl)9 S,,S,,,l(a,,,z), s Sy "’s2(al)}' (5'1)

On the other hand, we cannot have |N’| <#, since otherwise w would be
a product of fewer than »n reflections, and hence V', would be of positive
dimension, in contradiction with Lemma 2.5(b). Since N' < N, it follows
that N’ = N. However, by (5.1) it is clear that the reflections corresponding
to N generate all of W; hence, W'=W. |
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THEOREM 5.2. If w is an essential element of W, then det(1 —w) = fg.

Remark 5.3. The special case of this result in which w is a Coxeter
element can be found in Chapter VI, Exercise 1.22 of [B].

Proof. Note that if R is reducible; say, R= R, @ R,, then we may write
w=w,w,, with w, essential in W(R,;). Thus it suffices to restrict out atten-
tion to the case in which R is irreducible. Under this assumption, let # be
the rank of R, and for 0<i<n, let W, denote the reflection subgroup
generated by {sg, ..., $;_ 1, 84 1, - 5,5, Where s denotes reflection by the
highest root.

LeMMA 54. If w is essential, then det(1 —w)=|{i: W,= W}|.

Proof. Let W' be a reflection subgroup of W. We have 1. (w)=0
unless some conjugate of W’ contains w. However by assumption, no
proper reflection subgroup of W contains w, so 14,.(w)=0 unless W’ = W.
On the other hand, by Theorem 4.5 (and in particular, Remark 4.7(c)), we
know that the character y® of H*(X ) is of the form

o0<i<n

where ¢® is a sum of transitive permutation characters induced by reflec-
tion subgroups of rank <n. By the previous observation, we therefore have
xX(w)=|{i: W.=W}|. To complete the proof, note that ¥V, =0, so
¥ ®(w) =det(1 —w) by Corollary 1.5. |

We remark that the quantity |{i: W;= W}| has a geometric interpreta-
tion; namely, as the number of vertices of the fundamental alcove for W
whose isotropy group is isomorphic to W. Equivalently, this is the number
of nodes in the extended diagram of R whose removal leaves a graph
isomorphic to the diagram of R.

We may complete the proof of Theorem 5.2 at this point by observing
that the right side of Lemma 5.4 is independent of w, and then appeal to
the proof for Coxeter elements cited in Remark 5.3. Alternatively, one can
prove directly that if 3°7_, ¢, a, is the expansion of the highest root in terms
of the simple roots, then for 1 <i<n one has ¢;=1 if and only if W,=W.
This too completes the proof, since fr — 1 is known to be [{i=1:¢c,=1}],
by Exercise 2.2 in Chapter VI of [B]. |

6. THE A-SERIES

As noted in the Introduction, the characters of H*(X ) for the root
systems of type A have already received considerable attention in previous
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papers, especially [DL, P, and Ste3]. Indeed, aside from proving the
existence of a rule satisfying Theorem 4.5, the material in this section is
essentially a restatement of what is already known from these papers. We
have included some of the details, since this case will serve as a model for
what follows.

Let &, .., £,,, be an orthonormal basis of R"*' and let e=¢, 4+ --- +
€, 1. We use the standard realization of 4, in V={veR*':{v,ed=0};
namely,

A,={e,—¢ 1<i#j<n+1}.

It is convenient to regard 4, as an empty root system in a 0-dimensional
space. For the base S= {«, .., 2, }, we take a,=¢,, , —¢,. The fundamental
chamber C; thus consists of the vectors in V with increasing coordinates.
The Weyl group W(A4,) is the symmetric group S,,.;, and the simple
reflections s, are the adjacent transpositions (i, i+ 1). The highest root is
Env1 81

The chambers of @, are the simplicial cones

Cw:{z C; €€ V:cw(l)< <Cw(n-+-l)}’

where w varies over the permutations of {1,..,n+1}. The k-dimensional
faces of a given chamber are obtained by replacing # — k of the inequalities
among the ¢;’s with equalities. Thus f, (4, ) is the number of ordered
partitions of an (n+ 1)-set into & + | nonempty blocks; i.e.,

fio i) =(+1) Sn+1,k+1), (6.1)

where S(n, k) denotes a Stirling number of the second kind. By (1.1) and
the known generating functions for Stirling numbers (see (7.2)), it follows
that

P : n4l i
(1_q)"+2—l§0(1+1) q', 6.2)
so qP, (q) is the classical Eulerian polynomial [C, p. 245]. Alternatively,
one could derive this by applying Theorem 2.1, which shows that 4, (4, )
is an Eulerian number, viz., the number of permutations in S, ., with k&
descents.

Now consider the A-polynomials of the subcomplexes 4% . Recall from
Section 2 that, up to isometry, these complexes depend only on the
conjugacy class of w. Rather than create excessive notation, it is best to
consider a specific, example, such as n=06 and w=(1, 2, 3)(4, 5)(6)(7) (in
cycle notation). In this case,

Vw={z Ci g€ V:c1=c2=c3,c4=c5},
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and V, is three-dimensional. The faces of 4% can be identified with
ordered partitions of {1,..,7} in which the elements 1-2-3, and respec-
tively, 4-5, always occur in the same block. Treating these elements as
single entities, one can see that there is an inclusion-preserving bijection
between A’ and 4,,. In the general case, we have

A% =4, (6.3)

dw)-1?

where ¢(w) denotes the number of cycles of w.
Note also that if we W(A4,) is of cycle-type 4, where A=(4, 2 --- = 1))
is some partition of n+ 1, then

/
det(1—gw)=(1-¢q)"' [T (1—¢*). (6.4)
i=1
Using (6.3) and (6.4) to simplify the character formula in Theorem 1.4,
we obtain the following result (essentially Proposition 3.3 of [Ste3]).

COROLLARY 6.1. [If we W(A,) is of cycle-type A, then

A

1A qd) =P, (@) TT -
To prove that y*-, the character of H*(X ), is indeed a permutation
character of the sort described by Theorem 4.2, it is convenient to intro-
duce a graded character ring #,= @ .50 %%, in which #%=K, and
(for n>0) #° is the K-vector space spanned by the characters of
W(A,_,)=S,. The multiplicative structure is defined by the induction of
outer tensor products; ie., .

f-g=ind{in (f®g)

for all fe #™, ge A" The element 1 € Z% acts as a multiplicative identity
in #,.

It is well-known that £, is isomorphic to the ring of symmetric functions
via the characteristic map of Frobenius [M]1, §7]. Thus we may easily
apply the theory of symmetric functions to %,. In particular, let h, e #%
denote the trivial character of W(A, _,), and for any partition A of n, define
h;:=h, ---h; so that h, is the permutation character of W(A4, ) induced
by a reflection subgroup isomorphic to

S,13=SMX . XSA,.

The elements 4, correspond to the complete homogeneous symmetric func-
tions; consequently, the 4, ’s freely generate #, as a commutative K-algebra
[M1].
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Proof of Theorem 4.3. It is well-known and easy to show that all
reflection subgroups of W(A4, _,) are isomorphic to one of the subgroups
S, for some partition 4 of n. Moreover, all of the reflection subgroups
corresponding to a given choice of A are easily seen to be conjugate in
W(A,_,). Since the h,’s freely generate #, over K, it follows that the
characters 4, induced by the subgroups §, form a K-basis for #7. In
particular, they are distinct (thus proving (a)) and linearly independent
(thus proving (b)). 1

We also need to make use of the virtual characters that correspond to
the power-sum symmetric functions. Thus define p, € #” to be the image of
the nth power-sum symmetric function, and set p,:=p; ---p, for all
partitions A. From basic properties of the ring of symmetric functions
(e.g., [M1]), one knows that the p,’s are also algebraically independent
generators of £, over K.

By virtue of the Frobenius characteristic map [M1,§7], the p,’s are
essentially the indicator functions for the conjugacy classes of S,. More
precisely, if y € #7, is any character, and x(4) is the value of y at any we S,
of cycle-type 4, then we have

1
=2 —x(A)p; (6.5)

|Al=n <4

where z, denotes the size of the S,-centralizer of a permutation of cycle-
type 4. (Here the notation |4] refers to the sum of the parts of A.) In par-
ticular, for the trivial character we have the expansion 4,=3, z; 'p,. This
relationship can also be expressed as a generating function identity

H(r)zzzipit"":exp( Y p,,t"/n), (6.6)
A <4 nzl
where H(?):=1+3,.,h,¢" [M1,p. 17].

A result equivalent to the following was first proved by Procesi
[P, p.160], and then related in essentially this form by Stanley [StS,
p. 5297 (cf. also [Ste3, §41). Independently, another proof was recently
given by Dolgachev and Lunts [DL].

THEOREM 6.2. We have
(1—gq) H(1)
14 An’ tn+l=__________
Z, A a0 = e

_ I+Zm;1hmt’"
=Y (g g ) ht™
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Proof. Using (6.5) to rewrite Corollary 6.1 in terms of the p,’s, we
obtain

n 1 PA i (q) ) . .
b+ 3 ol gd ' =Y = T =49 pr
n=0 i ca q i=1
1 .
==X [TU=-g"pyr* ¥ (k+1)Wg*
A “a k=0

1 . .

=(1-q) ¥ ¢ Y~ (k+ 1)V [](1—~¢*) p, 1%
k=0 P i

the second equality being a consequence of (6.2). For a fixed choice of &,

(6.6) shows that the inner sum is identical to the expression

exp [<k+ DY (1-¢" pnr"/n] — [H(YH(gn T,

nzt

so we obtain

1+ ) x4, g1 ' =(1-q) 3 ¢“[H(1)/H(gqr)]“*!
nz0 k=0
(=) HQ)

“Hg—qH@)

Note that Theorem 6.2 immediately implies Theorem 4.2 (for the
A-series), as well as the following stronger result.

COROLLARY 6.3. K[A4,1/0 (and hence also H*(X 4)} carries a graded
permutation representation whose isotropy groups are parabolic subgroups of
W(A,).

