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Abstract

The evolution of a universewith Brans—Dickegravity andnonzerocurvatureis investi-
gatedhere.We find solutions to the equationsof motion during the radiation dominated
era. In aFriedman—Robertson—Walkercosmologywe showexplicitly that the threepossible
valuesof curvatureK = + 1, 0, 1 divide the evolution of the Brans—Dickeuniverseinto
dynamically distinct classesjust as for the standardmodel. Subsequentlywe discussthe
flatnessproblemwhich exists in Brans—Dickegravity as it doesin thestandardmodel.We
also demonstrateaflatnessproblemin MAD Brans—Dickegravity. In general,in any model
that addressesthe horizon problem,including inflation, therearetwo componentsto the
flatnessissue: (i) at thePlanck epochcurvaturegainsimportance,and(ii) during acceler-
ated expansioncurvaturebecomesless important and the universeflattens. In manycases
the universemust be very flat at the Planckscalein orderfor the acceleratedepochto be
reached;thus therecan be aresidualflatnessproblem.

1. Introduction

In the Brans—Dicketheoryof gravity, the constantPlanck massof the Einstein
theory is replacedwith a masslessscalarfield [1]. As a result, the gravitational
constantis not a fundamentalconstantof the theorybut instead,the strengthof
gravity evolvesdynamically. Interestin alterationsto Einsteingravity hasarisenin
a variety of contexts. The cosmological importance of such theories hasbeen
investigated in inflationary models such as (hyper)-extendedinflation [2] and
Starobinsky’scosmology [3]. Other cosmologicalimplications of modifying gravity
have been indicated in attempted alternatives to inflation such as the MAD
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prescription[4,5]. In addition, some innovative theorieswhich try to reconcile
particle physics with gravity lead to low-energy theorieswhich behave like the
Brans—Dickemodel. For instance,higher-dimensionaltheoriesor Kaluza—Klein
theories[6] can leadto a dynamicalPlanckmass.

In the first part of this paper,we describethe evolution of a universewith
Brans—Dickegravity andnonzerocurvature.We presentthe equationsof motion
and their solutions during the radiationdominatedera (see also refs. [7,8]). We
find the evolutionof thescalefactor, the temperature,andthe Hubbleconstantas
a function of the changingPlanckmassrather thanexplicitly as a function of time
— seeref. [4] for somediscussionof explicit time dependencefor a flat Brans—Dicke
cosmology. In ref. [4] we presentedsolutions for a flat universe and, in an
appendix,briefly outlined the solutions for the case of nonzero curvature.Solu-
tions for nonzerocurvaturehavebeenpreviouslystatedin the appendixof ref. [7]
in a different form; in addition, the resultsof ref. [81wereobtainedconcurrently
andare in agreementwith our work in ref. [4]. In this paperwe provide a complete
detaileddiscussionof the evolution of curvedBrans—Dickecosmologies.

We begin by solvingthe equationsof motion for generalcurvature.As expected,
for a Friedmann—Robertson—Walker(FRW) metric,we will seethat Brans—Dicke
modelscan be split into threecasesas in the standardmodel: the threepossible
curvaturesK = + 1, 0, — 1 breakthe universeup into dynamicallydistinctclasses.
In the K = + 1 universe,the energydensity in matterexceedsthe kinetic energyof
the expansion.Eventuallythe expansionwill ceaseand the universewill collapse
underthe pull of its own weight. If K = — 1, the cosmologyis open.The energy
densityin matteris not sufficient to close the universeandit expandsforever.The
critical case,separatingthesetwo is the flat cosmology, K = 0, for which thereis
just enoughkinetic energyto escapecollapse.

Oncewe havebuilt a pictureof the large-scalebehaviorof curvedBrans—Dicke
cosmologieswe can ask if thesecosmologieshavea flatnessproblem.We devote
the latter half of the paperto a studyof flatness.The Brans—Dickecosmologyby
constructionevolvesadiabaticallyandso hasa flatnessproblem,as hasbeennoted
in ref. [7] and will be investigatedbelow. On the other hand,if the Planckmass
were to couple directly to matter, then the assumptionof adiabaticitywould be
unfounded. It would be interestingin the future to investigate this possibility.
Finally, at the end of the paper,we discussflatnessin the MAD solution to the
horizon and monopoleproblems;the MAD proposalalso relies on a dynamical
Planck masssuch as occurs in scalar theoriesof gravity. (For a discussionof the
limitations and futureof this model seerefs. [9,10]).We show that if the cosmic
evolutionis adiabatic,as it is for the Brans—Dickemodel, thenMAD Brans—Dicke
gravity cannotresolvethe flatnessproblem.

