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Abstract-A 14-muscle myoelectric signal (MES)-driven muscle force prediction model of the L3-L4 cross 
section is developed which includes a dynamic ME!+force relationship and allows for cocontraction. Model 
parameters are estimated from MES and moments data recorded during rapid exertions in trunk flexion, 
extension, lateral bending and axial twist. Nine young healthy males participated in the experimental 
testing. The model used in the parameter estimation is of the output error type. Consistent and physically 
feasible parameter estimates were obtained by normalizing the RMS MES to maximum exertion levels and 
using nonlinear constrained optimization to minimize. a cost function consisting of the trace of the output 
error covariance matrix. Model performance was evaluated by comparing measured and MES-predicted 
moments over a series of slow and rapid exertions. Moment prediction errors were on the order of 25,30 
and 40% during attempted trunk flexion-extensions, lateral bends and axial twists, respectively. The model 
and parameter estimation methods developed provide a means to estimate lumbar muscle and spine loads, 
as well as to empirically investigate the use and effects of cocontraction during physical task performances. 

INTROlXJCIlON 

Quantification of lumbar spine loads during the per- 
formance of physical tasks is relevant to improve the 
understanding of the causes of low back pain. Because 
spinal loads are not directly measurable in uiuo, in- 
direct methods of estimating the internal trunk loads 
resulting from task performances are needed. Force 
and moment equilibrium analysis across an imagin- 
ary transverse cross section of the lumbar trunk can 
be used to establish a relationship between the ex- 
ternal forces associated with a task and the internal 
trunk loads (Schultz and Andersson, 1981). However, 
the mechanical equilibrium equations are typically 
underdetermined with the number of unknowns 
(muscle forces, spine loads, ligament tension, abdom- 
inal pressure) exceeding the number of equations. 

Three alternative methods of solving underdeter- 
mined joint equilibrium equations have been utilized. 
The first method involves the use of simplifying as- 
sumptions such that the equilibrium equations be- 
come determinate. For example, sagittal moments 
about the spine have been assumed to be generated by 
a single-equivalent back muscle (McNeil et al., 1980). 
This approach allows for direct calculation of the 
agonistic muscle force from moment equilibrium and 
spine loads from force equilibrium. While this ap- 
proach is simple, the conditions under which the as- 
sumption of a single-equivalent agonistic muscle 
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model is valid are limited to physical tasks in which 
no coactivation of agonistic-antagonistic muscle 
pairs is present and load-sharing among all agonistic 
muscles is constant. 

A second method of solving underdetermined joint 
equilibrium equations involves the use of numerical 
optimization. Muscle forces are predicted that satisfy 
joint equilibrium and minimize an objective function 
which is designed to reflect the assumed muscular 
recruitment strategy (Hughes, 1991; Schultz et al., 
1983). Although good correlations have been found 
between model-predicted muscle forces and lumbar 
myoelectric signals (MES) during light to moderate 
sagittal loadings (Schultz et al., 1983), substantially 
weaker MES-force correlations are observed when 
tasks involve heavy exertions (Schultz et al., 1987) and 
three-dimensional loadings (Hughes, 1991). The ma- 
jor drawbacks of this approach are that it is difficult 
to account for subject and task-dependent variations 
in muscle recruitment, and it commonly does not 
predict cocontraction which becomes substantial dur- 
ing three-dimensional loadings of the trunk (McGill, 
1991; Pope et al., 1986). 

The third approach to estimating internal joint 
loadings is to predict muscle contraction forces from 
MES. A major advantage of this approach is that 
empirical measures (MES) are used directly as quant- 
itative indicators of muscle recruitment. Thus, inter- 
individual and task-to-task variabilities in muscle re- 
cruitment can be accounted for, and the effects and 
use of cocontraction can be quantified. While MES 
have been used extensively to predict joint torques in 
the extremities (Bobet and Norman, 1990, Hof, 1984; 
Olney and Winter, 1985; Redfern, 1988), predicting 
lumbar muscle forces from MES presents a formi- 
dable task due to the large number of trunk muscles, 
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their capacity to generate substantial three-dimen- 
sional torques as well as the complexities of the 
MESforce relationship. McGill and Norman (1986) 
developed the earliest MES-driven lumbar muscle 
force prediction model using it to estimate lumbar 
trunk loads during dynamic, sagittal lifting tasks. 
Marras and Sommerich (1991) estimated lumbar 
muscle forces from MES during isokinetic trunk ex- 
tensions. While muscle length and velocity affects 
were accounted for in these models, the MES-force 
modeling was based on u priori assumptions of the 
MESstress relationship and only sagittal moments 
were considered. An attempt by McGill (1991) to use 
MES to predict muscle forces and moments during 
axial twist exertions resulted in poor agreement with 
measured moments. Hughes (1991) used principal 
components regression to calibrate individualized 
MES-force models during asymmetric static tasks but 
included only six muscles and did not consider rapid 
exertions or twisting moments. 

The objective of the present study was to develop, 
calibrate and evaluate an isometric lumbar MES- 
to-force prediction model which differs from previous 
models in the following respects: (1) MES from 14- 
lumbar muscles were accounted for, (2) dynamic 
MES-force models are estimated from experimental 
data, (3) model calibration considered tliree-dimen- 
sional loading conditions, (4) model performance was 
evaluated over tasks involving slow and rapid three- 
dimensional exertions. 

(a) (b) 

METHODS 

Nine healthy male subjects participated in this 
study. Their ages ranged from 21 to 31 yr with a mean 
of 24.1 yr, heights ranged from 168.0 to 190.5 cm with 
a mean of 175.8 cm and body weights ranged from 
61.0 to 83.9 kg with a mean of 73.2 kg. All tasks were 
performed in an upright position in a test frame which 
resisted lower body motion [Fig. l(a)]. 