Finally, it remains to construct a rule for describing the isotropy
groups that is compatible with Theorem 4.5. For this, we begin by noting
that a simple rearrangement of terms provides the following equivalent
formulation of Theorem 6.2:

so(l4g+ - +g™V h, 1™
Z X[An’ q] tn=z'"/0( q +qm),] _ n'
n=0 1_2m22(q+ R )hmt

(6.7)

For convenience, we set [A,]:=h, . Substituting g =1 yields

Sso (m+1)[4,] "
A,,tn= 2 m .
L= A

nz=0
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Extracting the coefficient of /", we obtain

XAn: Z Z (m0+l)ml”'mr[Amo][Aml]"'[Am,]’ (68)
rz0 mo+ .- +m=n—r
where the inner sum ranges over integers such that my,>0 and
my,.,m, =1

Proof of Theorem 4.5. The case n=1 is trivial, so assume #>2. Let
I={1,.,n+1}, and for J< 1, let W, denote the subgroup of W(4,)
generated by {s;: jeJ}, where s, ,, denotes reflection by the highest root.
For each odd subset J= {i, <i,< --- <iy .} of I, let us define

J= {il, i}a iS’ e i2’+1}'

By inspection of the extended diagram of 4, (see Appendix 1), it is easy to
see that the permutation character induced by W, , is [A, , . J[4,.,]--
[4,,], where k=i, —1, K'=n+1—~i, ., and m;=1i,,,  —iy; ,—1 for
1<j<r If we fix the parameters k, k&' and m, .., m,, then the possible
choices for J are obtained by varying the parameters i,, in m, ---m, ways.
Thus we have

DI

Jo I |J] odd

= Z Z m]"'mr[Ak+k'][Am1]"'[Am,]‘

r=0 k+k'+m+ - +m=n—r
This is clearly equivalent to the expansion for y** provided in (6.8). |

It is not difficult to refine the above analysis and use (6.7) to show that
if we assign the degree —1+i, —i,+i3— .-+ +i,,, to the orbit indexed
by J={i;< .- <iy,,}, then we obtain a grading for =, that is
isomorphic to the grading of K[4 , 1/6.

An explicit description of the decomposition of y[4,, ¢] into irreducible
characters can be found in [Ste3, §41.

7. THE C-SERIES

Using the standard embedding in V' =R", we have
C,={2:1<i<n}u{tete1<i<j<n}.

It is convenient to allow n>0. For the base S={«,..,a,}, we take
o, =2¢, and o;=¢,, ,—¢; for i>1. The fundamental chamber consists of
the vectors with nonnegative, increasing coordinates. The Weyl group
W(C,) acts as the group of signed permutations of ¢, .., ¢,. The highest
root is 2g,,.
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As in Section 6, S(n, k) denotes a Stirling number of the second kind.

ProPOSITION 7.1. We have
(@) fi_(4c)= 2is02"” j( ) k! S(n— j, k).
(b) P (@)/(1—g)"" =%, Qi+1)"q.
Proof. (a) The chambers of @, are the simplicial cones

={Zci6i€ VZOS')’\CWU)Q "'<Vn(’w(r.|}s (7.1)

where w varies over the permutations of {l,..,n} and y,= +1. The
k-dimensional faces of C,, are obtained by replacing n—k of the
inequalities involving the ¢;’s with equalities. For example,

O=cs=ce< ~c;=0Cs5< 4= —0,

describes a typical two-dimensional cone of @,. In general, the k-dimen-
sional cones of @, are in one-to-one correspondence with “signed,”
ordered partitions of {0, 1, ..., »} into k + 1 nonempty blocks such that (1)
the first block contains 0 and has no signs attached to it, and (2) each
element of the remaining blocks has a sign attached. If there are to be j+ 1
elements in the block containing 0, then there will be (7) choices for this
block, 2"~/ choices for the signs, and k! S(n—j, k) possible ways to
complete the partition. Thus there are 2" f( ') k! S(n— j, k) such cones.

(b) By (1.1) and part (a), we have

PC,,(‘I) (n qk
L b 27" kU S(n— j, k) —
(I—Q)"H k,éo (/) (n / )(I—Q)Hl

=y 2 f( )(;)k!S(n—j,k)q’.
k,jiz0

Using the well-known generating function (e.g.,, [C, p. 207])

x—Z( )k S(n, k), (7.2)

we thus obtain

P
C,,(q) — z (zi)n“_i (-’;) qi= Z (21+ l)n ! .

1 i+l
(1—g)" iz0 iz0

The elements of W(C,,) can be compactly described as products of signed
cycles; for example, (—1, 2, —3)(—4, 5)}(6)( —7) represents the element of
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W(C,) that maps &, &,, &+ —&;, &5+ —¢,, and so on. A signed cycle
is said to be positive or negative according to the product of its signs. The
conjugacy classes are indexed by pairs of partitions (u, v) such that
|#| + |v] =n; the pair indexing the class of a given we W(C,) may be
defined so that the parts of p (resp., v) are the lengths of the positive (resp.,
negative) cycles of w (cf. [Ca, §7]). It is easy to check that if w is of type
(i, v), then

det(1 —gw)=[] (1 —¢*)[] (1 +g¢"). (7.3)

i J
In particular, the dimension of V, is I{u), the number of parts of u.

Now consider the #-polynomials of the subcomplexes 4. . For example,
if we take w=(—1,2, —3)(—4, 5)(6)(—7)e W(C,), then we have

V,,.={Zc,»£,-e Viey=cy= —c3,c4=c5=c7=0}.

Therefore, the faces of A4¢. can be identified with signed, ordered partitions
of {0, 1,2, 3, 6} satisfying the properties described in the proof of Proposi-
tion 7.1(a), along with the extra condition that the elements 1-2-3 always
occur in the same block and with the same relative signs (if any). By
treating 1-2-3 as a single entity, one can see that there is an inclusion-
preserving bijection between Ay, and 4. In the general case, if w is of type
(u, v), then there will be |v] coordinates in V,, that are identically 0, and
one w-invariant vector for each of the /(u) positive cycles. As in Lemma 4.9
of [DL], one obtains

A% =dc,, (74)

Using (7.3) and (7.4) to simplify the character formula of Theorem 1.4
yields the following result (originally obtained by Dolgachev and Lunts
[DL]).

CorROLLARY 7.2. If we W(C,) is of type (i, v), then

(1—¢q

To analyze the permutation characters of reflection subgroups of W(C,),
we need to use an analogue of the character ring #, of Section 6. This con-
struction is well-known and has appeared, e.g., in [M2, §9; Ste2, §5; and
Z]. First choose any orthogonal decomposition R”*" =V, @ V, in which
V, (resp., V) is spanned by m (resp., n) of the coordinate vectors ¢;. Upon
restriction to ¥, and V,, we obtain root systems isomorphic to C,, and C,,

PC/(u,(q) .
xLCos g1(w) =——)7[mﬂ (1—g) TT (1 +4%).
i J
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and hence an embedding W(C,,) x W(C,)s W(C,, . ,). It is easy to see that
all such embeddings are conjugate. Thus by analogy with the A-series, we
may define a graded K-algebra Z.=@,., &%, in which &7 is the
K-vector space spanned by the characters of W(C,), and the multiplication
is obtained by the induction of outer tensor products from W(C,,) x W(C,)
to W(C,, . .)-

Although there is a risk of possible confusion with the notation of Sec-
tion 6, we define h,e #% to be the trivial character of W(C,), and set
h;=h; ---h, for partitions A Since the trivial characters of the symmetric
groups freely generate &, it follows that the k,’s freely generate the sub-
algebra of #. spanned by characters of representations that factor through
the “sign-forgetting” homomorphism a: W(C,)— W(4,_,).

Let &, denote the one-dimensional representation of W(C,) whose kernel
is W(D,), and let g,e#¢ denote the character of J,. The operation
p—95,®p on W(C,)representations induces an automorphism
0: R — R of order 2 with the property that 6(h,)= g,. By a theorem of
Young (e.g., see [M2; Ste2, §5; or Z, §71]), it is known that the distinct
irreducible characters of W(C,) are of the form y - 3(¢), where y € #% and
@ € R ¥ vary over irreducible characters that factor through o, and k runs
from O to n. It follows that #. is freely generated by the 4,’s and g,’s, and
therefore

R=R,OR,

as graded K-algebras.

We also now ready to analyze the conjugacy classes of reflection sub-
groups of W(C,). Let R be an arbitrary root subsystem of C,, and let W
be the reflection subgroup it generates. We define a multigraph I"(W) on
n vertices by providing an edge between i and j if ¢;—¢;€ R, and also if
g;+¢;€ R. In particular, there is a double edge between i and j (i # j) if and
only if e +¢; are both in R, and there is a loop at vertex i if and only if
2¢,€ R.

The connected components of the graphs I'(W) can be classified as
follows: (1) complete graphs without loops or multiple edges, (2) doubly
complete graphs without loops (i.e., double edges between distinct points)
on two or more points, and (3) doubly complete graphs with loops at every
vertex. We say that such a graph on n points is of type 4,,_,, D,, or C,,
according to whether it belongs to the first, second, or third of these
groups. These labels have the property that W is isomorphic to the
Weyl group of the corresponding label, but isomorphism of the groups
does not imply isomorphism of the graphs. Also, one should be careful to
distinguish an isolated loop (type C,) from an isolated point with no loop

(type A,).
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LEMMA 7.3.  Two reflection subgroups of W(C,) are conjugate if and only
if their graphs are isomorphic.