1.1. Introductorycommentson theflatnessproblem

Before proceeding,we introducethe flatnessproblem.To begin we review this
problem in the context of the standardmodel. It appearsthat the universehas
survivedto a temperatureof T0 = 2.74 K anda ripe old ageof 10—15 billion years.
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The survival of our universe,in the context of the standardhot big bangcosmol-
ogy, requiresextraordinaryvaluesof someotherwisearbitraryconstants.That is,
for our universeto survivewith theseconditionsit mustbe that curvaturedoesnot
completely dominate the cosmic evolution. Yet, in the standardcosmology,the
universeshould quickly veer away from a flat appearanceunless extraordinary
initial conditionsare imposedwhich renderthe universeextremelyclose to flat at
its inception.

Considerthe standardmodel Einsteinequationin a FRW cosmology,

K 8~-
H2+—=—---—p. (1)

R2 3M~

The curvature term in the equation of motion (1) scalesas 1/R2 while the
radiationdensityterm scalesas p ‘— 1/R4.Consequently,as we look backin time,
when the universe is very small, the energydensity dominates over curvature.
Initially, curvatureis unimportantin determiningthe dynamicsof the scalefactor
andtheuniverselooks roughly flat. As R grows,the curvaturetermshouldquickly
come to dominate in the determinationof the cosmologicalevolution. The fact
that the matter term is still significant implies that the curvatureradius defined
from

(2)

mustbe greaterthanor comparableto the Hubble length H1

R~
11~�H

1. (3)

Multiplying both sides of Eq. (3) by the temperatureT and cubingwe havethe
conditionthat the entropywithin a curvaturevolume,

S =R3 T3—R3~t~T31t~3,’2=~ —3/2curv curv ~ ~)K — K

mustexceed~ which is roughly the entropywithin a Hubble volume,

S K I —3/2 ~ H~3T~= a~3~2M~T~53, (5)

with a
0= y(to)?Jo=

5f.
5~r

2g~(t
0)~0where s~—~ i0~—i0~is the ratio today of

the energy density in matter to that in radiation. Notice that ~(~-) -
2g~ 5,

where S is the constant of motion and g~counts the number of degreesof
freedomcontributingto the entropy. The constantPlanck massof the Einstein
theory is M

0 = 1.2 x 1019 GeV and the temperatureof the cosmic background
radiationin units of GeV is T0 = 2.3 x iO’~ GeV. ThenEq. (5) demandsthat S

K j-~
3/2~ 1090. As long as the cosmic evolutionis adiabatic,then S and ~ are

constant,up to factors of degreesof freedom.Notice that, if the universeis flat
and K = 0, Eq. (5) is automaticallysatisfied.If insteadthe universeis createdwith
K = ±1, thenEq. (5) tells us that if the universeis to surviveuntil today,with the
conditionswe observe,then the otherwisearbitraryconstantentropy S musthave
a monstrousvalue in excessof roughly 1090. Thus an extraordinaryvalue of an
arbitraryconstantof motion is requiredto preserveour cosmology.The challenge
is to explain the enormousvalueof this otherwisearbitraryconstant.
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In modifications to the standardmodel which attempt to addressthe related
horizonand monopoleproblems,the flatnessproblemmustbe reexamined.As we
will see, in thesedynamicalmodelsthereare two componentsto the flatnessissue:
(1) At somehigh temperature,the cosmologyundergoesan acceleratedexpansion,
as happensfor instancewhen an inflationary epochbegins[11]. During accelera-
tion curvaturebecomesless importantand the universebecomesflatter as we
demonstratebelow. (2) Above the temperatureat which accelerationensues,there
is first an early epochduring which the universedeceleratesandcurvaturegains
importance(unless,of course,the acceleratedexpansion,e.g. inflation, takesplace
at the Planckscale).

