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Scallop hull and-its offset 
Shuo-Yan Chou, Tony C Woo*, Lin-Lin Chen t, Kai Tang and 
Sung Yong Shin 

A linear-time algorithm that computes the envelope of the offset 
of a monotone chain is presented. The scallop hull, an extended 
notion of the convex hull, of the monotone chain is first 
computed by using an approach similar to that of the convex- 
hull construction algorithm. The offset of the scallop hull, which 
yields the desired envelope, can then be computed in linear 
time from the scallop hull, giving a tool path. 
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The problem of finding an offset arises in the generation 
of tool paths for machining a surface on a numerically 
controlled (NC) machine. When a hemispherical (ball- 
end) cutter is used to create the surface of a workpiece, 
the centre of the hemispherical tip of the cutter and the 
resulting surface maintain a constant distance, which 
equals the radius of the ball-end cutter. The tool path 
(taken by the centre of the cutter) can therefore be 
obtained by computing an offset of the desired locus of 
contact points on the surface of the workpiece. 

There are, in general, two types of NC tool path: 
'direction-parallel '1 paths, and 'contour-parallel' paths. 
This paper examines the former by taking the following 
view. Suppose that the representation is a graph surface 
z = f l ( x ,  y). (A parametric surface ~(u, v), i.e. x = F ( u ,  v), 
y = G(u, v), z = H(u, v) can be implicitized as fz(x ,  y, z) = 0; 
hence, z=J'l(X, y).) Sectioning the surface with a plane 
parallel to, say, the xz plane gives a curve of intersection 
(see Figure 1). The offset of this curve yields one of the 
zigzag tool paths; the subsequent ones are obtained 
similarly by taking further parallel sections. Note that 
the tool paths thus generated do not have to correspond 
to the constant parametric curves. Also, overcut and 
undercut may occur, since the surface normals are not 
necessar,ily in the section plane. This, when cast in the 
framework of a coordinate-measuring machine (CMM), 
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seems not unreasonable. The probe ofa CMM is spherical. 
The manner in which it acquires data is by contact, via 
small deviations from the computed tool path. 

In the literature on NC tool-path generation, most 
researchers 2 11 deal with sculptured surfaces, and are 
concerned with tool collision (owing to the possible self 
intersection of the offset). This paper offers a novel 
concept, the scallop hull (a generalization of the familiar 
convex hulll2), and applies it to the computation of a 
collision-free tool path, all in linear time, i.e. in time that 
is linearly proportional to the number of segments in the 
input curve. So that this novel idea is unencumbered by 
analytic or numerical techniques, the input is assumed 
to be composed of n line segments, a chain. While there 
is a selection of 3-, 4- and 5-axis NC machines, the simplest 
of them, the 3-axis machine, is adopted. Because of the 
limited number of degrees of freedom, the chain must be 
monotone, i.e. single-valued in the z direction 13. 

The tool path for a monotone chain can be obtained 
by first computing an initial offset, and then eliminating 
the portions that cause gouging. The initial offset is the 
concatenation of the offsets of every individual line 
segment and vertex in the chain, as shown in Figure 2a. 
The offset of a line segment is simply a parallel line 
segment at a given distance. The direction is understood 
to be away from the material side. A vertex can be thought 
of as a degenerate line segment, a constant-distance offset 
from which is a circular arc. The extent of the arc is 
determined by the perpendiculars of the line segments 
that meet at the vertex (see Figure 3). To eliminate self 
intersection in the initial offset, two methods are applicable: 
one utilizes the closest-points Voronoi diagram 1'14,15 of 
the chain to identify self intersections of the initial 
offset, and the other uses an algorithm developed by 
Hershberger 16 for constructing the envelope for a set of 
line segments. Both methods require O(n log n) time 17. 