Proof. The effect of conjugation on I'( W) is merely permutation of the
vertices, and thus does not change the isomorphism class of I"(W). For the
converse, recall that the various embeddings of C,,® C,, in C,, ., obtained
by partitioning the coordinate vectors are all conjugate in W(C,,,,). It
therefore suffices to consider the case of connected graphs. For the graphs
of type C, and D, the set of reflections contained in W is completely deter-
mined by the graph, so there is nothing further to prove in these cases. If
I'(W)is of type A,_,, then W contains the reflections (1, 2) or (—1, —2),
(2,3) or (=2, —3), and so on. By successively conjugating these reflections
by (—2), (—3), ... (where necessary), one can show that W is conjugate to
the reflection subgroup generated by (1, 2), .., (n—1,n). 1

Since there is only one conjugacy class of reflection groups corre-
sponding to each type of graph, we may unambiguously write [4,_,],
[D,] (n=2), and [C,] for the permutation characters of W(C,) induced
by reflection subgroups of these respective types.

In part (c) of the following, /4, and g, both denote the unit element
of #.

ProrosITION 7.4. We have
(a) [C,I=h,(n=1)
(b) [D,]=h,+g, (n=2)
(€) [4, =3k _oh8n x (n21)

Proof. Of these three assertions, only part (c) deserves elaboration.
There is a natural permutation representation of W(C,) on 2n points, say
X1, ¥i» - X0 ¥, In this representation, the reflections (4, j) act via the
interchanges x, < x; and y, < y;; the reflections (—i) act via x,< y,.
Passing to the symmetric algebra generated by this representation, the
orbit of the monomial x, --- x, generates a transitive permutation represen-
tation of W(C,) whose isotropy group is of type 4,_,. A K-linear basis
for this representation is provided by the 2" products of the form
(x;xy,)--(x,x v,); moreover, the subspaces V, spanned by the
products with k “+” signs and » — k “—" signs are W(C,)-invariant. Using
the fact that the action of W(C,) on V, is trivial and on ¥V, is isomorphic
to §,, one can easily verify that the character of V, is A, g2,_,. |

Proof of Theorem 4.3. (a) The permutation character induced by an
arbitrary reflection subgroup of W(C,) is a monomial in the variables
[4,,_.1 [D,.] im=2), and [C, ]- However, % is a polynomial ring and
hence, a unique factorization domain. Since Proposition 7.4 shows that
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these characters are distinct primes of #., it follows that distinct
monomials (i.e., distinct classes of reflection subgroups) yield distinct
characters.

(b) By inspection of the extended diagram of C, (Appendix 1), one
sees that all of the quasi-parabolic subgroups of W(C,) have graphs whose
components are of types A4 and C. Since the 4,’s and g,’s freely generate
2., a simple induction argument based on Proposition 7.4 shows that the
[C.Ts and [ 4, _,]’s must also freely generate #.. In particular, there are
no dependence relations among the permutation characters induced by
reflection subgroups with graphs having all components of type A and
C. 1

We remark that part (b) does not extend to arbitrary reflection sub-
groups of W(C,). Using Proposition 7.4, one finds that a dependence
relation occurs at rank 2:

[A1]+ [Cx] ' [Cl] = [Dz] + [A0] : [C1]-

There is"an analogue of the Frobenius map for the characters of W(C,).
An explicit description of it can be found e.g. in [Ste2, §5]. Some construc-
tions of more general Frobenius-type maps can be found in [M2] and
[Z]. The only aspect of this theory we need here is that for n> 1, there
exist certain special virtual characters p}, p, € #% (analogous to the
power-sums) that (1) freely generate %, and (2) act as indicator functions
for the positive and negative cycle-types. To explain this second property
more precisely, let us first define p. :=p_ ---p; for partitions u (and
similarly define p, ). Now if ye ¢ is any character of W(C,), then we
have

1
= 2 ——-awvipip,, (7.5)

ful + (vl =n “usy

where y(u, v) denotes the value of y at the conjugacy class indexed by (u, v)
[Ste2, §5].
By analogy with (6.6), let us define

1 .
H*(1) :=Z-p;-*t""=e><p< Py t"/n>, (7.6a)
; Z& nx1
Ho(t):=1+4 Y h,r=Y [C,]r, (7.6b)
nzl nz0

H(t):=1+ Y [4,.,] (7.6¢)

nzl
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ProposITION 7.5. We have
(@) Ho()y=H" () H (1)
(b) H,(1)=H*(1).
Proof. By (7.5) and (7.6a), we have

HY (O H ()=) ——prp, ™ M=14+ 3 k0",

U, v #V nzl

and thus (a) follows. For (b), apply the substitution p, — —p . Again by
(7.5) and (7.6a), we obtain

1
HYOH (1) =Y ——(=D)"p)p, MM =143 g,1"

oy Sucy nzl

Proposition 7.4(c) shows that H,(r) is the product of the above two
series. J

The following result has also been proved by Dolgachev and Lunts
[DL].

THEOREM 7.6. We have

(1—q) H.(1) H:(qt)
Coqlr"=
2 A Cnadt == )

Yiwzo [CellCr] el
1“2171?! (q+ +qm)[Am] rm+l

Proof. By (7.5) and Corollary 7.2, we have

Y x[C..q]r"

nz0

le} + vl
_ Z t P(I(M

wv Zuly (

,|u|+m
=(l—q) )
v

,ml—[(l ) pi [T +g%) p;

J

[T=¢*p,;

PECI

x[T(1+4¢”) P, Y (2k+1)mgk
J k>0

A+ 11

=(l-q) Y ¢" )~

k=0 mov

xH Qk+ D1 —g"ypr [T +9") p; s

J
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the second equality being a consequence of Proposition 7.1(b). Now by
(7.6a), we have

llul “ . H+(t)2k+1
%ZU(M’*H)(]—!] )P, S H g
Isf
ST +¢")p, =H (1) H™ (g

v v

so the above sum simplifies to

Y ulCaglt"=(1—gq) 3 ¢“[H"(YH" (g)]** " H (1) H (q1)

nz0 k=0
_(=g)H* () H"(g) H" (1) H" (g)
H*(qt)* —qH* (1)’

To complete the proof, note that Proposition 7.5 shows that this is identi-
cal to the first of the two claimed series for ¥[C,, ¢].- The second series
follows directly from the first. |

By inspection of the extended diagram of C,, one can see that the graphs
of the quasi-parabolic subgroups of W(C,) are characterized by the fact
that they have at most two components of type C, with the remainder
having type A. Thus an immediate consequence of Theorem 7.6 is
Theorem 4.2, as well as the following graded refinement.

CoroLLARY 7.7. K[A4.,1/0 (and hence also H*(X ) carries a graded
permutation representation whose isotropy groups are quasi-parabolic sub-
groups of W(C,).

To construct a rule that satisfies Theorem 4.5, first substitute g =1 in
Theorem 7.6 and extract the coefficient of ", obtaining

1= ) my--m [CJLCI[A,, ] [A4],

rz0 k+k'+m+ - +my=n—r

where the inner sum ranges over integers such that k£, k'>0 and
my,.,m, =1

Proof of Theorem 4.5. Assume n>2. Let I={1,..,n+ 1}, and for J< I,
write W, for the subgroup of W(C,) generated by {s,:jeJ}, where s, ,
denotes reflection by the highest root. Again for each odd subset
J={i,<iy< -+ <y} of I, we define

J' = {ih i}a iS’ s i2’+‘}'

By inspection of the extended diagram (Appendix 1), one sees that the per-
mutation character induced by W,_, is [C, 1[Cy 1[4,,]- -1 4,, ], where
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k=i,—1, k'=n+1—i5 ,, and my=iy, —iy —1for 1<j<r If we
fix the parameters k, &', and m;, then there are m, ---m, choices for J. The
remainder of the proof now proceeds in the same manner as for the
A-series. |

One may define a grading for n that is isomorphic to the grading of
K[4,,1/@ by assigning degree —1+4i, —iy+ --- +i5,, to the orbit
indexed by J={i < -+ <i,,}. It is also possible to give an explicit
decomposition of ¥ into irreducible characters analogous to [Ste3, §41,
although we do not pursue the details here.

8. THE B-SERIES

Using the standard embedding in V' =R", we have
B,={¢:1<i<n}u{tete:1<i<j<n}

As in the previous section, it is convenient to allow the rank » to be an
arbitrary nonnegative integer. For the base S= {a,, .., «,}, we take a; =¢,
and o,=¢;,(—¢; for i> 1. For n > 2, the highest root is ¢, _, +¢,,.

Since the only difference between B, and C, is the length of certain
roots, we have W(B,)=W(C,), @y =P, 4y =4, and K[4, /O =
K[4.,1/0. Thus several of the results of Section 7 are valid for B, without
modification; namely, Propositions 7.1, 74, and 7.5, Corollary 7.2,
Lemma 7.3, and Theorem 7.6. However, the proofs of Theorems 4.2, 4.3,
and 4.5 we gave for C, are not valid for B, (provided s> 2), since the
quasi-parabolic subgroups are not the same. (Compare the extended
diagrams of B, and C, in Appendix 1.)

We continue to use the character ring #. and the notion of the graph
of a reflection subgroup of W(B,), as defined in Section 7. However, for
aesthetic reasons, in this section we write B, for the graph of type C,, and
[B,]1=[C,]=h, for the trivial character of W(B,,).

Proof of Theorem 4.3. The proof of part (a) given in Section 7 is equally
valid for this case, since it applies to all reflection subgroups of W(B,). It
remains to prove (b).

By inspection of the extended diagram of B,,, one can see that the graphs
of the quasi-parabolic subgroups for B, are characterized by the fact that
they have at most one component of type B and at most one component
of type D; the remaining components are of type A. Recall from
Proposition 7.4 that {B,1=h,, [D,1=h,+g,, and [4,_,]=a,, where
a,: =37 _oheg,_« Thus we seek to prove that the characters

a,, ha,(k=1), (h,+g)a,(122), h(h+g)a,(k=11=2),
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are linearly independent, where a,=a, a,,--- varies over all partitions A
Since the A,’s and g,’s are algebraically independent over K, this is now a
purely formal problem in the domain of polynomial rings.