To seethesetwo componentsto the flatnessproblem,considerfirst dynamic
solutionsto the horizonproblem.One canexpressthe causalityconditionrequired
to solve the horizonproblem in a simpleway:

1 1
(6)

H~R~ H0R0

(This equation is not the most general.It holds only if the scale factor of the
universebehavesas a simple power law in time before t~and during matter
domination. Seealso below Eq. (51).) If this equationis satisfied,our observable
universetoday fits insidea causallyconnectedregion at some early time t~.Note
that thisequationimplies that R> 0 for someperiodbetweent~,and the present.
The mostsuccessfulmodel to date that satisfiesEq. (6) is inflation. MAD models
attempt to satisfy Eq. (6) by replacing the potential domination in inflationary
modelswith a changein the behaviorof gravity. In any case, any model that
satisfies this condition will automatically make the universe flatter. We can
demonstratethis by comparingthe scalesR~’~and H:

R
1 K 1/2

-~=.. (7)
H R

We havearguedthat any dynamicalmodel which solvesthe horizonproblem will
acceleratethe cosmicexpansion.As the universeaccelerates,R must in fact grow.
The importanceof curvature will only diminish as R grows, thus rendering the
universeflatter. Therefore,any dynamical model that satisfiesEq. (6) inevitably
makesthe universeflatter.

However, thereis a secondcomponentto the flatnessproblem.Starting at the
Planck time, before the onsetof the acceleratingphase,the universedecelerates
andcurvaturegains importance.Again, we canseethis from Eq. (7). As R slows,
the curvatureterm grows in importancein determiningthe cosmicevolution. One
hasto be cautiousthat the earliestera during which curvaturegainsimportance
does not generatea seriousflatness problem. For an adiabatic model, it is this
early aspectof the flatnessproblemwhich is not escaped[5]. An adiabaticMAD
universethereforehasa flatnessproblem aswe will show in detail toward theend
of thepaper. —

Inflation generatesa largevaluefor S todayby dynamicallyproducingentropy.
If inflation beginsat a temperatureT~= M

0, then the flatnessproblem is solved.
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(To reiterate, M0 = 1.2 X 1019 GeV is the standardPlanck mass.)However, if
inflation begins significantly below the Planck scale, i.e. T~~ M0, and if the
universeis closed,then thereis a residual,thoughlesssevere,flatnessproblem. In
order for the temperaturein a closeduniverseto reach 1~,the temperatureat
which inflation begins, a large entropy is required,S � (M0/T~)

3,as is shown in
Subsect.7.1. Unless inflation beginsnearthe Planck scale,therewill be a large
constrainton the entropy. For instance,if inflation beginsnear a temperatureof

i0’~GeV, then the entropy must exceed S ~ iO’~.If the entropy is not at
least this large, then the universecollapsesbefore inflation begins. In an open
cosmology,the universewill tend away from flatnessby the time inflation begins
(again,if T~<M

0). To correct for this, inflation requireseither (i) extrae-foldings
of inflation if initially 5 1 or (ii) an initial valueof S � (M0/T~)

3.Theseclaims
aboutflatnessareexplainedin detail in the paper.

1.2. Outline

Sect.2 of thispapershowsthe equationsof motion for Brans—Dickegravity and
their solutions parametrizedby the Brans—Dicke field ~t. Sect. 3 presentsan
interpretationof thesesolutions for the threecases:(i) flat cosmology,K = 0; (ii)
open cosmology, K = — 1; and (iii) closed cosmology, K = 1. Sect. 4 reviews the
flatnessproblemin the standardmodel with Einsteingravity, while the subsequent
sectionsgeneralizethe discussionof flatness.In sect.5 we definea modified ratio
12 of the energydensityof the universeto the critical density. Sect.6 discussesthe
flatnessproblem in Brans—Dickecosmologyfor the casewhere the Planck mass
movesslowly and neverdeviatesdrasticallyfrom today’svalue. An exampleof the
oppositelimit, a large deviation from Einstein gravity, takes place in modelsof
MAD gravity describedin sect. 7. The flatnessproblem in theseMAD models, if
adiabaticityis assumed,is described.Conclusionsarepresentedin sect.8.