Each subject performed a total of 22 tasks which 
included six maximum voluntary exertions (MVE), 
four calibration tasks and 12 validation tasks. The 
MVE tasks were performed for 2 s intervals with at 
least 1 min rest between tasks and consisted of maxi- 
mally attempted: (1) trunk flexion; (2) trunk extension; 
(3) right lateral bend (rlb); (4) left lateral bend (llb); (5) 
counter-clockwise (ccw) twist; (6) clockwise (cw) twist. 
During the calibration tasks, restraint pads were 
placed anteriorly, posteriorly and laterally to the up- 
per body at shoulder level. In the first calibration task, 
the subject was asked to sequentially attempt trunk 
flexion, extension, right lateral bend, left lateral bend, 
ccw twist and cw twist. A second calibration task was 
performed similarly but without attempted axial 
twist. Each calibration task was repeated once. Rapid 
exertions to approximately two thirds of MVE were 
performed with a metronome to guide the rate of 
sequencing through the exertion directions. Eighteen 
and 12 s of data were recorded during the calibration 
tasks with and without axial twist, respectively. 

Fig. 1. (a) Schematic representation of the experimental set-up. Padded restraints were placed around the 
upper body during attempted exertions. (b) Free body diagram used to calculate the net forces and 
moments at the L3-L4 level of the trunk. Moments about the lumbar spine were assumed to be generated 

by the 14-muscles included in the model of the transverse cross section of the lumbar trunk. 
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The set of validation tasks included four attempted 
flexion-extensions, four attempted lateral bends and 
four attempted axial twists. Each set of four tasks 
consisted of a slow cyclic bi-directional exertion 
(6 cycles per minute), a fast cyclic bi-directional exer- 
tion (40 cycles per minute) and two single direction 
pulse exertions (3 s duration). Upper body restraints 
were placed to minimize exertions in directions other 
than those prescribed (Thelen, 1992). All validation 
tasks were performed to approximately 60% of MVE 
levels with an oscilloscope display of force plate reac- 
tions used as indicators of effort level. In all tasks, the 
subject was first given sufficient practice to master 
tracking a desired reaction force. The feedback signal 
was turned off during actual data collection to minim- 
ize constant corrective actions associated with force 
tracking. 

The experimental set-up resisted any motions of the 
lower body allowing the moments (MJ and forces (F,) 
necessary to equilibriate the upper body at any time 
step to be calculated using a static analysis of the 
lower body [Fig. l(b)]: 

Two force plates (AMTI) were used to measure 
foot-floor and pelvis-support reaction forces (Fig. 1). 
The relative position of the two force plate origins was 
measured to the nearest millimeter using a plumb bob 
and rule. Force plate signals were amplified with 
a gain of 2000 and sampled by a 12 bit A/D board at 
100 Hz. Trunk position data were measured using an 
optoelectronic motion measurement system (WAT- 
SMART; Northern Digital Inc.). Two cameras were 
located approximately 3 m behind the subject. 
Markers were positioned on the skin overlying the 
posterior spinous processes of the second and fourth 
lumbar vertebral bodies, and at the origin of the pelvis 
support force plate. Position data were collected at 
100 Hz. Force plate and kinematic data were sub- 
sequently digitally low-pass filtered using a second- 
order Butterworth filter with a cutoff frequency of 
5 Hz; forward and backward passes were used to 
remove phase shift. The position of the L3-L4 disc 
centroid was estimated relative to the back markers 
using the regression equation reported by Tracy et al. 
(1989). 

M,=fditXF,+M,, (1) 
i=l 

Ft= i Fit-mtg, (2) 
i=l 

where di, is the vector from the center of the L3-L4 
disk to the origin of force plate i at time step t, mC is 
the mass of the lower body, g is the acceleration of 
gravity, and F, and M, are the force and moment 
vectors recorded by force plate i at time step t. 

MES were recorded using seven recessed bipolar 
surface electrodes on each side of the trunk oriented 
parallel to the underlying fiber direction. Electrodes 
consisted of two 10 mm diameter silver disks spaced 
20 mm center-to-center. Three pairs of electrodes were 
placed bilaterally over the erector spinae (ES) muscles 

at the L3-L4 level: 2,4, and 6 cm lateral to the mid- 
line. These were approximately over the multifidus 
(ESM), longissimus (ESL) and iliocostalis (ESI) col- 
umns of the lumbar ES muscle. An electrode pair was 
placed over the latissimus dorsi (LD) muscle at the 
TlO level, two-thirds of the distance form the midline 
to the lateral aspect of the body. Six abdominal elec- 
trodes were placed bilaterally over the rectus abdomi- 
nis (RA), internal oblique (IO) and external oblique 
(EO) muscles. RA electrodes were placed 3 cm lateral 
to the midline at the level of the umbilicus. IO elec- 
trodes were placed 2 cm inferior and 3 cm medial to 
the anterior superior iliac spine. EO electrodes were 
placed at the lateral aspect of the body at the level of 
the umbilicus. 

Raw myoelectric signals were differentially ampli- 
fied to volt levels and digitized at 1500 Hz through 
a 16 channel 12 bit A/D board. The signal from each 
electrode was checked visually on a screen before and 
frequently during the testing. The myoelectric signals 
were digitally high-pass filtered with a second-order 
high-pass Butterworth filter with a cutoff frequency of 
30 Hz; a forward and backward pass were used to 
remove phase shift. This filter was used to attenuate 
the noise on the MES due to heartbeat and movement 
artifacts. The RMS MES were obtained by squaring 
the MES data sequence, digitally convolving it with 
a center average rectangular window and taking the 
square root of this sequence. The window length, h, 
was set equal to 75 points or 50 ms resulting in the 
squared myoelectric signals being low-pass filtered at 
a cutoff frequency of 8.9 Hz. All RMS MES were 
normalized to the maximum mean RMS MES re- 
corded for that muscle over the series of six MVE 
tasks. 