As we remarked in Section 7, # is also freely generated by the #,’s and
the a,’s, so we may analyze the above expressions by regarding g, as a

polynomial function of 4, a, h,, a,, ... From this point of view, the
problem is to prove that
1, he, h+g, hih+g) (k=1,122) (8.1)

are linearly independent over K{a,, a,, ...]. To simplify this task further,
we prove that even after applying a certain specialization for the 4,’s to
(8.1), we still obtain a linearly independent set.

For this, let x and y be indeterminates and define A, x"— yx" "' or
equivalently, > A, t"+— (1 —1y)/(1 —tx). If we explicitly solve for g,, we
obtain

Y gn1"=(1+ Y a,,t”)(Z h,,t")¥l|—><1+ Y a,,t")l_tx.

n=0 nz1 nz0 nzl 1—1y

Hence for n>> 1, we have
g, y"— xy" ' + lower order terms,

where “lower” refers to the total degree with respect to x and y.

If there were a dependence relation among the elements of (8.1), then
there would also be a dependence relation among their leading terms (with
respect to total degree in x and y). But these leading terms are independent
of a,, a,, ..., so it suffices merely to prove the linear independence of (8.1)
over K in the special case h,=x"— yx" ', g, = y"—xp" "L

In this case, we claim more specifically that (8.1) forms a K-basis for

K+ (x—y)K[x, y]. To prove this, note that h,=(x—y)x*~' and
i+ g,=(x— p)(x'" 1=y 1), so it suffices to show that
xk*l’ xl—l_yl—l, (x__y)(xlfl_ylfl)xkfl (k>1’122)

is a K-basis for K[x, y]. However, {x*~':k>1} is a basis for the sub-
space K[x]; we claim that the remaining elements form a basis for the
complementary subspace (x— y) K[x, y]. Indeed, each of the remaining
terms is divisible by x — y, and their quotients

x1—2+x173y+ +y/—2’ xk—l(xl\l_ylul) (k> 1’122)

are clearly a basis for K[x, y]. |

Next we consider the problem of writing y? as a linear combination of
permutation characters induced by quasi-parabolic subgroups.

607,106/2-9
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PrOPOSITION 8.1. For n>1, we have

Z [Bk][Bn—k]=2[Bn]+[anl:][AO:l_[An—l]—F Z [Dk][Bn~k]'
k=0 k=2

Proof. This follows directly from Proposition 7.4. |

Proof of Theorem 4.2. 1f we substitute ¢=1 in Theorem 7.6 and apply
Proposition 8.1, we obtain

( 143,21 QLB 1+ [B, 11[40] >
Z Buo _'[Amfl])lm-i-Zmzk)Z [Dk][Bmfk]tm
n;()x = ]—ZrnZIm[Am]tm+] ’

or equivalently, ¥, x?"=B(t)- (1 =Y, 1 m[A4,,]t"*") "', where

B()=(2+1[401t) 3 [B.1t"+ ) (m—1D[4,]m"!

ezl mz 1

+ Y [D[Bn_x1 1™
mzkz2
In this form, it is evident that y®~ is an integral sum of permutation charac-
ters induced by reflection subgroups of W(B,) whose graphs have at most
one component each of types B and D. These are precisely the quasi-
parabolic subgroups of W(B,). |

Remark 8.2. The analogue of Corollary 7.7 is false for the B-series.
Even for n=3, one can check that the grading of K[ 4, ]/@ is not com-
patible with any permutation representation of W(B,) whose isotropy
groups are quasi-parabolic.

If we expand the above series for y® in detail, we obtain

=2+t s

where

H=% ) ;m o meem B4, (4, (8.2a)
Xﬁ:EM % e LB JLA (A ] - [y, ] (820)
xﬁl=;l ) Z (my—1)ymy--m,[4,,] - [4,,] (8.2c)
=2 2 my---m, [B (D1 Ap ] [4,,], (8.2d)

rz0 ki+ky+m+ - +m=n—r

where k, 20, k, 22, and m; > 1.
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Proof of Theorem 4.5. Assume nz=3. Let I={1,.,n+1}, and for
J< I, write W, for the subgroup of W(B,) generated by {s,:jeJ}, where
S,+1 denotes reflection by the highest root. For each odd subset
J={i;<iy< -+ <iy .} of I, we define

J/ .:{{i27i4s--" i2r7i2r+]} lf{l,n}c_],
R R T 2O SR A otherwise.

We claim that this rule satisfies Theorem 4.5; i.e., we claim

=X 1y, - (8.3)

JcoI:)J) odd

To prove this claim, we need to break this sum into several pieces
according to the presence or absence of the elements 1,s, and n+1 in J.
The reader is advised to refer to the extended diagram in Appendix 1 for
what follows.

Case 1. n,n+1¢J. We have J'={i|, i3, .., {5, .}, and

1%, =[B1[D,1[A4,,]---[4,,],

where by =i, - 120, ky=n+1—i5 =22, and m; =iy, — iy ;— 1. If we
fix the parameters k; and m,, then there are m, ---m, possible choices for
J (corresponding to the possible choices for i,, i,, ...). Hence by (8.2d), we
see that the total contribution of this case to (8.3) equals x5, .

Case II. n+1eJ, 1¢J. In this case, we still have J' = {7\, i3, .., i5, 1 }»
but

Uy, , = [Bn1[A4,] [4,,],

where my=i,—1, and m;=iy,,—i,, —1 for j>0. If we fix the
parameters m;, then there are m, .-.m, possible choices for J. Hence by
(8.2a), this case contributes to (8.3) an amount equal to y 7.

Case1I'. neJ,n+ 1¢J. In this case, we either have J' = {i,, i4, ., Iz, 41}
or J'={i,, i3, ., I2 4}, depending on whether 1 e€J or 1¢J. Moreover,

1%,_1v= [Bmo][Aml] et I:Am,]’

where either (1) mo=i,~1, m;=iy . ,—i—1 (0<j<r)and m,=n—i,
(if Leld), or (2) my=i\—1, my=iy  —iy_,—1 (if 1¢J). If we fix m,,
then there are m,---m,_, possible choices for J with 1eJ and
m,---m,_,(m.—1) with 1¢J, for a total of m, ---m, choices. Hence this

case also yields an amount equal to y 7.
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Case 1Il. 1,n+1eJ, n¢J We have J' = {i , is, ., is .}, and
1y, =[4,.1--[4,]

where m; =i, —iy_,— 1. If we fix m, then there are m,--.m, ,(m,~1)
choices for J, so by (8.2c), the total contribution of this case to (8.3) equals
an-

Case IV. 1,n,n+1eJ. We have J' = {i,, iy, ..., i3, }. Since removal of
n and n+ 1 leaves a graph of type 4,, we obtain

1 %,,/v= [Bmo}[Amlj e [Am,,l][AO],

where mg=i,—1, and m; =i, ,—i,—1 (j>0). If we fix m;, then there
are m, ---m,_, choices for J, so by (8.2b), this case yields an amount equal
to xi-

In summary, this analysis shows that the terms of (8.3) are in one-to-one
correspondence with the terms in the expansion of % in (8.2). {

9. THE D-SERIES

Now consider the root system D,={+¢,t¢,:1<i<j<n} in V=R"
We sometimes include D, and D; in the analysis, even though D, is
reducible and D, =~ 4,. The Weyl group W(D,,) acts as the group of signed
permutations of ¢, .., £, with even numbers of sign changes. For the base
S={ay,.,a,}, we take a, =¢,+¢&, and a,=¢,,,—¢, for i>1. For n>=3,
the highest root is ¢,_ | +¢,.

Unlike the other classical root systems, D, has the property that the sub-
complexes 47 need not be isomorphic to Coxeter complexes of lower rank.
The more general structures that arise in this way form a two-parameter
family of complexes that were first considered by Zaslavsky [Za].
To describe these complexes, let / be an integer in the range 0 </<n, and
consider the simplicial hyperplane arrangement

{ef1<igltu{ataeD,}.

These hyperplanes define a complete simplicial fan @, in V'; we use 4
to denote the associated simplicial complex. Note that for /=0 and /=n we
obtain the Coxeter complexes for D, and C,, respectively.

LEMMA 9.1. For n=2, we have

Ppi(q)=Pc(q)=2""'(n—=1)qP,, _,(q)
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Proof. Recall that the chambers C,,, of &, are indexed by the per-
mutations w of {1, ..,n} and n-tuples y=(y,, ..., 7,,) such that y,= +1 (cf.
(7.1)). The chambers of @, are of two types: (a) the C,-chambers C, ,
with w(1) </, and (b) for each (n— 1)-tuple y = (y,, ..., 7,,) and choice of w
such that w(1) >/, the chambers

C;,w = Cy*.w Y C-,",w = {Z &€ & Icw(l), < Y2Cu(2) SJRRRIEN yncw(n)}’

where y* =(*1, y,, ..., 7,). Note that the bounding hyperplanes for C;
consist of (&,2) % &,1))" and (7, €y —¥i_1€wu_ 1)) for i>2.

Consider now the problem of enumerating the number of k-dimensional
cones C of @y that are confined to exactly j of the coordinate hyperplanes
e;. For j>2, the faces of C;, with this property are also faces of @,.
From the proof of Proposition 7.1, we already know that there are
2"~ ’( ) k! S(n— j, k) such cones.

If j=1, then C cannot be a face of C,, . Returning to the combinatorial
indexing of the cones of @, (cf. the proof of Proposition 7.1), we see that
the cones of this type are in one-to-one correspondence with signed,
ordered partitions of {1, ..,n} into k+ 1 nonempty blocks in which the
first block is a singleton {i} such that 1 <7</, and the elements of each
remaining block have a sign attached to them. Hence there are 2" '/.
k! S(n—1, k) cones of this type.