2. Equations of motion and their solutions

We start with a detailedstudyof the equationsof motion andtheir solutionsin
curved Brans—Dicke cosmologies. In a scalar theory of gravity, such as that
proposedby Brans and Dicke, the Einstein action, Aeinst = f d~xf~(—M~/
16n-).~where.~‘ is the Ricci scalarand M

0 = i0’~GeV, is modified by introduc-
ing a coupling betweenthe Ricci scalarandsomefunction of a scalarfield ~,. We
will call the function of the scalar field ‘1 and note that K1) m~1.Thus the
Planck mass,which dictatesthe strengthof gravity, is determineddynamicallyby
the expectationvalue of cP. The < > will be implicit in the restof the paper.The
action describingthe theory is given by

cP(~) wacpa’
14

A=fd4xf~ — +~ , (8)
l6ir cP 1637
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wherewe usedthe metric convention (—, +, +, +), and ~m is the lagrangian
densityfor all the matter fields excluding the field ~(c.We haveassumedzero
cosmologicalconstantandalso that 2’m describesideal relativisticor nonrelativis-
tic fluids. The parameter o is defined by w = 8ircl/(11/ih/i)2. In this paperwe
considerthe original proposalof Bransand Dicke,

237
j~ ~2, (9)

where w is a constantparameterof the theory. Notice that there is no direct
couplingof the Planckmassto ~‘m~ As a consequenceof this, the universeevolves
adiabaticallyso that R ~ T~’as we describebelow.

Varying this actionwith respectto the metric gives the Einstein-likeequation

G~~=~(i~+ T~), (10)

where is the energy—momentumtensorin all fields excludingthe Brans—Dicke
field and T~is the energy—momentumtensorin the cP field. In aFRW cosmology
(10) gives the equationof motion for the scalefactorR(t),

K 81Tj3 1
~ (11)

whereK = 0, + 1, or — 1 while p is the energydensityandp is the pressurein all
fields excludingthe ~(j field. The principle of stationaryactionwith respectto the
coordinate‘1 gives

837
‘I~+3H’I~ (p—3p). (12)

3+ 2o

Conservation of energy—momentumin the D sector, —837T~= (s~”
— ~ is equivalent to the equation of motion of (12). Conservationof

energy—momentumin the matter sectorcan be satisfied independently,T,~= 0.
In an isotropic and homogeneousuniversethe ~ = 0 componentof the matter
conservationequationgives

~ —(p+p)3H. (13)

Considerthe radiationdominatederawhere p = ~372g~T4, p = ~-p,and g,~is the
numberof relativistic degreesof freedom in equilibrium. Since conservationof
energy—momentumin ordinarymatterdoesnot involve ~, we can deducethat the
entropy per comovingvolume in ordinarymatter, S = (p +p)V/T, is conserved.
We usethe definition

S=R3T3, (14)

where S S(~Y~372g~.Forpractical purposeswe cantake g,~,= g~.Sincewe are
interestedin the earlyuniversewe treatthe radiationdominatedera.Solutionsfor
the evolutionof a Brans—Dickeuniverseduring the matterdominatederaarewell
known [12].
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We presenthere the solutions to the equationsof motion during a radiation
dominatedera for a Brans—Dicketheorywith general K. The flat (K = 0) cosmol-
ogy was describedin detail in ref. [4] while the K ‘~‘ 0 caseshavebeen briefly
describedin the appendicesof refs. [4,7] as well as in ref. [81.Here the curved
cosmologiesare consideredin detail. A flat cosmologyis included as a particular
caseof thesesolutions.We parametrizeR,T, and thus H by the Brans—Dicke
field c1.

The first integralof the P motion gives

~1iR3=—C, also H= —-------. (15)
3j

C is an arbitraryconstantof integrationwhich can be positive, negative,or zero.
The valueof C is determinedby the initial conditionsfor cP. Considerthe caseof
C identically zero. Thenthe Planck massis constantand the cosmologyimitates
the usualstandardcosmologydescribedby Einsteingravity.However,we allow the
value of the Planckmassto be th~* M