MODEL DEVELOPMENT 

A model relating the normalized RMS MES to the 
measured three-dimensional moments about the 
spine was developed. The following assumptions were 
made and will be reviewed in more detail in the 
discussion: 

(1) Internal moments about the spine are produced 
only by active muscular contraction in an upright 
standing position. 

(2) Muscle forces at the L3-L4 cross section can be 
represented by a vector with a constant direction 
acting at the muscle centroid. 

(3) The muscles included in the model are repres- 
entative of all the lumbar muscles used by the subjects 
during task performances. 

(4) Muscle geometry data taken from the literature 
accurately represent the muscle geometries of the sub- 
jects that participated in this study. 

(5) Muscle length changes during the quasi-isomet- 
ric tasks were negligible. 

(6) The isometric RMS MESforce relationship 
can be described by linear dynamical equations with 
common temporal characteristics for all muscles. 
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The dynamic relationship between the RMS MES 
and isometric muscle stress was represented by a lin- 
ear discrete time dynamic model: 

Ui,+aioit-1+’ ’ .+Umc<t-m=biUit-k, (3) 

where ait and bit are the normalized RMS MES and 
MES-predicted muscle stress of the ith muscle at time 
step t, k is a pure time delay between the onset of MES 
and the onset of muscle stress, and {ai . . . a,, bi} are 
adjustable parameters. In more compact notation, the 
MESstress model can be written in transfer function 
form as: 

where B represents the backshift operator {i.e. 
B. uir = ui,_ 1} and A(B) is a polynomial in B of order 
m: 

A(B)=l+aJ+a*P+~~ .+a,B”. (5) 

A 14 muscle geometric representation of the L3-L4 
transverse cross section was used to relate the muscle 
stresses to the net moments about the spine (Table 1). 
The centroid locations and cross-sectional areas for 
the RA, abdominal obliques and ES muscles were 
taken from Tracy et al. (1989) who used magnetic 
resonance imaging to take these measurements. 
Muscle lines of action (LOA) for the RA, IO, EO, 
ESL, ES1 and ESM muscles were based on a LOA 
digitization study by Dumas et al. (1988) and an 
anatomical study by Macintosh and Bogduk (1986). 
The centroid location and LOA of the LD was estim- 
ated by assuming equal stress for the parts of this 
muscle which act directly on the iliac spine and on the 

lumbar spine via the lumbodorsal fascia (Bogduk and 
Macintosh, 1984). The erector spinae CSA was 
divided into the ESM, ESL and ES1 columns using 
the ratios given in Schultz et al. (1983). The abdominal 
oblique CSA was divided into the IO and EO muscles 
using the ratio found by Kumar (1988). Physiological 
cross sectional areas (PCSA) were obtained by multi- 
plying the anatomic CSA by the absolute value of the 
z component of the muscle LOA unit vector. The LD 
PCSA acting through the L3-L4 cross section was 
estimated as 50% of the total muscle PCSA (Veeger 
et al., 1991). Muscle CSA and centroid locations were 
not scaled for each subject since anthropometric 
measures have not adequately explained a significant 
percentage of inter-subject variations in lumbar 
muscle geometries (Kumar, 1988; Tracy et al., 1989). 

The moment about the L3-L4 disk centroid gener- 
ated by the ith muscle contracting with a stress of one 
N cm-’ is dependent only on muscle geometry and is 
given by: 

mi=Pi(ri X fi), (6) 

where pi is the PCSA of the ith muscle, ri is a vector 
from the center of the L3-U disk to the centroid of 
the ith muscle and fi is a unit vector fixed along the 
LOA of the ith muscle. The net MES-predicted mo- 
ments are given by summing the moments developed 
by each of the individual muscles: 

with n representing the total number of muscles. 
The relationship between the measured moments 

and normalized RMS MES was expressed in an out- 

Table 1. Trunk muscle physiological cross sectional areas (PCSA), centroid locations 
and lines of action (LOA) for fourteen lumbar muscles at the L3-L4 level of the trunk 

Muscle 

RAR 
RAL 
IOR 
IOL 
EOR 
EOL 
ESMR 
ESML 
ESLR 
ESLL 
ESIR 
ESIL 
LDR 
LDL 

Centroid location 
PSCA 

Index ($1 r* tml ry ; vecto;ong ““,” 

1 6.60 0.034 0.080 - 0.028 0.016 - 0.999 
2 6.60 - 0.034 0.080 0.028 0.016 -0.999 
3 13.13 0.114 0.010 0.134 -0.574 -0.808 
4 13.13 -0.114 0.010 -0.134 -0.574 -0.808 
5 16.40 0.126 0.011 - 0.376 0.322 -0.870 
6 16.40 -0.126 0.011 0.376 0.322 -0.870 
7 5.20 0.018 -0.061 0.309 0.000 -0.951 
8 5.20 -0.018 -0.061 0.309 O.WO -0.951 
9 10.30 0.039 - 0.060 -0.134 0.005 -0.991 

10 10.30 -0.039 - 0.060 0.134 0.005 -0.991 
11 9.96 0.059 -0.054 -0.281 - 0.052 -0.958 
12 9.96 -0.059 - 0.054 0.281 -0.052 -0.958 
13 4.30 0.035 - 0.080 -0.890 -0.137 -0.430 
14 4.30 -0.035 -0.080 0.890 -0.137 -0.430 

Orientation: The x-axis is directed right laterally, the y-axis is directed anteriorly 
and the z-axis is directed superiorly relative to the disc centroid. 