Figure I 
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Sectioning a surface and simplifying its geometry 
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Figure 2 Intersection-free scallop hull 

envelop, O(n log n) tool 
pa th  

offset, O(n) 

In this paper, rather than dealing with the initial offset, 
the tool path is computed by offsetting the scallop hull 
of the monotone  chain, which is free of self intersection. 
The scallop hull is similar to the :~ hull defined by 
Edelsbrunner, Kirkpatrick and SeideP s for capturing the 
'shape'  of a set of points. The parameter  ~ is a real number. 
When it is positive, the c~ hull of a set of points is defined 
as the intersection of all the discs that have radii of 1/:~, 
and contain all the points in the set. When :~ is negative, 
the a hull is the intersection of all the closed complements 
of the discs (with radii equal to - l / :0 that contain all 
the points in the set. The case of ~ < 0  is analogous to a 
scallop hull for a set of points. The ~ hull of a set of n 
points can be computed in O(n log n) time xs 

The scallop hull of a monotone  chain is computed by 
sliding a circle against the boundary of the chain from 
its nonmaterial  side (see Figure 2b). The monotonicity of 
the chain facilitates the amortized complexity for back- 
tracking, hence allowing the development of a linear-time 
algorithm. The scallop hull has three kinds of element: 
convex vertices, circular arcs substituting for the portions 
of the chain that cannot be reached by the circle, and 
the portions of the chain that are in contact with the 
circle. Notice that there is no concave vertex in a scallop 
hull, which gives rise to a self-intersecting offset. When 
the radius of the circle is infinite, the scallop hull of 
the chain becomes its convex hull. 

The tool path is simply the locus of the centre of 
the circle, which can be stored during the process of 
constructing the scallop hull. This takes O(n) storage, 
where n is the number of segments. In this paper, the 
tool path is computed by offsetting the scallop hull, 
without a storage cost, as shown in Figure 4. This takes 
O(n) time, since there is no self intersection in the scallop 
hull. The total time is O(n)+ O(n)= O(n). 

P R E L I M I N A R I E S  

Let C = (vl ,  v 2 . . . . .  v , )  be a chain that is monotone with 
respect to the x axis, and let C be represented by an 
array of its n vertices. The line segment joining two 

/ f - -  ~! 

Figure 3 Initial offset of vertex and cdg~ * 
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Figure 4 Offset of scallop hull 
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Examples of defined terminologies 

successive vertices v i and r i .  1 is called an edge of C, and 
it is denoted by % Assume that e, is directed such that 
xi <~ xi + ~, for all 1 ~ i ~< n - 1. Two downward vertical rays 
with the endpoints at t 1 and v. are added to the chain 
C so as to permit the offset of the first and the last vertices. 

Sliding a circle of radius r against the left-hand side 
(the nonmaterial  side) of C makes contacts at points Pk- 
The portion of C that does not come into contact with 
the circle is called a deficiency. The two contact points 
Pk- 1 and Pk bounding the deficiency (Pk 1, t~j, Pk), shown 
in Figure 5, are the supporting points of the circle. A 
supporting point can also be at a vertex m the chain. 

538 Computer-Aided Design Volume 26 Number 7 July 1994 



such as Pk+ 1, shown in Figure 5. The concave upward 
portion of the circle between two supporting points Pk + 1 
and Pk+ 2 is called the lid of the deficiency, and it is denoted 
by 2k + 1" Since C is monotone with respect to the x axis, 
and since the circle slides against the upper side of C, 
only the lower half of the circle may come into contact 
with C. Let the lower semicircle containing the lid 2k + 1 
be denoted as ~k+ 1' An edge or a partial edge of C which 
comes into contact with the circle between Pk and Pk+ 1 
(supporting points or vertices of C) is called a link, and 
it is denoted by l k. The concatenation of lids 2~ and links 
lj forms the scallop hull of C. 

The supporting points of the circle on a pair of edges 
can be computed analytically. Consider the edges e~ and 
e~, as shown in Figure 6. Let the extensions of e~ and ej 
intersect at q, and let L_v~qvj+ 1 denote the angle between 
the nonmaterial sides of these two lines and let it equal 
20, where 0 < 90 °. Let the distance between q and v i be 
denoted as d~, and likewise for distances to the other 
vertices. There are three combinations of supporting 
points, slope-slope, peak-peak and peak slope, as shown 
in Figure 6. For a slope-slope pair, as shown in Figure 
6a, the supporting points p, and Pk+l are two interior 
points ofei and ej such that d k = dk + 1 = r/tan 0. The centre 
and the two endpoints of the lid thus defined can then be 
computed. For  a peak-peak pair, as shown in Figure 6b, 
the centre of the lid lies on the perpendicular bisector of 
v~ and vj+ 1 such that its distances from vl and vj+ 1 equal 
r. For a peak-slope pair, as shown in Figure 6c, the centre 
of the lid lies on the parabolic curve defined with v i as 
the focus and edge e~ as the directrix, such that its distance 
from/)~ equals r. With the centre of the lid identified, the 
supporting point Pk+a on e~ can then be computed. 