0. In this case,Eq. (11) becomesfamiliar,
H

2 + K/R2 = ~37p/th~
1.ForC = 0, the curvedcosmologyis easyto understand:if

K = + 1 (closeduniverse),the expansionwill eventuallyceaseandcontractionwill
begin. If K = — 1 (open universe),the universeexpandsforever and is infinitely
large. If K = 0 (flat universe),the expansionwill slow asymptotically to zero. If
C * 0, the description of the universe’sevolution is more complicated.Still, we
expectthat addingsomeenergydensityin a scalarfield to the total energydensity
shouldnot alter the roughbehaviorof the universewith K. We verify that in fact
the evolution of the Brans—Dickeuniverseis determinedby the threevaluesof K

in the usualway.
Solving the quadraticequation(11) for H with C * 0 and K * 0 gives

‘1) (1+4w) ~2 837 K
H=_~±~ 4 (~)+~p-~. (16)

Noticethat the ±hererefersto the two solutionsof the quadraticEq. (11) for H.
We needto decipherwhich solutionin Eq. (16)correspondsto a growing solution;
that is, a positive Hubble expansion.

In the case of a flat universe, with K = 0, the square root in Eq. (16) is
necessarilylarger than the first term. Thus, if we intend to study the expanding
phase(H> 0), thenwe mustchoosethe solution with the positivesquareroot and
so choosethe + sign. Eq. (16)becomes

(1+4w) 2 837 K

H=———+~I . +—p—— . (17)
2~ ~I 4 ‘~P 3cP R

2

Since we arestudying the radiation dominatedera, we use p = yT4 =



642 ii Levin,K Freese/Nuclear PhysicsB421 (1994)635—661

whereS is defined in Eq. (14). Also, we pull a factor of 4(cP/(P)2 (1 + 4w) outof
the squareroot in Eq. (17) to write

/ ~ K (P2

H=——---- 1+E~I1+ ———~ —~- (18)
2cP V e2R4 (P2 c2R2 (P

wherewe define

e= ±~(1+4w). (19)

The ±in the definition of e is neededto ensurethat — (cP/(P)c > 0 so that only
the growing solution for H with the positive squareroot is considered.Thus the
uppersign correspondsto (P/cl) <0 and the lower sign correspondsto (P/(P> 0.
There are thereforetwo distinct sets of ±. The first appearsin Eq. (16) and
distinguishesthe two solutions for H which solves the quadraticEq. (11). The
secondset of ±in the definition of E are neededto ensurethat only the solution
for H with positive squareroot is considered.

If K = — 1, H is againpositiveonly if the + sign is chosenin Eq. (16). However,
if K = + 1, it is possiblethat the squareroot is not largerthan (P/2cP.If this is the
case,then the negativesquareroot canyield a positiveHubble expansion.We will
show in subsect.3.3 that the growing solutionswith negativesquareroots evolve
from solutionswhich at earlier timesobeyedEq. (16) with a positive squareroot.
This will be analyzedin detail when we studythe overall behaviorof a K = + 1
cosmology.In the endwe will find that we canbeginwith the positive squareroot
in (16) for growing solutions.We canproceedto solve for R((P) from Eq. (18).

We define the quantityx as

(P
(20)

Using the first integralof motion (15) to eliminate (P,we find that x becomes

x((P) = S4~3yC2E2(PR2, (21)

andwe note that x is alwaysa realpositivequantity.We also define

Q2=

2_5/3K~ (22)

With thisdefinition, Q

2> 0 correspondsto K = + 1, Q2 <0 correspondsto K = — 1,
and Q2 = 0 correspondsto K = 0. We rewrite (16) with thesedefinitions,

H=_~~~(1+2E~/1+X_Q2X2). (23)

Using H = R/R, the definition of x~and rearranging,we are left with the integral

dx’
I =—2eI ~. (24)

~X, X’~1+ x’ — Q2x’2
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Integratingthis equationwe find

1
(25)

sinh2O+ Q2 e2~’

wherewe haveabsorbedthe constantsof integrationinto the constant(P,

1/2�

= (2 +,k’~+ 2~~1±x~—Q2x7 ) , (26)

andwe define

(P
e=eln—~. (27)

(P

The relationshipbetween (P and (P dependson the value of K. For instance,if
K = 0 andthe universeis flat, then (P asymptoticallyapproachesthe value (P. For
K = ±1, on the otherhand,(P doesnot define anasymptoticvalue.For detailssee
subsects.3.2 and3.3.