Notation: RA-rectus abdominis, IO-internal oblique, EO-external oblique, ESM- 
erector spinae multifidus, ESL-erector spinae longissimus, ES&erector spinae iliocos- 
talis, LD-latissimus dorsi, _ R-right, _ L-left. 
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put error (OE) form: 

where e,(X) is the difference between the measured 
and MES-predicted moments at time step t. The ex- 
plicit dependence of this prediction error, e,(X), on 
the adjustable parameters is denoted by the vector X: 

X= [ai a2 . . . a, bl b, . . . bJ* (9) 

with T indicating vector-matrix transposition. 
Each input to the OE model consists of a time- 

varying scalar, uit, weighted by a constant vector, m,. 
The cross correlation, at zero lag, between any two 
such inputs is given by: 

Rrj = Pij cos +ij 9 (10) 

where pi, is the normalized linear correlation of the 
RMS MES of the ith and jth muscles and $tj is the 
angle between the moment vectors mi and m,. Some 
of the RMS MES and model input cross correlations 
during the calibration tasks were found to be substan- 
tial (Table 2). For example, pairs of ES muscles on the 
same side had a linear cross correlation exceeding 
0.90. This high degree of correlation among model 
inputs, referred to as multicolinearity, has been shown 
to result in highly inconsistent parameter estimates in 
the sense that estimates can vary considerably over 
repeated calibration task performances (Hughes, 1991). 

Three different candidate models (I, II, and III) 
were identified and compared. In Model I, no special 
procedures were used to address the potential adverse 
effects of input multicolinearity on parameter estima- 
tion. Model II is identical to Model I in structure, but 
a principal component analysis approach (Neter et al., 
1990) was used in the parameter estimation to circum- 
vent ‘inconsistent’ (nonrepeatable) estimates due to 
numerical difficulties originating from multicolinear- 
ity. In this case, the model inputs were first linearly 
transformed such that the transformed inputs, termed 
the principal components, were minimally correlated. 
Model parameters were then estimated using the min- 
imum number of principal components which ac- 
counted for 95% of the input variance (for details, see 
Appendix A). 

In Model III, the normalized RMS MESstress 
gains, bi, were constrained to be the same for muscles 

whose activities were most highly correlated. Justifica- 
tion for these constraints are based on the normaliz- 
ation of RMS MES to MVE levels, with the assump- 
tion being that the maximum MVE stresses developed 
by muscles with correlated activities are the same. The 
three erector spinae muscles on either side of the body, 
which correlated with R,>0.90, were constrained to 
have the same MESstress gains. The right and left 
RA were constrained to have the same MESstress 
gains based on a correlation of R,> 0.58 and assumed 
lateral symmetry. The IO, EO and LD on each side of 
the body, which linearly correlated with pij exceeding 
0.47, were also constrained to have the same 
ME&tress gains. Model III was given by expression 
(8) with the following equality constraints on the 
MESstress gains: 

bi=bl. b,=b,=b,,, b4=b6=b14 

b,=b9=bl,, bg=bm=bu, (11) 

where the muscle indices are given in Table 1. 
Parameter estimation was based on the minimiz- 

ation of one-half of the trace of the sample covariance 
matrix of the output error vector: 

V = Trace &g$e,(X)e:(X)], (12) 

where N is the number of data points available from 
the calibration task and et(X) is the output error 
vector defined by expression (8) for Models I and III 
and expression (A2) for model II. This OE approach 
was selected because it is known to allow for the 
statistically consistent (asymptotically unbiased) es- 
timation of the input-output relationship including 
any particular form of noise dynamics (Ljung, 1987). 
The minimization of the cost function given by ex- 
pression (12) is a nonlinear optimization problem 
which was solved using a Gauss-Newton optimiza- 
tion technique (see Appendix B). 

The error between the measured and MES-pre- 
dieted moments was quantified by a coefficient of 
variability (CV), defined as the RMS magnitude of the 
prediction error normalized by the RMS magnitude 
of the net moment: 

Table 2. The maximum mean (SD.) normalized cross correlations, pr,, of the RMS MES at zero lag during the calibration 
tasks. The corresponding cross-correlations of the OE model inputs, RV, include muscle geometry effects. The high degree of 
correlations among model inputs, referred to as multicolinearity, contributes to difficulties in obtaining repeatable estimates 

of model parameters 

Calibration task RAR-RAL IOR-EOR ESMR-ESLR 

w/o twist Pij 0.87 (0.69) 0.71 (0.13) 0.97 (0.02) 
Rij 0.60 (0.06) 0.71(0.13) 0.93 (0.02) 

w/ twist Pij 0.84 (0.11) 0.62 (0.13) 0.84 (0.04) 
Rrj 0.58 (0.08) 0.33 (0.07) 0.96 (0.04) 

See Table 1 for muscle abbreviations. 

ESLR-ESIR LDR-ESIR LDR-IOR 

0.92 (0.11) 0.37 (0.21) 0.28 (0.18) 
0.89 (0.11) 0.34 (0.19) 0.09 (0.06) 

0.90 (0.03) 0.38 (0.20) 0.47 (0.17) 
0.94 (0.03) 0.23 (0.12) 0.30 (0.11) 
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Similarly, coefficients of variability about each of the 
three axes are defined as the RMS magnitude of 
the scalar error normalized by the RMS magnitude 
of the net moment. 

The candidate models were evaluated based on 
three criteria. First, model repeatability was quanti- 
fied by the percent variability in parameter estimates 
across repeated trials of the calibration task. Second- 
ly, the physical feasibility of the MES-predicted mus- 
cular stresses was evaluated. Predicted muscle stresses 
must be positive since muscles can act only in contrac- 
tion and MVE muscle stresses must be within estim- 
ated maxima1 stress levels of 35-100 Ncm-’ (McGill, 
1991; Schultz et al., 1983). Thirdly, the candidate 
models must be able to predict biaxial moments accu- 
rately during tasks other than the specific task for 
which the model was originally estimated. The three 
candidate models were identified for a first order A(B) 
model with no pure time delay and then compared. 
Only results obtained when using the calibration task 
which included axial moment development is pres- 
ented. The effects of not considering axial twisting 
moments in the calibration is noted in the discussion. 