However, the determination of the combination of 
supporting points requires the testing of all the possible 
cases. When (d~+ 1" tan 0) < r < (d~' tan 0) and (d i" tan 0) < 
< r < (di+ 1' tan 0), only a slope-slope pair of supporting 
points can be realized. Otherwise, that is, if r and the 
distances of q to the four vertices of e~ and ej do not 
satisfy the above relationship, whether it is a peak peak 
or peak-slope pair can be determined by checking the 
validity for the rest of the possible cases. Note that vertices 
vi+l and vj may also be the peak. Additionally, in the 
proposed algorithm, if e~ and ej are not successive edges, 
supporting points are computed only when the two edges 
are detected to support the sliding circle. Therefore, by 
enumeration of all the seven possible pairs, the combination 
of the supporting points can be verified, and the centre 
and the endpoints of the lid can then be computed. 

C O N S T R U C T I O N  O F  S C A L L O P  H U L L  

The algorithm for constructing the scallop hull is 
analogous, in spirit, to the Graham-scan algorithm 19 for 
computing the convex hull of a set of points, though it 
differs in details. The Graham scan starts by sorting the 
given set of points lexicographically by their polar angles 
with respect to an arbitrary point in the interior of the 
convex hull of the set. Interior points are eliminated one 
by one by comparing three successive points. For the 
scallop hull, the deficiencies are equivalent to the 'interior 
points'. They are eliminated by comparing successive 
edges of the given monotone chain, and therefore no 
sorting is required. 

Algorithmically, the monotone chain is traversed, and, 
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during the process, lids and links of the scallop hull are 
constructed and/or  updated. A current scallop hull is 
maintained by a stack. Two procedures, forward inclusion 
and backward exclusion, are executed during the traversal. 
As suggested by their names, forward inclusion identifies 
segments (lids and links) that may be pushed into the 
stack, whereas backward exclusion removes or updates 
the segments in the stack, whereas backward exclusion 
removes or updates the segments in the stack. The lids 
and links remaining in the stack when the algorithm 
terminates constitute the scallop hull of the chain. 

Algorithm (Scallop_Hull) 

( U 1 ,  /)2 . . . . .  Un): a monotone chain 
S: the stack maintaining the segments in the current 
scallop hull 

k*-- 1, Pl *--/)1, ToP(S)*-- Link 

f o r i = 2 t o n - - 1  do 
Forward_Inclusion(S, e i_ 1, ei) 

OUTPUT(S) 

The details in the two procedures are now discussed 
individually. The Forward_Inclusion procedure first 
determines whether two successive edges ei-1 and ei 
support a circle. At Step 1, if the exterior angle of vi, 
formed by ei_l and e i, is less than 180 ~, as shown in 
Figure 7a, the two edges form a support. A lid thus 
computed is called the active lid. The Backward_Exclusion 
procedure is then invoked to determine whether the active 
lid agrees with its preceding lids and links, and to resolve 
the disagreement if there is any. 

If the exterior angle of v~, formed by e~_l and ei, is 
greater than or equal to 180 °, as shown in Figures 7b-d, 
e~_l and e~ do not support the circle. Step 2 begins. If 
Pk ¢ Vi, either the entire edge e i_ 1 (which occurs when the 
segment obtained in the previous iteration is a link, say 
lk 1, as shown in Figure 7b, or the part of e~_ 1 between 
v~ and the supporting point Pk (which occurs when the 
segment obtained in the previous iteration is a lid, say 
2k-1, as shown in Figure 7c), is pushed into the stack as 
a link Ik. When Pk = Vi, as shown in Figure 7d, no link is 
generated. This corresponds to Step 2.2.2. However, if 
~k-1 intersects ei, as shown in Figure 7e, 2 k_ 1, the lid at 
the top of the stack, needs to be updated, and the 
Backward_Exclusion procedure is then invoked with the 
updated 2 k_ 1 as the active lid. 
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Figure 8 Some cases illustrating Backward Exclusion procedure 
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Procedure (Forward_Inclusion (S, ei_ ,, el)) 

S: the stack main ta in ing  the segments  in the current  
scallop hull 
)4 the active lid 

(I) if /_ v i 1 uiui+ t <~ 180 then 
C o m p u t e  2~ such that  p.~e e~ ~ and p.~ ~ ~ e, 
Backward_Exclusion(S, 2)  