Using R = (�C/S2”3)(y “2~”2, from the definition of x~we find

R = ~2/3~l/2 ~i7~ ( sinh2e+Q2 e2°~1/2 (28)

The temperatureof the universeis found from adiabaticityto be

~ 1/2

T= ~‘ (P1”2(sinh2ø+ Q2 e~°)1~2. (29)
EC

The Hubbleconstantin termsof @ is

T2 sinh2t9+ 2e sinh0 cosh 0 + Q2(1 — 2e) e2~
H=y1”2—~-~ 1/2 . (30)

(sinh20+ Q2 e2@)

Armed with theseresultswe cannow discussthe natureof the solutionsto the
equationsof motion for the differentvaluesof K.

3. Nature of solutions

3.1. A flat cosmology,K = 0

In ref. [4] this examplewas worked out in detail. We provide only a brief
descriptionhere for completeness.There are threepossibleinitial conditionsfor
m~

1.The Planckmasscould havethe constantvalue denotedth~1throughoutthe
radiationdominatedera.Alternatively, m~1could startout initially small andgrow.
Lastly, mp1 could initially be large and drop. In both of theselatter casesmp1
approachesthe boundaryvalue th~1as the scalefactorgrows.As canbe seenfrom
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Flat Brans-Dicke Universe

0
0

w
0

•___._.____II___._. ~
(0,0) (~4time ) ______

Fig. 1. A schematicpictureof the scalefactoras afunctionof e in a flat Brans—Dickecosmology.Time
increasesalong the horizontal axis from right to left. The scalefactor grows infinitely large as
approacheszero.

Eq. (15), as the scalefactor grows infinitely large, (P —* 0 andthe change in the
Planckmassshutsoff.

This generalbehavioris illustrated in Fig. 1 which showsschematicallyR as a
function of 0. Noticethat time is increasingalong thehorizontalaxis from right to
left. As the Planck mass approachesthe asymptotic value th~1and thus 0
decreasestoward zero,the scalefactorgrows.

While (P is significant, the scalefactor and the temperatureevolve with the
changingm~1in a complicatedway. Once m~1veersclose to its asymptoticvalue
th01, then dm01/dt 0 and the universeevolves in a familiar way. For m01 th~
roughly constant,the equationsof motion reduceto thoseof an ordinaryradiation
dominated Einstein cosmologywith M0, the usual Planck mass of 1019 GeV,
replacedwith thIT~. In particular, this meansRcjt’~

2,Tat~”2, and H= 1/2t.
Despitethe underlyingstmctureof the theory,gravity appearsto be describedby a
standardflat universewith a static gravitationalconstant.The universewill expand
forever, slowing with ageto almosta halt.

3.2. An opencosmology,K = —1

If K = — 1 and so Q2 < 0, theuniverseexpandsforever.This is confirmedby the
expressionfor R(@). In Fig. 2 we plot R of Eq. (28) as a function of 0. Time
increasesfrom right to left along the horizontalaxis. According to our calculation,
0 is always positive and decreasing.Initially R = 0 at 0 = ~. As 0 drops R
increases.

Let 0M be the minimum value of 0. At 0 = 0M’ the denominatorin (28)
vanishesand R —* ~. According to the first integral of motion (15), (P —‘ 0 when
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Open Brans-Dicke Cosmology

I

0

U

U-

U
Cl)

(0,0)

Fig. 2. A sketchof the scalefactorasa functionof �1 in anopenBrans—Dickeuniverse.Time increases
from right to left along the horizontal axis.The scalefactorgrowsinfinitely largeas �1 approachesits
minimum valuedenotedby t

9M.

R -~ ~, andthe changein (P,andthusalso in 0((P), turnsoff. The denominatorin
(28) vanishesat

sinh20M+Q2exp(—2�IM)=0, (31)

which gives

OM= 4 ln(1 + ~/_4Q2). (32)

For 0> 0M’ R is real. Notice that since 0M > 0, we know that the Planckmass
neverreachesthe value thl,~= (P1/2~

A rough sketchof the history of an open Brans—Dickecosmologybeginswith
0 = and R(0)= 0. As 0 drops toward 0M’ R grows. The universeexpands
forever,growing infinitely large as 0 approaches0M• There is no possibility for
the Hubble expansionto vanish. Thus the gross behavior of this cosmology is
similar to that of a standardopen(K = — 1) cosmology.
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3.3. A closedcosmology,K = +1

Thedynamicalbehaviorof a closeduniverse(K = + 1) with Brans—Dickegravity
is very similar to that of a closeduniversewith canonicalEinsteingravity: namely,
the universeexpandsto some maximum size and then recontracts.If (P/(P= 0,
thenthe Planckmassis constantandit is simpleto seethat the standardbehavior
is reproducedwith M0 replacedby th1,~.If (P/(P* 0, then the closedcosmologyis
a bit moresubtle than in the standardmodel andit takesa bit of work to seethis
generalbehavior.