RESULTS 

The mean peak moments across all subjects during 
the calibration task which included twists were 
65.6 (S.D. =28.8) Nm in attempted flexion, 95.4 
(S.D. = 37.2) N m in attempted extension, 80.7 
(S.D. =27.5) Nm in attempted lateral bending and 
40.5 (S.D.= 19.6) Nm in attempted twist (Fig. 2). 
Maximal mean RMS MES across the MVE tasks 
ranged from 23.8 to 517.3 pV. 

The variability of parameter estimates across re- 
peated performances of the calibration were model 
dependent. The first-order characteristic polynomial 
parameter, al, was consistently estimated (variability 
~0.6%) using all three candidate models (Table 3). 
However, the estimated ME&tress gains, bi, were 
substantially variable across calibration task repeats 
when Models I and II were used in the parameter 
estimation. The average variability of the MES-stress 
gains ranged from 21 to 90% for Model I and from 18 
to 91% for Model II. Mean MESstress gain variabil- 
ities estimated using Model III were substantially 
lower ranging from 11 to 16%. Negative MES-stress 
gains, bi, correspond to predictions of unattainable 
negative muscle forces and were obtained for some 
muscles using Models I and II. Strictly positive MES- 
stress gains were obtained using Model III. Based on 
this finding and the lowest parameter variability 
among the three models, Model III was judged better 
suited than Models I and II to be used in the para- 
meter estimation. 

The effects of higher-order models and the inclusion 
of pure time delays (from 0 to 30 ms) on model estima- 
tion were investigated using Mode1 III. Of the estim- 
ated models, the magnitude of the calibration task 

model prediction errors were minimized using a sec- 
ond-order model with no pure time delay for each of 
the subjects (Fig. 3). A dispersion analysis (Fassois 
and Lee, 1993) demonstrated that the contributions of 
the second modes to the total output signal energy 
was substantial (Table 4). The estimated second-order 
MES-stress models were low-pass systems that were 
overdamped for eight of nine subjects and slightly 
underdamped for one subject (Table 4). The half- 
power cutoff frequencies ranged from 0.90 to 1.83 Hz 
with a mean of 1.26 Hz (Fig. 4). The equivalent con- 
tinuous time poles of these transfer functions were 
-8.52 (S.D.= 1.83) and -36.59 (S.D.= 18.93) which 
correspond to time constants of 122 (S.D. =28) and 34 
(S.D. = 16) ms. For the underdamped model, the natu- 
ral frequency, damping ratio and exponential envel- 
ope time constant were 2.07 Hz, 0.39 and 195 ms. The 
average MES-predicted MVE stresses, across all nine 
subjects, for Model III ranged from 37.5 
(S.D. = 11.4) Ncm-* for IO, EO and LD muscles 
to 76.6 (S.D.=47.8) Ncm-’ for the RA muscles 
(Table 5). 

The measured and MES-predicted primary mo- 
ments were highly correlated during both slow and 
rapid exertions in trunk flexion, extension, lateral 
bending and axial twist (Fig. 5). The mean sagittal 
plane CV, expressed as a percentage, ranged from 
21% during pulse attempted extension to 29% during 
pulse attempted flexion (Table 6). Cyclic task rate had 
little effect on the sagittal plane moment prediction 
errors with the average error being 31% at the 6 cpm 
rate and 30% at the 40 cpm rate. Frontal plane mo- 
ment errors, expressed as the mean CV across sub- 
jects, ranged from 30 to 34% across the attempted 
lateral bending tasks. Mean transverse plane moment 
errors during attempted axial twists ranged from 37 to 
44% but demonstrated large intersubject variability. 

DISCUSRION 

The objective of the present study was to identify 
dynamic MES-driven lumbar muscle force prediction 
models from experimental data. MES from 14 lumbar 
muscles were accounted for and time varying, isomet- 
ric biaxial loadings of the trunk were considered both 
in the model estimation and performance evaluation. 

Various assumptions (see methods) were used in the 
model development which should be justified and the 
implications understood. The lumbar muscles at an 
L3-U cross section were assumed to act a constant 
location with a time-invariant LOA (Schultz and 
Andersson, 1981). This approximation is probably 
weakest for the IO and EO muscles where the muscle 
fibers undergo systematic and substantial fiber direc- 
tion changes along their lengths, but were represented 
simply by single LOA. More detailed modeling of this 
muscle would involve dividing the IO and EO 
muscles into a number of segments. However, this 
would require that reliable MES be obtainable for 
each segment, which is difficult due to the physical 
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Fig. 2. The moments and normalized RMS MES during nine seconds of a calibration task. Distinct bursts 
of individual muscle activities are associated with the various exertion directions. 

overlapping of the IO and EO muscles. We believe 
that improved monitoring of the IO and EO activities, 
and modeling of the LOA are crucial to improve load 
predictions during tasks involving substantial lateral 
bending and twisting moments. The deep muscles of 
the trunk, psoas and quadratus lumborum, were ex- 
cluded because it was not possible to record activities 
from these muscles using surface electrodes. The psoas 
muscle is believed to be most active in generating fron- 
tal moments (Ladin et al., 1989) which may partially 
explain explain the underprediction of frontal moments 
during attempted lateral bends (e.g., see Fig. 5). 