(2) else [ / v  i . 1uiuiq i ) 1 8 0 ]  

(2.1) if T o p ( S ) = L i n k  then 
Pk * -  Ui 1" Pk  ~ l ~ I'i 

PUSH(/k, S) 
k ~ - k + l  

(2.2) else [TOP(S) = Lid = G l] 

(2.2.1) if pk-/:t:i then 
Pk ~ t ~ Ui 

PUSH(Ik, S) 
k + - - k + l  

(2.2.2) else [Pk = Vii 
if :Kk- i c~ e i ¢ ~ then 

I'IPDATE(f"k--1) such that  /)k ee~ 

P~-- Pk- 1, P~* ~ *-- Pk 
k ~ k - 1  

Backward_Exclusion(S, 20 

The  Backward_Exc lus ion  procedure  is responsible for 
checking whether  the active lid 2~, suppor ted  by el-  ~ and 
% agrees with the segment  at the top of the stack. ToP(S) 
can only be a lid or  a link. If  the segment  at the top of 
the stack is a lid 2 k _ a, then the intersection between :Kk- 
and e~ is checked. If the intersection is empty ,  the active 
lid is pushed into the stack; if there exists par t  of the edge 
e~_ x between 2 k_ ~ and the active lid, as shown in Figure 
8a, this part ial  edge PkPs is pushed into the stack as a 
link before the active lid is. This cor responds  to Step 1.1. 
If, on the other  hand,  the intersection between semicircle 
:Kk- t and the edge e~ connect ing v~ and v~ + ~ is not  empty,  
as shown in Figure 8b, a new active lid suppor ted  by the 

edge containing the suppor t  Pk- ~ and el is computed .  
This cor responds  to Step 1.2. The  Backward_Exclus ion  
procedure  continues with the new active lid. However ,  if 
:Kk ~ and the active lid coincide, as shown in Figure & ,  
the lid 2k ~ is extended to p ~ - a n d  the Backward  
Exclusion procedure  terminates• 

If the segment  at the top of the stack is a link l k_ ~, ti~c 
side of the active lid on which l~ ~ lies is determined• At 
Step 2.1, if lk 1 lies on the (oncace side of the lower 
semicircle containing the active lid, the active lid is pushed 
into the stack. Again, if there exists a part  of the edge 
ei ~ between / k_ ~ and the active lid, as shown in Fi~mr(' 
&t, this partial  edge PkG is pushed into the stack as a~ 
link before the active lid is. At Step 2.2, if, on the other  
hand, a por t ion  of /~_ L lies on the convex side of the 
active lid, as shown in Fi.qurc &', a new active lid 
suppor ted  by the edges containing Pk ~ and c( i,, 
computed ,  and the link lk_ ~ is updated accordingly• The 
Backward_ Exclusion procedure  then continues with the 
new active lid, 

Procedure (Backward_Exclusion(S. 2~)) 

S: the stack mainta in ing the segments  in ttle current 
scallop hull 
2,: the active lid 

while ToP(S) :# nil do 

(1} if rop(S)=Lid=--2 k ~ then 

(1 1) if~k ~ m e i = ~  then 
if Pk 4= p ,  then 

Pk + I ~ P., 

PUSH(Ik ,  S }  

k ~ - k + l  

PUSH(2k,  S)  

k * - - k + l  
EXfl 

(.1.2) else [:Kk-lmei~.(3~] 
if COINCIDE(/~ k _ 1, ;Ks) then 

) - k  - I * - -  )-k ~ ~.-" ) ,; 
EXIT 
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else 
UPDATE('~*k- 1, S) such that Pk ~ e~ 

Ps*"- Pk-  1, Ps+ t ~ Pk 
k ~ k - - 1  

(2) else [ToP(S) = Link  = lk 1] 

(2.1) if I k _ 1 c CONCAVE(Try) then 
if Pk -~ Ps then 

Pk +1 ~ P~ 
PUSH(lk, S) 

k + - - k + l  

Pk ~ P~, Pk + I ~ P~+ I 
PUSH(;.k, S) 

k ~ k + l  

EXIT 

(2.2) else [l k_ 1 r~ CONVEX(~) ¢ ~ ]  
Compute  2~ such that P~elk-1  and 

Ps+l Eel 
UPDATE(/k- 1) 