Now consider the case j=0. There are a total of 2"k! S(n, k) cones of
this type in @, but some of these may not be cones of @ ,;. The problem
arises from the faces of C) ,, that are not orthogonal to either of the roots

€.yt €,1,- These faces are unions of pairs of cones of @ ; they

correspond to the signed, ordered partitions of {1, .., n} whose first block
is a singleton {i} with i>/ and such that there are signs attached to each
of the n elements. The pairs of cones that are joined in @, are the ones
whose corresponding partitions are related by interchanging the sign
attached to the singleton i. Since there are 2"~ '(n—I)(k—1)! S(n—1, k—1)
such pairs of partitions, it follows that there are a total of 2"k! S(n, k) —
2" " Y n—I)k—1)S(n—1,k—1) cones of this type.

Combining the number of cones in these three cases and comparing the
result with (6.1) and Proposition 7.1(a) yields

Jei(de) = fe1(4p)
=2""Yn—-DK'S(h—1,k)+2" Y n—I)k—1)!S(n—1,k—1)
=2"" =D fi 2(d4, )+ fi3(44, )]

Applying (1.1), we obtain |

Pe(q)—Ppi(q)=2"""n—D[q(1 —q) P4, ,(9)+q°P4, ,()] 1
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We remark that the conjugacy classes of W(C,) that belong to W(D,)
are the ones indexed by the partition-pairs (u, v) with /(v) even. For even
n, these classes are coarser than the conjugacy classes of W(D,) itself (cf.

[Ca,§7]).

THEOREM 9.2. If we W(D,) is of type (u,v) and k=|{i:pu;=2}|, then

P, (g )H —4 ’n(1+q”) for vED,
$[Dy, 1(w) =

Py, (@) [1 ((—f_iq;l for v=g.

Proof. First consider the case vs# ¢J. Since the only invariants of
negative cycles in V are 0O, it follows that in this case, V, lies on one or
more of the coordinate hyperplanes ¢;-. However, it is easy to see that the
restrictions of both @, and @ to ¢;* are isometric. Thus by (7.4), we have

WA AW
Ap =4 =4c,,.

The first of the two claimed formulas is now a consequence of (7.3) and
Theorem 1.4,

Now consider the case v= . For this it is better to first consider an
example; say, w= (1, —2, —3,4)(5, 6)(7). We have (u, v)= (421, &), and
a basis for V, consists of the vectors &) =¢, —¢,+ &5+ &4, £5=85+ &,
and ¢} =¢,. Note that the restrictions of the hyperplanes (¢, +&5}* and
(g, — &,)* to V,, are (with complements taken relative to V) (¢} +¢,)* and
(€7)*, respectively. More generally, it is not hard to see that the set of all
hyperplanes in V, obtainable by restriction this way are of the form
(¢i &))" (i< ), together with (¢})* and (e3)*. In other words, 4} =4 ;.

In the general case, there is a natural basis of w-invariant vectors
&\, ..., £, where I =I(u) is the number of positive cycles of w. There is a root
ae D, such that the restriction of «* to V, is one the hyperplanes (g;)* if
and only if the cycle of w corresponding to ¢, has length at least 2. The
remaining hyperplanes are of the form (] £ /)", so A}, =~ A4, where k is
the number of non-fixed points of w. The second of the claimed formulas
now follows from (7.3) and Theorem 1.4. |

There is an obvious analogue of the graded character rings £, and %
for the D-series; namely, #,= @, %}, where #7, is the K-vector space
spanned by the characters of W(D,), and the multiplication is obtained by
the induction of outer tensor products from W(D,)x W(D,,) to W(D,, . ,).
We should note that for the purposes of this definition, we may regard
W(D,) as the trivial group and treat #9 as a one-dimensional space
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containing a unit element for #,. We should also point out that all of
the embeddings W(D,)x W(D,,)s W(D,,, ,) obtained by partitioning the
basis vectors ¢, into two sets are easily seen to be conjugate, so the product
is well-defined.

For ye &, let y+— § denote the (graded) ring homomorphism #, — %
provided by induction of characters, and recall that & denotes the involu-
tion on . that corresponds to tensoring by the sign character induced by
W(D,). For n=1, let se W(C,) denote reflection by the root 2¢,. Since
conjugation by s is an automorphism of W(D,), it follows that if we define
x7(w) = x(sws) for ye #}, and we W(D,), then y+ x° defines a K-linear
involution on £, (but not a ring homomorphism).

PrOPOSITION 9.3. Assume ye R}, nz=1.

(a) x=yx° if and only if y is the restriction of some @ € RY.
(b) If y=7yx° and y is the restriction of @ € A¢, then j =@ + do.
(c) The map y+ { is one-to-one on {y€ R} 1" =y}

(d) As graded rings, R, =R, DR, where R denotes the ideal of
R, generated by homogeneous elements of positive degree, regraded by
doubling degrees.

Proof. (a) The effect of o is to interchange the values of y on the pairs
of conjugacy classes of W(D,) that are obtained by splitting conjugacy
classes of W/(C,). Hence y is s-invariant if and only if it is constant on
conjugacy classes of W(C,).

(b) It suffices to assume that ¢ is an irreducible character. If
@ # 8(p), then by standard techniques of Clifford theory (e.g., [CR, §11] or
[Stel, §6A]), x is also irreducible; otherwise, if ¢ =3d¢, then y=y*" 4+,
where y* and y— are two irreducible, inequivalent W(D,,)-characters. Thus
by Frobenius reciprocity, if ¢ #8(¢), then f=¢ + 8(p), and if ¢ =d(p),
{* =9 and 1 =2¢0=0+4(p).

(¢) From (b), we have 7(w)=2x(w) for all we W(D,).

(d) Since ¢ is an involution, we have Z,x~I*@® I  (as vector
spaces), where I™ and I~ denote the eigenspaces of ¢ with eigenvalues + 1
and —1. Depending on how the embedding of W(D,)x W(D,) in
W(D,,. ) is chosen, s will commute with either W(D,,) or W(D,), and
therefore

(X0 22)" =21 X2=%1"%3»

provided that y, and y, are homogeneous and of positive degree in #,,.
This shows that both eigenspaces of ¢ are ideals of #,, so we have
RAp=I* @I as graded rings. From (b) and (c), it is clear that y+ 7 is an
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isomorphism from I* onto the d-invariant subring #2. The fact that
I~ = A7 can be deduced from Theorem 7.5 of [Stel]. 1

Let R be a root subsystem of D,, let W be the reflection subgroup it
generates, and let I'(W) be the corresponding graph, as defined in
Section 7. Note that the connected components of I"(W) must be of types
A and D. The parity of R (or W) is defined to be 0,1, or —1 as follows.
If I"(W) is connected and of type D, (n>2) or 4,, (n=0), then the parity
is zero. If I'(W) is of type A,,_, (n>=1) then the parity is defined to be
(—1)™, where m is the number of roots of the form ¢, +¢; in R. Finally, if
I'(W) is disconnected, the parity is defined to be the product of the parities
of the irreducible components of R.

LEMMA 94.  Two reflection subgroups of W(D,)) are conjugate if and only
if their graphs are isomorphic and they have the same parity.

Proof. For 1 <i<n, let t,e W(C,) denote reflection by the root 2¢,. If
two reflection subgroups of W(D,) are conjugate, then they are also con-
jugate in W(C,), so by Lemma 7.3 they must have isomorphic graphs.
Furthermore, if R is any root subsystem of D,, then conjugation by ¢,
preserves the parity of all irreducible components of R, except possibly the
component that is not orthogonal to ¢,. If this component has a graph of
type D,, or A,, then the parity is zero, so in these cases parity is preserved
even up to conjugacy in W(C,). However, if the component is of type
A, 1> then the effect of conjugation by ¢, is to interchange the presence
or absence of 2m — 1 roots of the form ¢, +¢; in R. Hence this changes the
parity of one component, so conjugation by an even number of the
reflections ¢, (and hence by ali of W(D,)) will therefore preserve parity.

For the converse, let W be a reflection subgroup of W(D,). We seek to
prove that all other reflection subgroups of W(D,) with the same parity
and having graphs isomorphic to I'(W) must be conjugate to W. By
Lemma 7.3, such groups must certainly be conjugate by some element
xe W(C,). If I'(W) has any component of type D, or 4,,, then the
normalizer of W in W(C,) includes elements not in W(D,) (in the former
case, reflections of the form ¢;; in the latter case, a product of 2m + 1 such
reflections). Therefore, even if x¢ W(C,), there will still exist a suitable
Xo€ W(D,) such that xWx ' =x,Wx, '. Otherwise, if every component of
(W) is of type A,,,_, for some m, then the parity of Wis +1, and the
argument of the previous paragraph shows that conjugation by ¢; changes
the parity of W. Therefore in this case, xWx ' will be a W(D,)-conjugate
of Wif and only if xe W(D,). |}

Proof of Theorem 4.3. (a) If two reflection subgroups induce the same
permutation character in W(D,), then they will also induce the same per-
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mutation character in W(C,). Hence by the proof of Theorem 4.3(a) that
we gave for the C-series, the subgroups must be conjugate in W(C,); in
particular, they must have isomorphic graphs. Since the property of having
parity 0 depends only on the graph, Lemma 9.4 implies that the only
possible counterexamples must involve a pair of reflection subgroups with
opposite (nonzero) parity and isomorphic graphs, with the connected
components being of type 4,, _,, .., 4,,,_, for some partition u.

The permutation representations of W(D,} induced by the reflection sub-
groups with graphs having the above type can be obtained from the action
of W(D,) on the orbit generated by a vector v=73 ¢;¢,€ V such that
[{i:lc)=j}l=2u; for j=1,.., 1 The parity of the isotropy group of v is
the product of the signs of the ¢,’s. If we choose v so that ¢,>0 for all i,
then there will exist a signless permutation w, of cycle-type 2u that fixes 2
elements in the orbit of v. On the other hand, if we change v by substituting
¢, — —c,, then every element in the orbit of v has an odd number of
negative coordinates. For such vectors there must exist an integer j such
that both j and —; occur as coordinates; however, no such vector can be
fixed by w,. Hence, subgroups of opposite parity do not induce the same
character.