A linear discrete time transfer function (Bobet and 
Norman, 1990, Olney and Winter, 1985) was assumed 

adequate to represent the rms MES-force relation- 
ship. While nonlinear dynamic aspects of the 
MES-force relationship have been modeled by pro- 
cessing rising and falling MES differently (Hof and 
Van den Berg, 1984; Redfem, 1988), a linear dynamic 
model was used because the properties of the resulting 
identification approach are well understood, tech- 
niques for model order selection are available (Ljung, 
1987) and estimated models can be related to corres- 
ponding continuous time models; something that is 
difficult within a nonlinear setting. While the phase 
delay between MES and force may be different for 
abdominal and back muscles (Thelen et al., 1993), the 
characteristic polynomial was assumed constant for 
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Table 3. Mean (S.D.) parameters for the estimated first-order models of the RMS MES-stress 
relationship. Also given are the mean percent variation (% var) of the model parameters over 
repeated trials of the calibration task. Parameter estimates obtained using Model III were less 

variables than those obtained using Models I and II 

Model al RAR IOR EOR ESMR ESLR ESIR LDR 

I mean 
(S.D.) 
% var 

II mean 
(SD.) 
% var 

III mean 
(S.D.) 
% var 

-0.936 3.3 
(0.009) (4.6) 

::f (2;::) 8.5 -1.5 

0.510 89.4 49.5 20.7 53.8 
m::’ (14.7) 

72.0 61.3 

- 0.934 5.4 
(0.009) (3.8) 

(ii) :::, (?Z) (Z, 3.0 3.3 

(2.5) (4.2) 
0.590 24.4 62.6 22.5 62.5 17.7 58.8 90.8 

-0.935 5.0 2.4 2.4 3.0 3.0 
(0.009) (3.5) (0.8) (0.8) (1.3) (1.3) (::;) (ii, 
0.580 16.1 14.3 14.3 14.1 14.1 14.1 14.3 

See Table 1 for muscle abbreviations. 
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Fig. 3. (a) Time histories of the measured (solid line) and MES-predicted (broken line) moments during 
a calibration task. (b) MES-predicted vs measured moment plots demonstrate no systematic bias in the 
moment predictions. Candidate model III was used to estimate the second-order ME&tress models with 

no pure time delay. 
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Table 4. The estimated second-order RMS MES-stress models, equivalent continuous time constants and 
dispersion percentages obtained using Model III. The magnitude of the dispersion percentages of the second 

modes suggests that a second-order model is warranted 

Characteristic polynomial Time constants Dispersion percentages 
Mean (SD.) gain _ 

Subject bi 01 a2 rl (ms) r2 (ms) Mode 1 Mode 2 

1 0.65 (0.10) - 1.72 0.74 87 55 274 -174 
2 1.42 (1.14) -1.64 0.66 111 31 139 -39 
3 0.64 (0.25) - 1.69 0.71 99 41 169 -69 
4 1.32 (0.38) - 1.57 0.59 177 21 113 -13 
5 0.34 (0.11) - 1.76 0.77 116 58 199 -99 
6 1.01 (0.33) - 1.66 0.68 114 33 140 -40 
7 1.04 (0.12) - 1.53 0.55 139 19 115 -15 
8 2.22 (0.32) - 1.42 0.45 137 14 110 -10 
9 0.69 (0.49) - 1.80 0.81 * * 50 50 

*Estimated RMS MES-stress transfer function is underdamped. 

Table 5. Mean (SD.) maximal exertion muscle stresses and associated contraction forces estimated using the 
second-order models. Maximal stresses are equal to the DC gain of the RMS MESstress transfer function and are 

given by the ratio b,/A(l) 

RA IO 

Stress (N cm-‘) 73 (46) 38 (12) 
Force(N) 482 (297) 498 (164) 

See Table 1 for muscle abbreviations. 

EO ESM ESL ES1 LD 

38 (12) 43 (19) 43 (19) 43 (19) 38 (12) 
623 (204) 225 (99) 446 (196) 431(190) 163 (54) 

Frequency (Hz) 

m il i.ilii ..___ Li. j/jjj :: 
jjijj :: ::::: j; 
::::: 
i.i.‘bii ..___ i .__ i. 
::::: j 
::::: : i 
::::: : 
::::: i : 
::::: 
:.:.::A ..___._ i...i. 
::::: 
: :::: 

; j 

::i:: :: 
::‘:: 
:jj;/ 
I_p):( ._._._._,_...,. 

::::: : j 

: :::: 

::::: 

::::: 

j j 

4 ::::: i 
0.10 

Frequency (Hz) 

Fig. 4. Normalized frequency responses of the estimated 
second-order RMS MES-muscle stress transfer functions. 
The one-half power cutoff frequencies ranged from 0.9 to 

1.8 Hz. 

all muscles. Accounting for inter-muscle variations in 
muscle dynamics would involve increased computa- 
tional complexity and it would need to be substan- 
tiated that the MES-force dynamics of different 
muscles can be separately identified. 

An alternative to estimating MES-stress models for 
individual subjects is to assume some average models 
can be used to represent the MESstress relationship 
of all subjects. McGill and Norman (1986) used such 
an approach to estimate lumbar muscle forces during 
dynamic sagittal lifting tasks. In that model, rectified 
and filtered MES were normalized to maximal activ- 
ity levels, amplified by an assumed maximum stress 
level of 35-55 Ncm-’ and subsequently modulated 
by muscle length and velocity effects. A time-varying 
corrective gain factor was then introduced to force 
MES-predicted and measured sagittal moments to be 
equal at each time step. This approach assumes that 
there is an equal probability of error in all muscle 
force estimates and that adjusting the corrective gain 
spreads the error equally over all the muscles. Errors 
in the muscle force estimates can result from many 
sources including simplified muscle geometry and 
MES-force modeling, MES crosstalk and inherent 
variabilities in MES measurements. These errors can 
become fairly large and systematic during lateral 
bending and axial twist loadings due to the substan- 
tial use of deep trunk and abdominal oblique muscles 
which are difficult to record MES from and have 
complex LOA. As an example of such difficulties, 
McGill (1991) underpredicted an attempted axial 
twist moment from MES by 84%. Introducing a cor- 
rective gain in this case would mask sizable systematic 
modeling and measurement errors, and result in un- 
realistically high muscle force estimates. 