The fact that the algorithm gives a correct scallop hull is 
now discussed. Forward inclusion computes, for all pairs 
of successive edges, circular arcs and line segments which 
may become the lids and links in the scallop hull. When 
a newly created link conflicts with the lid at the top of 
the stack (the only possible conflict between a link and 
the current scallop hull), as shown in Figure 7e, a new 
lid is computed as the active lid, which reduces this case 
to the case of having a newly created lid. Therefore, 
backward exclusion only needs to ensure that there is no 
conflict between an active lid and the current scallop hull. 
There are two cases of possible conflict. If the top of the 
stack is a lid 2 k_ ~, a conflict occurs when ~k- ~ intersects 
e~, the second of the pair of successive edges in question, 
as shown in Figure 8b. On the other hand, if the top of 
the stack is a link I k_ t, a conflict occurs when a portion 
of lk- 1 lies on the convex side of the active lid, as shown 
in Figure 8e. A new active lid is computed in both cases. 
The following lemma formalizes the fact that, if neither 
of these two cases occurs, there will be no conflict between 
the active lid and any lids or links already in the stack. 

L e m m a :  Suppose that an active lid )~ is identified in the 
Forward_Inclusion procedure. If the segment at the top 
of the stack is (a) a lid 2 k_l such that 7r k_~ does not 
intersect e~, or (b) a link Ik_ ~ such that it lies on the 
concave side of 2s, then e i ~ TCj 1 -~ ~ and rc k c~ lj_ 1 = ~ ,  
for all j < k. 

Proof" (a) Since C is monotonic with respect to the x 
axis, the x coordinates of the centres of the tentative lids 
are ordered with respect to the x axis. If ~k-1 does not 
intersect ei, then 7r j_ 1, for j < k, which is on the concave 
side of ~k-1, as shown in Figure 9a, cannot intersect ez 
either. On the other hand, by induction, ~k-1 does not 
intersect 1;_ 1, for j < k -- 1, because, otherwise, 2k - I would 
have been updated in an earlier iteration. Moreover, since 
xj ~< x k_ 1 ~< x~ (as shown in Figure 9b), for j < k - 1, it is not 
possible for ~L to intersect l j_ ~. (b) This part  of the lemma 
can be established using reasoning similar to that for 
part a. []  
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Figure9 Termination conditions for Backward Exclusion procedure 

The lemma establishes the stopping condition for the 
Backward_Exclusion procedure. When the stopping 
condition is met, the active lid is a lid of the scallop hull 
for the chain from the beginning of the chain to e i. By 
induction, the Scallop_Hull algorithm described above 
gives the scallop hull of the monotone chain C. 

The time complexity of the algorithm for computing 
the nongouglng tool path for a monotone chain is now 
analysed. There are only (n+ 1) iterations for forward 
inclusion, since there are only (n+ 1) successive pairs of 
edges (including the two downward vertical rays). 
Updating the stack, which is the main task in backward 
exclusion, takes O(n) time in total, since there are at most 
( n - 1 )  lids and (n+2) links in the scallop hull, and each 
segment is stacked or unstacked at most once. Therefore, 
the time complexity for computing the scallop hull is 
bounded linearly by the total number of vertices in the 
chain. The offset of a scallop hull can be computed by 
concatenating the offset of the links and the vertices in 
the scallop hull. The offset of a lid is its centre, and it 
can therefore be ignored. Since the offset of a scallop hull 
can also be computed easily in O(n) time, the tool path 
for a monotone chain can be constructed in linear time. 
This establishes the following theorem. 

Theorem." A non-self-intersecting tool path created by 
offsetting a monotone chain ofn vertices can be computed 
in O(n) time. 

S U M M A R Y  A N D  C O N C L U S I O N S  

The scallop hull of radius r is a generalization of the 
convex hull (for which r equals infinity). An O(n) time 
algorithm for computing the scallop hull of a monotone 
chain of n edges has been given; the algorithm is therefore 
optimal. 

Applications for the reported work includes NC 
machining and C M M  inspection. That the mechanisms 
are 3-axis is underscored by the assumption of the 
monotonicity of the 2D data. In 3D, monotonicity is 
ramified as a terrain surface 2°, for which each point 
(x, y, z) on the surface is visible from 'above',  e.g. from 
z =  oc. Computing the offset for such a terrain surface 
has obvious use in geographical information systems as 
well. 
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