(b) We first claim that the (distinct) permutation characters of
W(C,) induced by reflection subgroups of W(D,) are linearly independent.
To prove this, first observe that these characters are monomials in the
variables [D,,] (m=2) and [A4,,_,] (m=>=1). Now recall from Proposi-
tion 7.4 that [A4,,_,]=a,, and [D,]=h,, + g., where a,, =%, h, g, .
Since h,, a,, h,, a,,... are algebraically independent generators of #., we
may regard g,, and [D, ] as polynomial functions of h,, a,, k,, a,, ...
From this point of view, we seek to prove that [D,], [D,],.. are
algebraically independent over K[«,, a;, ...].

For this we define a total ordering on the monomials 4, that form a
basis for #- over K[a,, a,,...]. We say that h, precedes h, provided that
either (1) |A| < || or (2) |4l = |p|, and A precedes y in lexicographic order.

For m =2, the highest order terms of g,, with respect to this order are
—h,,+h, _h,;, so the highest monomial in [D,] is A, _,h,. More
generally, it follows that if u i1s any partition with parts >2, then the
highest monomial in [D,]---[D,] is h;, where A= (u,—1, .., pu,—1,
1, .., 1) (a partition of length 2/). Since the mapping u+ 4 is injective, we
may conclude that [D,], [D;], ... are indeed algebraically independent, so
the claim follows.

To complete the proof, note that this argument shows that if there were
a nontrivial dependence relation in £, involving permutation characters
induced by reflection subgroups of W(D,), then there would have to be one
involving a set of W(D,)-characters that are preimages of a single W(C,)-
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character y. However, the only nonconjugate reflection subgroups of
W(D,) that induce the same permutation character in W(C,) are the pairs
with isomorphic graphs and opposite (nonzero) parity, thanks to the
algebraic independence of [D,,} and [A4,,_,]. Such pairs of characters
have the same degree, and by part (a) they are distinct, so there is no
dependence relation between any such pair. |

As a corollary of Proposition 9.3 and the above proof, we obtain

PROPOSITION 9.5. If ye R}, and y =y, then yx is the character of a per-
mutation representation whose isotropy groups are reflection subgroups of
W(D,) if and only if

(1) % is a polynomial function of [D,,] (m=2) and [A, ;] (m=1)
with nonnegative integer coefficients, and

(2) for each partition p, the coefficient of [As, 1]+ [As, 1] in
is even.

For 0<k<n, let [D,,_,le®7 denote the permutation character
of W(C,) induced by W(D ) (W(C,)x W(C,_,)). Note that these
subgroups are not reflection groups. The following result provides a

decomposition of the graded W(C,)-character of K[4, ]/@ obtained by
induction from W(D,).

THEOREM 9.6. We have

5 D(q, 1)
D"’ "= m m ’
nZ?:ZX[ q] I_ZInzl(q++q )[Am]t +!

where

D(g, )=[D,}(1 +¢)* I’ + Z Z [Dim 1) g™

mz3 O0<ksm

+2 Y (g4 - +qmM)[A ]!

mz=2

+ {41t 3, (g + - +q")[4,] 1"
mz2
Proof. By Theorem 9.2, we see that y[D,, ¢ is g-invariant (i.e., con-
stant on the conjugacy classes of W(C,)), so by Proposition 9.3(b) we have
7[D,, 9)(w)=2x[D,, g)(w) for we W(D,) (and 0 otherwise). Thus if we
define ¢, € Z7 so that

x[C..q]1+x[C,,q1=7[D,. g1+ @., 9.1)
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then Lemma 9.1, Theorem 9.2, and Corollary 7.2 collectively imply that
@, (w)=0 unless w is of type (u, &), and in that case,

H

1 —
(Pn(w) = 2[PCIUN(q) - PD"’((ﬂl(q)] n 1 —qq

l_qll:
1—g¢

= 209(1(3) — k(1)) 4P (@) T

where k=k(u)=|{i:p;>2}|. Note that the above expression is nonzero
only if p has at least one part equal to 1. In that case, we have
((u)—k(u))/z,=1/z,, where A is the partition obtained by deleting a 1
from p. Thus by (7.5) and (6.2), we obtain

A 1A PA, (q
(21 -1 Ai
)1(/1)+1 ﬂ (1—-q*)yp;

Y @t"=2q(1—q) pyty.

nz i z 2. (

=29(1—gq) plthZ H(2k+2)(1— “ypi.

k=20 3

Hence by (7.6a), Proposition 7.5(b), and the fact that 2p/ =[A4,], we
obtain

Y @at"=q(1=q)[ Aot ¥, ¢“[H (1)/H ,(g1)]**!

nzl k=0
_ (1 —q)[4e] tH, (1)
H,(qr)— H (1)

[AO] qt(l +2m20 [Am] tm+l)
I_Zm>1 (q+ e +qm)[Am] tm+1.

9.2)

Next we observe that [D,,_,] can be obtained by first restricting
{C.I[C,_«] to W(D,), and then inducing back to W(C,). Thus by
Proposition 9.3(b), we have [D, ,_1=h.h,_,+ g. 8. . Now we apply
Theorem 7.6 to obtain

Y (x[Cn, g1+ 6x[C,, q)"

nz=0

_ (1 =) Xockcm Pehm_i+ & &m—i) g1
H,(qt)— H (1)

_ Yockam LPkm—i] qkt'"
1=%, 5 (g+ - +¢M[4,] """

(9.3)
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It is a routine execise to use (9.1), (9.2), and (9.3) to derive an expression
for the formal series 3,.,i[D,,g]?". Note that (9.2) is of the form
[4,]¢t+ O(t?) and (9.3) is of the form 2+ [Ao](1 + g)7+ O(r*). These
low-order terms must be removed in order to obtain the claimed
expansion, since it begins with terms of order 2. ]

Remark 9.7. (a) This result shows that K[ A4, 1/6 carries the structure
of a graded permutation representation of W(D,). Indeed, by Proposi-
tion 9.3(¢c), it is enough to show that [ D,, ¢] can be obtained by inducing
a og-invariant permutation character of W(D,); this is easy to see directly
from the above expansion of [ D,, q].

(b) There is no graded version of Theorem 4.2 for the D-series. If the
character of the homogeneous component of degree 1 in K[4,, 1/0 were
indeed a permutation character whose isotropy subgroups were reflection
subgroups, then by Theorem 9.6, [ D, _, ,] would have to be a polynomial
function of [D,,] and [A,,_,]. However, using techniques similar to those
employed in the proof of Theorem 4.3(b), one can show that for n >4,
[D, _1..] cannot be expressed in such a form. (In particular, #% is not
spanned by the permutation characters induced by reflection subgroups.)

In the following, it is convenient to set [D,]:=[A,]=h,+ g,-

Proof of Theorem 4.2. 1f we set g=1 in Theorem 9.6 and apply the
identity

Z [Dk,n~k]: Z hkhnfk+gkgn~k

k=0 k=0

=Y e+ gy w4 8u 1) —2hi 8, &
k=0

n—1

:4[Dn]—2[An~l]+ Z [Dk][Dn—k]s
k=1
then we obtain ¥, , 7”t"=D()(1 = 3,51 m[A,, 11" ") ', where

D(y=4 % [D, 1"+ ) ¥ [DJID, ]t"

mz2 m=z=3 O<k<m

+ 2+ [4]0) Y, (m—1)[4,]"

mz2

In this form, it is evident that y”r is the character of a permutation
representation whose isotropy groups are reflection subgroups of W(D,)
(cf. Proposition 9.5). Furthermore, these isotropy groups have graphs with
at most two components of type D. On the other hand, by inspection of the
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extended diagram of D, in Appendix 1 (for n > 4), one sees that the graphs
of the quasi-parabolic subgroups of W(D,) are characterized by this

property. §
If we expand the above series for 7”7 in detail, we obtain

=4+ an+20m+ alv,

where

=3 Y my-m (D 1[4, ][4 ], (9.4a)
rz0 m+ - +m=n—r

= Z Z my---m [ D, ][ D]
r20 k+k+m+ o km=n—r
X [Aml] e [Am,]’ (94b)

Xﬁl= Z Z (ml—])mZ"'mr[Am|]"'[Am,]’ (94C)
rzl m+ - +m=n—r

ATy = Z Z (my=1)ymy---m,_[A4,]
rz2 m+ - +m_1=n—r
X[Aml]"' [Am,,l:'a (94d)

where k, k', m,..m, 21, my=2, and k+k’ = 3.

Proof of Theorem 4.5. Assume n>4. Let I={1,..,n+ 1}, and for J< I,
write W, for the subgroup of W= W(D,) generated by {s;:jeJ}, where
S,41 denotes reflection by the highest root. For each odd subset
J={i,<iy< .- <iy ) of I let Jo={1,2,m,n+1}nJ, and define J to
be of class 1if Jo={1,n}, {2,n}, {1,2,n}, {1,2,n+1}, 0r {1,2,n,n+1};
otherwise, define J to be of class 2. Now define

Iy {iy, iasigy wring} if Jis of class 1,
BN R 77 20U S U if J is of class 2.

We claim that
T S A (9.5)
Jo I odd

where W= W(C,). To prove this, we break the sum into four parts identi-
cal to (9.4a)—(9.4d). The reader is advised to refer to the extended diagram
in Appendix 1 for what follows.