Firstly, solve (11) for H to rewrite Eq. (16) with the abbreviationsH~
(8ir/3(P)p and p. (P/(P,

H = — 4p. ±~/2i~~2 + H~— (33)

where again the ±here refers to the two solutionsof the equation of motion
quadraticin H. If H is to reachzeroat a finite temperatureand reversesign so
the universecollapses, then it is critical that — 4p. and the square root have
oppositesigns. It seemsconceivablethat, for instance,both — 4p. andthe square
root will havethe samesign and H will nevervanish.We will find in the endthat
all is well; H will in fact reachzero and reversecourse,but some effort will be
requiredto demonstratethis fact. Wewill establishin thenext subsectionsthat the
solution to Eq. (33)with negativesquareroot evolvesfrom the growing solution to
Eq. (33) with the positive squareroot. We studythe two possibilities,p. > 0 and
p. <0, separately.

For future reference,we write here the most pertinent results which will be
derivedbelow. In the end,it will be shown that the universedoesstop expanding
for K = + 1 andbeginsto collapse,regardlessof p., at a temperatureof

— (P1/2 1
T~01— ~l/

2~l/3 Qx~2‘ (34)

where

1 / (4e2—1)
Xc

0i = 2 1 + ~/1 + Q

2 2 (35)2Q v E

and

(P~= (2 +x~
01)E+ 1 1/2� (36)

(P

3.3.1. ClosedBrans—Dickecosmologywith (P/ (P> 0
Weshow in this subsectionthat if K = + 1, the Hubbleexpansionwill eventually

end andthe universewill ultimately collapsefor the caseof p. = (P/(P> 0. In the
next subsectionwe repeat the analysis and verify that the same evolution is
predictedfor the caseof p. <0. As well, we derive the results(34)—(36) here.
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Closed Universe with Growing Planck Mass

time —~-

Fig. 3. A closedBrans—Dickecosmologywith a growingPlanckmass.This figure showsthe develop-
ment of e

2p2 + H~versusthe developmentof the absolutevalue of the curvatureterm, 1/R2.For a
growing Planckmass(s> 0), the universecollapseswhile the squareroot + — 1/R2 is still
positive.

In this subsectionwe take p. = (P/(P> 0 so that (P growswith time. Consider
the evolution of the three terms under the radical in Eq. (33): the kinetic term
e2p.2, the radiation term H~,and the curvature term —K/R2. From the first
integral of motion in Eq. (15), we can see that the kinetic term scales as

aR6(P2. From its definition we know that H~scalesas H~aR4P’
while the curvatureterm aR2. As we look back in time, (P gets smallerwith R.
So, tracingbackto R —s 0 for the sakeof argument,we seethat the kinetic term
dominatesoverboth the other termsinitially anddropsthe mostquickly. The next
dominantterm is H~which drops more slowly than the kinetic term but more
quickly than the curvature.The curvatureterm is the leastimportantof the three
initially. Eventually,as R growscurvaturegains importance.

If (P is growing then H> 0 only if we choosethe positive squareroot in (33).

With this choiceof signs,Eq. (33) becomesH = — I I + ~ In
the beginning,whenthe scalefactor is quite small, the curvatureterm is much less
importantthan the sumof the positive termsin the squareroot. This mustbe so
for the squareroot to exceed I I andthusleadto anexpandinguniverse,at least
initially. Note that H canvanish andwill eventuallydo so. H will vanishand the
expansionwill ceasewhenthe squareroot equals4p..

In Fig. 3 we havea schematicpictureof the developmentof the sumof positive
termsversusthe developmentof the absolutevalue of the curvatureterm, 1/R2.
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Forp. > 0, the casewe studyhere,the universestartsto collapse(i.e. H = 0) at the
point indicatedon the figure. Collapse beginsbefore the sum of positive terms
crossesthe curvatureterm, i.e., beforethe squareroot vanishes.