Marras and Sommerich (1991) and Hughes (1991) 
have estimated static lumbar MESstress models 
from experimental data. Marras and Sommerich nor- 
malized MES to maximal activity levels and assumed 
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Fig. 5. Sample plots of the measured (solid line) and MES-predicted (broken line) moments during 
validation tasks involving attempted flexion-extension, attempted lateral bending and attempted axial 
twist. MES-predicted and measured primary moments were highly correlated in all tasks. However, the 
magnitudes of the difference between moment traces (moment prediction errors) were largely dependent on 

the exertion direction. 

the MES-stress gains were equal for all muscles in- performance of some nonsymmetric tasks. Hughes 
eluded in the model. The MES-stress gain was then (1991) utilized least-squares estimation to calibrate 
adjusted such that model-predicted and measured models relating six lumbar MES and moments in the 
sagittal moments were in good agreement throughout sagittal and frontal planes. In that model, principal 
the performance of isokinetic extension efforts. components regression was used to reduce the ill 
A shortcoming of that model compared with the pres- effects of multicolinearity in estimation, and phys- 
ent model was that only sagittal plane moments were ically feasible and repeatable static models were ob- 
considered in the parameter estimation despite the tained. In contrast to the results of Hughes, infeasible 
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Table 6. Errors in MES-predicted moments, expressed as the mean coefficient of variability, for each of the 
12 validation tasks. Moments prediction errors were dependent on the exertion direction but were relatively 

independent of the rate of exertion 

Coefficient of variability 

Attempted moment 

Sagittal moment Frontal moment Transverse moment 

Mean (SD.) Mean (SD.) Mean (S.D.) 

Cyclic flex-ext (6 cpm) 0.31 
Cyclic flex-ext (40 cpm) 0.29 
Pulse flex 0.29 
Pulse ext 0.21 

Cyclic rib-lib (6 cpm) 0.26 
Cvclic rlb-lib (40 corn) 0.25 
P&e rib . _ ’ 0.23 
Pulse Ilb 0.25 

(o.i7j 
(0.13) 

0.31 
0.30 

(0.13) 
(0.09) 
(0.11) 
(0.07) 

0.20 (o.osj 
0.16 (0.07) 

Cyclic ccw-cw (6 cpm) 0.30 (0.15) 0.48 (0.23) 0.42 (0.21) 
Cyclic ccw-cw (40 cpm) 0.35 (0.23) 0.65 (0.24) 0.44 (0.18) 
Pulse ccw 0.25 (0.13) 0.44 (0.23) 0.42 (0.20) 
Pulse cw 0.27 (0.15) 0.52 (0.24) 0.37 (0.23) 

(0.16) 
(0.05) 

(0.10) 
(0.11) 

0.20 (0.12) 0.10 
0.22 (0.08) 0.12 
0.25 (0.07) 0.10 
0.13 (0.06) 0.08 

0.34 
0.33 

0.16 (0.07) 
0.21 (0.05) 

(0.03) 
(0.07) 
(o.osj 
(0.05) 

Notation: flex-flexion, ext-extension, rib-right lateral bend, W-left lateral bend, ccw-counter-clockwise 
axial twist, cw-clockwise axial twist. 

models were estimated in this study when using prin- 
cipal components analysis. This result may he attribu- 
table to the inclusion of twisting moments as well as 
a larger number (14) of muscles than was used by 
Hughes. 

In the present study, repeatable and physically feas- 
ible ME&stress models were obtained by using 
a minimal number of a priori assumptions to reduce 
the multicolinearity of model inputs (Model III). 
MES-predicted moment errors were minimized while 
ME&stress transfer functions of muscles, whose ac- 
tivities were most highly correlated, were constrained 
to be the same. The implicit assumption of this con- 
straint was that the MVE stresses generated by 
muscles with correlated activities are equal. This as- 
sumption does not imply that the MVE stresses must 
be truly maximal but only that the MVE stresses of 
grouped muscles are equal. These assumptions sub- 
stantially reduced parameter variability over calib- 
ration task repeated trials, and resulted in strictly 
positive muscle force predictions and estimated MVE 
muscle stresses that were within maximal limits often 
used in the literature (McGill, 1991; Schultz, 1983). 

An emphasis was placed on identifying dynamic 
aspects of the MES-force relationship. The temporal 
aspects of the MES-force relationship are commonly 
accounted for by simply low-pass filtering rectified or 
RMS MES with an a priori selected low-pass filter 
(e.g. Hughes, 1991; McGill and Norman, 1986). Bobet 
and Norman (1990) demonstrated that dynamic 
MES-torque models for the elbow could be estimated 
from experimental data by using a second-order auto- 
regressive with exogenous input (ARX) model repres- 
entation. The advantage of such a representation is 
that linear least squares can be used in the parameter 

estimation stage. The disadvantage, however, is that 
statistically inconsistent (asymptotically biased) esti- 
mates will be obtained when the residual error se- 
quence is not white and the noise-to-signal ratio of 
standard deviations is 5% or greater (Ben Mrad and 
Fassois, 1991). In this study an OE model, based on 
the difference between measured and MES-predicted 
moments, was used as the basis for estimating dy- 
namic MES-stress model parameters. The reason for 
this selection is that OE models can be estimated 
accurately without directly dealing with any particu- 
lar forms of noise dynamics (Ljung, 1987). While para- 
meter estimation involves nonlinear optimization, the 
solution of this problem is significantly facilitated by 
the direct calculation of the cost function gradient (see 
Appendix B). 