Case 1. Jy={1,2,n,n+1}. In this case, J is of class 1. Since removal
of the first two indices leaves a graph of type A4,, we obtain

v =41 A ][4, ],
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where m;=i,;, ,—iy—1for j<r—1and m, =i, —i, ,. If we fix the
parameters m;, then there will be m, ---m,_,(m,_, —1) choices for J, so
by (9.4d) this case yields an amount equal to 75,

Case II. Jo=, {1,2,n}, or {1,2,n+1}. If Jo=(F, then J is of class
2, and

U =[DDy_ i 1[A,,1-[4,,],

where k=i, — 122, my—k=n+1—i, ,22, and m;=iy,  , —iy_ —1
for j>0. If we fix k and m;, then there are m,---m, choices for J.
Otherwise, in the latter two cases, J is of class 1 and one of the components
of W,_, is of type 4,, yielding

1% =[A401[ Dy 1A [4,, ],

where my=n+2—i,, >3 and m, =i, ,—iy,—1 for j>0. If we fix m,,
then there are m,.--m, |, choices for J and 2 choices for J,. Since
[4Ao]1=1[D,], it follows by (9.4b) that the total contribution of these
subcases to (9.5) equals x1.

Case III. Jo={l,n+1}, {2,n+1}, {Ln,n+1}, or {2,n,n+1}. In
these cases, J is of class 2, and

I:Pii[,_/'= [Am1] [Am,]’

where m =iy —2, m,=n—i, , and m;=i5 , ~iy, —1 (I<j<r) If
we fix m;, then there are a total of 2(m, —1)m,-..m, (m,—1) choices
for J in the first two cases, and 2(m, —1)m,..-m,_, choices in the latter
two cases, for a total of 2(m, — 1)m,-..m, choices. Hence by (9.4c), the
total contribution of this case to (9.5) equals 2x7,.

Case IV. |Jol=1o0r 2, and Jy# {l,n+ 1}, {2, n+ 1}, In these cases, J
is of class 2, unless Jo= {1, n}. Regardless of which alternative occurs, we
have

1 %l,,r = [Dmo][Am|] T [Am,]9

for suitable parameters m,>2 and m,, .., m, 2 1 depending on J. If we fix
the parameters m;, and J, is one of the four possible singletons, there will
be (m; —1)m,.--m, choices for J (depending on how the indices m; are
ordered). If J, is one of the four possible doubletons, then there will be
m, ---m, possible choices for J. Thus there are a total of 4m, ---m, choices,
so by (9.4a) this case yields 4y,

These four cases complete the proof of (9.5). To prove that this rule for
choosing J' from J actually satisfies Theorem 4.5, observe that the reflec-
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tion subgroups with nonzero parity occur only in Case III. Moreover, the
collection of sets of the form 7/—J’ that occur in Case III is stable with
respect to interchanging 1 and 2. Therefore X, 15}, | is o-invariant, so the
result follows from (9.5) and Proposition 9.3(c). 1

10. THE EXCEPTIONAL CASES

Our proofs of the main results for the exceptional root systems are com-
puter-assisted. The programs were written in Maple and are freely available
through the Internet {Sted4]. In this section we describe the algorithms we
used, and discuss some details peculiar to the individual cases.

The core of the algorithm is built around the ability to quickly execute
the following tasks for arbitrary Weyl groups:

(T1) Determine the conjugacy class that contains a given element w.
(T2) Determine the size of each conjugacy class.

(T3) Produce a representative of each conjugacy class.

For the classical Weyl groups this is a straightforward task, and is perhaps
most easily accomplished using permuation representations of degree n+ 1
for W(A,), and of degree 2n for W(B,) and W(D,). It is necessary to solve
T2 and T3 only once for each exceptional group—the answers can then be
stored in arrays. One technique for generating the conjugacy class data is
to pass to a permutation representation (e.g., the action of W on the long
roots), and then use standard probabilistic algorithms for permutations
groups. The results can then be checked against the information in [Ca].

Once the conjugacy class data has been generated, then an effective
means for solving T1 can be based largely on characteristic polynomials.
Certainly two elements w,, w, € W can be conjugate only if det(1 —gw,) =
det(1 —gw,). A second necessary condition for conjugacy in Weyl groups
with more than one root length is that in any representations of w, and w,
as products of reflections, the number of long roots that occur in both
expressions must agree mod 2. Among the exceptional groups, these two
criteria suffice to distinguish all conjugacy classes except for two pairs in
W(F,), 6 pairs in W(E,), and 4 pairs and one triple in W(Ejy). In the cases
where the test fails, it suffices to pass to a permutation representation of W
induced by a parabolic subgroup of maximum possible size—in these
representations, the permutations in previously indistinguishable conjugacy
classes have different cycle types.

Using T1-T3, it is easy to compute the permutation character of W
induced by any reflection subgroup W'. Indeed, for xe W, we have
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1%,(x)=ml{we Wiwxw e Wi
|Z(x)| W |Cx)n W'|
=2\ W' = . , 10.1
W 1C(x) W TZAE) (10.1)

where Z(x) denotes the W-centralizer of x, and C(x) denotes the conjugacy
class of x in W. Hence, if x,, x,, ... (resp., ¥,, ¥,,..) are a list of conjugacy
class representatives for W (resp., W’) as produced by T3, then via T! one
can construct the inclusion map i+ o(i) defined by the property that y, is
conjugate in W to x,,,. Once the inclusion map is known, then by (10.1),
we have

_Iw
4

1C ()
10.
L o (102)

1 (x;)
itg(i)=j
where C’(y) denotes the W’-conjugacy class of y. Given T2, these quan-
tities are easily computable.

For a given Weyl group W with root system R, the algorithm proceeds
as follows.

Step 1. Define an equivalence relation on subsets J<= S by setting
I~J if and only if the parabolic subgroups W, and W, are conjugate.
Using T1 and Corollary 2.7, determine the equivalence classes of this
relation.

Step 2. For a representative J of each equivalence class of the rela-
tion contructed in Step 1, use (10.2) to compute the permutation character
of W induced by W,.

Step 3. Use Proposition 2.2(a), Theorem 1.4, and the permutation
characters computed in Step 2 to determine the character y*.

In order to verify Theorem 4.3(a), as well as to minimize redundant
computations, we need to determine the equivalence relation of conjugacy
among the quasi-parabolic subgroups of W. This is more delicate than the
relation of Step 1, but as a first approxiimation we can exploit the fact that
each proper subset of S, is a base for some root subsystem of R.

Step 4. For each n-subset I of S, use the methods of Step 1 to deter-
mine the equivalence relation on subsets of I corresponding to conjugacy
(in W) of parabolic subgroups of W,. Determine the transitive closure of
the relation (on subsets of S,) obtained from the union of these n+ 1
equivalence relations. (Sets belonging to the same equivalence class thus
index quasi-parabolic subgroups that are provably conjugate in W.)

Step 5. Use (10.2) to compute the permutation character of W
induced by a representative from each equivalence class of the relation
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constructed in Step 4. List each instance of representatives from distinct
classes producing identical characters.

Step 6. Show that the distinct characters obtained in Step 5 are
linearly independent, thus verifying Theorem 4.3(b). Use Gaussian elimina-
tion to write ¥® as a rational linear combination of these permutation
characters. Check that the coefficients are nonnegative integers, thus
verifying Theorem 4.2.

To construct a rule satisfying Theorem 4.5, we proceed as follows. Let
T, .., T, denote the distinct permutation characters computed in Step 5,
and let m,, .., m, denote their multiplicities in ¥%, so that y*=3,m,n,.
Define X,={IcS,:1}, ==} for 1<i<l Now let n—r, denote the
common value of |I| for 7€ X;, and define

Y,={JcS,:|J|=2r;+1,and |InJ|=r,for some [ e X;}.

The set Y, consists of the possible (2r; + 1)-subsets J with the property that
there exists an (r;+ 1)-subset J' of J such that I%SOJ =m,. To verify
Theorem 4.5, it therefore suffices to exhibit a choice of m, elements from Y,
(i=1, .., [) with no repetitions among the choices (i.e., a system of distinct
representatives). Since Corollary 3.3 shows that > m,;=2", this is only
possible if every one of the 2" subsets of odd cardinality is chosen exactly
once. Once this is done, a rule for choosing J' from each odd subset J can
be obtained by determining which family Y, is represented by J, and
then choosing any J'<J such that 2{J'{+ 1=|J} and S;—J' € X,. (The
existence of such a choice is intrinsic to the definition of Y,.)
The final step of the algorithm is the following.

Step 7. Use standard augmenting-path techniques (e.g., [LP])
to construct a system of distinct representatives for the family of sets
consisting of m, copies of ¥, for i=1, ..., /, thus verifying Theorem 4.5.

The one remaining issue is the verification of Theorem 4.3(a). In par-
ticular, the crucial point is whether the equivalence relation constructed in
Step 4 is strong enough to decide which quasi-parabolic subgroups of W
induce the same permutation character. In other words, do the members of
distinct equivalence classes induce distinct permutation characters of W?
For the root systems G,, F,, and FE;, the answer turns out to be
affirmative, so this verifies Theorem 4.3(a) for these cases.

For the root system Eg, there are 5 triples of equivalence classes that
each induce the same permutation character, and for E;, there are 15 pairs.
Thus to verify Theorem 4.3(a) in these cases, we need to prove that these
“indistinguishable” classes actually belong to the same conjugacy classes of
subgroups of W. To do this, first recall that the isotropy group of any ve V

607/106,2-10
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is the reflection subgroup generated by {s,€ W:<a, v)>=0}. Moreover,
since the W-orbit of v includes (exactly) one point in the fundamental
chamber, it follows that these isotropy groups are conjugate to parabolic
subgroups. Hence, given the information computed in Step 1, we can easily
determine when the isotropy groups of two different vectors are conjugate
in W.

To construct a vector v with a prescribed isotropy group is especially
simple when the subgroup is generated by a subset of some simple system
for W that is prescribed in advance. In such a context, one merely con-
structs a vector that is orthogonal to the roots of the desired reflections,
and not orthogonal to the remaining roots in the given simple system.

Let us say that a simple root «;€ .S is special if by removing the corre-
sponding node from the extended diagram of R we obtain a graph
isomorphic to the ordinary diagram of R. (This is equivalent to having the
corresponding fundamental weight be minuscule.) Note that in such cases
So— {a;} forms a simple system for R. For E4 there are two special roots,
and for E, there is one. Thus we can supplement Step 4 of the algorithm
with the following computation.