Second-order low-pass transfer functions with no 
pure time delay were found to be adequate to repres- 
ent the dynamic RMS MES-force relationship. The 
one-half power cutoff frequencies of the estimated 
models (0.90-1.83 Hz) are comparable to the cutoff 
frequencies of the low-pass models used to describe 
the muscular twitch contraction (2.4 Hz, Milner- 
Brown et al., 1973) and estimate ankle and knee joint 
torques from MES (1.0-2.8 Hz, Olney and Winter, 
1985). The inclusion of electromechanical delay 
(EMD), defined as a pure time delay between the onset 
of MES and the onset of muscular tension (approxi- 
mately 30 ms, Komi et al., 1987), did not improve 
moment predictions from MES. This indicates that 
EMD may be substantially shorter than previously 
thought (Corcos et al., 1992). 

Validation of MES-driven muscle force prediction 
models remains problematic. Joint moments can be 
predicted from MES with quantifiable accuracy be- 
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cause inverse dynamics can be used to estimate joint 
moments from external force and motion data (Hof, 
1984). However, muscle forces, which are often of 
greater interest due to their substantial contribution 
to joint loadings, cannot be measured and thus MES- 
predicted muscle forces cannot be directly validated. 
In the present study, model performance was assessed 
by quantifying the accuracy of MES-predicted mo- 
ments over a series of tasks involving a range of slow 
and rapid triaxial exertions. While comparing meas- 
ured and MES-predicted moments does not validate 
the accuracy of the MES-predicted muscle forces, it 
increases one’s confidence in the estimated models 
and provides important information pertaining to the 
effect of different loading conditions on model perfor- 
mance. Moment prediction errors in the sagittal and 
frontal planes (13-34%) during attempted flexion- 
extension and lateral bending were independent of the 
rate of exertion, and were comparable to error 
measures obtained during static asymmetric trunk 
loadings (Hughes, 1991). Moment prediction errors 
(37-44%) during attempted twists were substantially 
smaller than those reported by McGill (1991) but 
displayed a high degree of inter-subject variability. 
This variability may be partially attributable to the 
simplified IO and EO muscle modeling, and crosstalk 
in the IO and EO MES. 

Moment prediction errors were dependent on 
whether attempted twist was included in the calib- 
ration task. Substantially larger sagittal and frontal 
plane moment prediction errors were obtained during 
attempted twists when using the models identified 
from the calibration task without twist. This result 
illustrates the importance of calibrating and evaluat- 
ing threedimensional biomechanical models over 
fully three-dimensional tasks. 

MES measurements provide a means with which to 
assess muscle recruitment during physical tasks per- 
formances. The interpretation of MES in terms of 
contraction forces allows for a quantitative assess- 
ment of the associated joint loads. The present study 
demonstrates how a calibration method involving 
system identification techniques can be used to esti- 
mate dynamic MES-driven lumbar muscle force pre- 
diction models for individual subjects. This type. of 
approach coupled with a thorough assessment of 
model performance should improve the accuracy with 
which muscle forces can be estimated from MES. 
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APPENDIX A: PRINCIPAL COMPONENTS 

PARAMETER ESTIMATION 

The eigenvalues of the input variance-covariance matrix, 
R, provide a measure of the input variance explained by each 
of the principal components. In this study nine principal 
components were adequate to explain over 95% of the input 
variance during the calibration task which included at- 
tempted axial twist. The OE model inputs of expression (8) 
were linearly transformed to the principal components by 
the matrix S, consisting of the nine eigenvectors associated 
with the largest eigenvalues, through the following trans- 
formation expression: 

Cv I, v2t . vprl=C~lrmI uz1m2 ~,,m.lS~ (AlI 

where n is the total number of muscles (= 14) and p is the 
number of principal components used (= 9). The relationship 
between the measured moments and the principal compo- 
nents was written in the OE form: 

M,= i -&++e,(X) 
i= 1 A(B) 

(A3 

with X representing the vector of calibration parameters: 

X=[a, a2 am Cl c* ” CJT (A3) 

After model estimation, the principal component model 
parameters, cir were related back to the MES-stress gains 
through the expression: 

[b, b, ‘. b,]‘=S[c, c2 cJT. 644) 

APPENDIX 8: OPTIMIZATION ROUTINE 

where M, is the measured output, x*,-k is the vector input at 
time t-k, n is the total number of inputs, A(B) is the 
characteristic polynomial, gi is the numerator parameter for 
input i, and e,(X) is the output error vector at time step t. 
The model parameters, collected in a vector X, are estimated 
by minimizing a nonlinear cost function V defined as one 
half the trace of the output error covariance matrix: 

V=Trace & ,i e,(X)e:(X) 
t-1 I 

VW 

The nonlinear optimization problem is solved using an 
iterative Gauss-Newton type algorithm (Ljung, 1987). The 
means of all model input and output data sequences are 
removed prior to estimation, and an initial estimate of the 
model parameters, Xc”), is made. The search routine is then 
given as: 

X(r+ 1) =X(i) _y(r) [Hr,,(X(i))] - l,N(@), (83) 

where N is the number of data points, V”(%(‘)) is the gradient 
of the cost function with respect to the parameter vector 
during iteration i, and H&(e) is the estimated Hessian of 
the cost function given in (B2). The gradients and Hessian are 
calculated directly through the following expressions: 

h(X)= -i i G,(X)e,(X) , 
t-1 

h(X)=; i G,(X)G:(X) t- 1 
(BY 

where G,(X”‘) is the gradient matrix of the output error: 

G,(X)= a@(x) aA,(x)aiGf,(x) aA, * _ . . . __ . . . - 
aa, aa, ag, ah I 

(B6) 

with: 

aA, -- 
aaj -- 

ati, i 

dsj 
=A(B)Xjt-k 

(B7) 

038) 

At each iteration, the scalar step size pti) is set equal to 1.0, 
and then bisected up to ten iimes until a lower value of the 
cost function is obtained. The iterations are terminated when 
the search direction vector has a norm less than a specified 
tolerance limit, or when a lower value of the cost function 
cannot be found. 

The candidate models are of the OE form 

M,= i *xi,-k+e,(X), 
i=, A(B) 

(Bl) 