Step 4.1. For each special root «;, construct vectors ve V' whose
isotropy groups represent each of the conjugacy classes of parabolic sub-
groups of W, relative to the simple system S, — {«,}. (The conjugacy class
representatives are available from Step 1.} For each such v, determine the
unique vector v, in the W-orbit of v that belongs to the fundamental cham-
ber (relative to S), and determine the isotropy group of v, (a parabolic
subgroup of W relative to S). Add the relation implied by the fact that the
isotropy groups of v and v, are conjugate in W to the equivalence relation
constructed in Step 4.

Once this step is added to the algorithm, we find that the new
equivalence relation is able to prove conjugacy for all but one of the
indistinguishable triples of equivalence classes for Eq, and all but three of
the pairs of E,.

For the remaining four cases, we argue as follows. Consider the
subspaces U of V that are spanned by sets of roots. The Weyl group
permutes these spaces, so the isotropy groups of subspaces belonging to the
same orbit provide a large class of examples of conjugate subgroups. In
particular, the last remaining triple of equivalence classes for Eg has
representatives that can be identified as the isotropy groups for the three
lines in ¥ spanned by the two special roots and the highest root. Since the
roots form a single orbit, these three classes of groups must indeed be
conjugate. For F,, it is necessary to consider isotropy groups of higher
dimensional subspaces.
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PROPOSITION 10.1. Let U be a subspace of V spanned by a subset of R,
and let R"=RnNU be the root subsystem of R in U. If the diagram
automorphisms of R' are inner, then the isotropy group of U is the reflection
subgroup of W generated by {s,:2e RnU} U {s,:xae RN U"*}.

Proof. Certainly all of the above reflections belong to the isotropy
group of U. Conversely, let S'={f,, .., B} be a base for R". If w belongs
to the isotropy group of U, then w acts as an isometry of U that preserves
R'. In particular, wS’ is also a base for R'. Since W,. acts transitively on
bases, there must exist xe Wy such that wS =xS8’, and therefore
B.— x " 'wp, induces a diagram automorphism of R'. If the diagram
automorphisms are inner, then it must be possible to choose x so that
B.=x"'wp, for all i. Thus x ~'w must fix U pointwise, so x 'w is a product
of reflections by roots that are orthogonal to U [H, p.22]. |}

If W, and W, are two reflection subgroups of W that are known to be
conjugate, then the subspaces U, and U, spanned by the roots of their
reflections must belong to the same W-orbit, and hence their isotropy
groups must be conjugate. Using this idea we can produce the following
second supplement to Step 4—it suffices to prove conjugacy for the
remaining classes that induce identical permutation characters.

Step 42. (Assume R=E,.)For R'=A,, 4A,, and A, ® A,, determine
all equivalence classes in the relation of Step 4.1 that index subgroups
isomorphic to W(R'). For a representative subgroup W, of each class,
determine whether the subspace U, spanned by the roots of W, contains
only the roots of R that belong to R'. In cases where this is affirmative,
determine the isotropy groups of the subspaces spanned by the roots of
every subgroup in the equivalence class, using the criterion of Proposi-
tion 10.1. For the quasi-parabolic subgroups in this list, add to Step 4.1 the
relations implied by the fact that these subgroups are conjugate in W.

Remark 10.2. There is no graded analogue of Theorem 4.2 for the
exceptional root systems. Perhaps the simplest way to prove this is to note
that if w is a Coxeter element for W, then V', =0 (Lemma 2.5(b)), so the
restricted complex 4% is trivial. Thus by Theorem 1.4, we have
Z[ R, g](w)=det(1 — gw). However, the exceptional Weyl groups all have
the property that det(1 — gw) has (some) negative coefficients. (This is easy
to verify—either by direct calculation, or from the tables in [Ca].) Hence,
in the exceptional cases, there is no grading of any permutation representa-
tion of W that is consistent with the grading of K[4;]/6.
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11. OPEN PROBLEMS

There are a number of natural questions suggested by the results of this
paper for which we have been unable to find satisfactory answers. The first
of these is due to R. Stanley.

QUuUEsTION 11.1. If @ is a complete simplicial fan that carries a proper
action of a finite group G, is the representation carried by H*(X 4, K) (or
equivalently, K[ A1/@) isomorphic to a permutation representation of G?

Recall that in the above context, Proposition 1.7 shows that the
(ungraded) character of H*(X,, K) is integral and nonnegative. If G is a
cyclic group of prime order, then integrality and nonnegativity are suf-
ficient to imply that a G-character is a permutation character. However,
this is not the case for the cyclic group on four elements; it might suffice
to look for counterexamples involving this group.

Problem 11.2. For each (crystallographic) root system R, find a basis
for K[4;]/@ that is permuted by W.

The above problem is more natural (but still open) for the cases R= A4,
and R=C,, since in these cases the permutation representation 7, is com-
patible with the grading of K[4,]/@. We should also point out that from
any shelling of A, one can obtain a natural graded basis for K[4;1/6
(e.g., see Theorem 1.7 of [Bj], or Theorem 4.2 of [G]). However, at least
in the case of 4,, these bases are not permuted by W.

Problem 11.3. Find a natural construction of the permutation represen-
tation 7.

For any particular root system, one can use the description of the
isotropy groups of my to easily construct an “artificial” permutation
representation isomorphic to 7y (e.g, see [Ste3] for the A-series).
However, by finding a “natural” construction that works uniformly for all
root systems, one might hope to find more elegant proofs of the main
results of this paper. In particular, given an explicit construction of 7z, one
would expect to be able to prove directly and uniformly that the character
of n, agrees with the formula for y* in Corollary 1.5. Also, in a hypotheti-
cal “natural” construction of 7z, it should be clear that the isotropy groups
of n, are quasi-parabolic.

Problem 11.4. Find a rule for describing the isotropy groups of n, that
applies uniformly to all irreducible root systems R.

Presumably, there should be a rule of this type that is compatible with
the constraints of Theorem 4.5. One would also expect that a solution of
Problem 11.3 would yield insight into this problem as well.
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APPENDIX 1
The following are the extended diagrams for the irreducible root systems.

The nodes corresponding to simple roots are labeled 1,2, .., n, and the
highest root is labeled n + 1.

n+l
A,,n=z2 i :
1 2 3 n-2 n-l n
[ s et o —O———O===E==p
=
Con22 1 2 3 n-1 n n+l
B, n>3 n+l
=AY O—— v n-1
1 2 3
n
D, n=4
1 n+l
K S Y n-1
4 n-2
2 n
Eq
7
2
o0 —0 0
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APPENDIX 2

The following tables provide the decomposition of n, into transitive per-
mutation characters for each exceptional root system R. Assuming R is of
rank n, the first column lists subsets 7 of {1,2,..,n+1}. The indices
correspond to roots of the extended diagram, numbered according to the
conventions of Appendix 1. (In particular, n+ 1 is the index of the highest
root.) The quasi-parabolic subgroups W, corresponding to the sets / that
appear in this column are representatives for the distinct conjugacy classes
of subgroups of W that occur as isotropy groups in m;. In the second
column is the isomorphism class of the root system of W,, and in the third
column is the multiplicity of 1}}, in 7.

Fy I Ry |my

G2 I| Rr |mr] [235 [AC) 1

I {Rr|m 13| A2 [ 1| {1234] Fy |1
1A |1 123 Cs | 1| [1235[/A,Ca| 1
12|{Gq| 1 124 | A Aq | 4 | [1245] 42 |1
13|42 1 134| A1A;| 3 | |1345| 4145 1
23] Az 1 234| By | 1] [2345] By | 1
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Eg Er
I Ry |my I Ry |my I Ry my
125 A3 1 1235 | A2A4, 123467 | ApA4 | 11
1234 Aq 2 1245 | A1 Aa 123567 | A1 A2 A3 18
1235 | A%4;| 11 1257 A 124567 | A As 8
1245 |A1Aa| 7 12345 [ Ds 134567 As 5
2345 Dy 1 12346 | A A4 12 234567 Dsg 2
12345 | Dy 5 12356 | A1 A2 | 14 123578 | A3A; 2
12346 | A1 A4 14 13456 | As 134578 | A1 As 1
12356 | A1 A2 12 12357 | A3A, 234578 | AD, 1
13456 | As 3 12457 | A?A3 ] 10 1234567 Eq 2
12467 | A24;5| 1 23457 | A1 Dy} 2 12345781 A, Ds 2
123456 Eg 3 13467 | AgA3| 6 1234678 AqA4s 2
123467 | A1 As§ 3 123456 | Es 2 1235678 A1A3 1
123567 A3 1 123457 | A1Ds| 6 1345678 Az 1
Eg
I RI mr I R[ my
1 Rr my 123468 | A2A, |22 1235679 | A2A5A5| 4
1257 A} 1 123568 | A2AZ |28 1245679 | AlAs 3
12346 | A A4 2 234578 | A3D4 | 4 2345679 | A1 Ds 1
12356 | A;A3 4 134678 A2 9 1235689 | A,A3 1
12357 Ai’Az 15 124579 A‘{Aa 1 2345789 | AzD4 1
12457 | A%A; |10 1234567 Eq 1 12345678 Es 1
23457 | A; D4 1 1234568 A;Es 4 123456797 A, E- 1
13467 | AjAs | 4 1234578 A3Ds | 9 12345689 | A Es 1
123457 A1 Ds L3 1234678 | AszA4 | 15 12345789 A3Ds 1
123467 AxA4 |12 1235678 | A; A2 A4 | 24 12346789 A2 1
123567 | A1 A2A3 | 29 1245678 A1As | 11 12356789 | A AzAs | 1
1245671 A A4s | 11 1345678 Ar 6 12456789 A A7 1
134567 Ag 4 2345678 D7 3 13456789 Asg 1
234567 Dsg 1 1234579 A?Ds 1 23456789 Dg 1
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