The valueof T at which H reacheszerocanbe found by settingH = 0 in (33)
and solving for the temperature.Rememberin Eq. (29) that the temperatureis
expressedcompletelyin termsof the valueof (P,upto the constantsc, C, S, etc..
Insteadof referringto the collapsetemperature,we could equallywell refer to the
value of (P at which H = 0, (P~.To find (P~we first set H = 0 in (23) andsolve
for the maximumvalueof x (seeEq. (21)), called ~

1 /~ (4c2—1)
xcoI=~-~l+~Jl+Q2 E2 (37)

This can then be used in the definition of the temperaturein (29) to find the
temperatureat which the universebeginsto collapse,

(P~/2 1

‘~oI= ~l/2~l/3 Qx~2L (38)

From expression(21) for x andthe definitionof 0, we seethat this corresponds
to a maximumvalueof (P for p. > 0,

(P~= (2 +x~
01)c+ 1 1/2�

(P X~i~

Recallthat c wasdefinedin Eq. (19) so that the product —p.c > 0. For the caseof
p. > 0 treatedhere, c <0 and(39) is less than 1. In termsof 0 c ln((P/(P), Eq.
(39) implies 0~> 0. -

Once (P reaches~coj’ which is <(P,thenthe expansionceasesandtheuniverse
beginsto collapse.Notice from the first integral of motion (15), that (P continues

Closed Brans-Dicke Cosmology

~~-(ftoI Q0)

I
(0,0)

Fig. 4. Thegeneralbehaviorof the scalefactoras a function of e in a closedBrans—Dickeuniverse.
Time increasesfromright to left. Thescalefactorreachesits maximumextentat t9,~.Subsequentlythe
universebeginsto shrink.
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growing beyond ~col as the universe contracts. In Fig. 4 we show the rough
behaviorof R with 0 where again time increasesfrom right to left. The scale
factor hits a maximum at 0C01 > 0 and begins contracting.Notice that as (P
continuesto grow, (P can exceedthe value (P in the definition of 0 and thus 0
canbecomenegative.

We havenot yet shown that the collapsetemperatureandcollapse(P defined
here have relevancefor p. <0 but we do so in the next subsection.For later
referencewe notice that if p. <0 and E > 0, then (39) is greaterthan 1 and again

> 0. An analogouspicture to Fig. 4 applies for the closeduniversewith p. <0
discussednext.

3.3.2. ClosedBrans—Dickecosmologywith (P/ (P<0
If p. <0 and (P is dropping then the analysisis a bit morecomplicatedbut the

end result is very similar. We start with the assumptionthat initially the positive
square root in (33) gives a real expandingcosmology and show that this is
self-consistent.Consider again the three terms under the squareroot of (33):
c2p.2aR6(P2, H~aR4(P1, and K/R2. Since R growswhile (P drops,thereis
a competitionin the denominatorof the kinetic term.There is a similar competi-
tion in the denominatorof the radiationterm.We will showhere that in fact (PR2
grows when the squareroot is positive and therefore establishthat kinetic and
radiation terms drop as the universeevolves. To get a handleon this, notice that
the equationof motion (33), with the positive squareroot, can be rearrangedto
read

p. R (P ldln((PR2) I K
(40)

2 R 2(P 2 dt V R2

This showsexplicitly that (PR2 growswith time. Lookingbackin time, (PR2 drops
and so c2p.2aR6(P2 grows as we go back in time. We also note that e2p.2a
H~(1/(PR2).We canconclude then that if we trace back to R —* 0, that initially
the kinetic term c2p.2 dominatesoverH~for very small valuesof R andlosesits
importanceas (PR2 grows. Notice that H~aK/R2(1/(PR2)and so, by pursuing
the samereasoning,we seethat in turn H~dominatesover the curvature.Again,
the curvatureterm is the leastimportantof thethreeinitially. We thenbegin with
the positive squareroot in (33).

At first glance it seemsthat H will not go to zero at finite temperature,

H = I 4p. I + )J7~~~7.However, as R grows,curvatureeventuallygains
importanceandthe squareroot passesthrough zero.(Eq. (40) showsthat ln((PR2)
hasan extremumwhenthe squareroot vanishes.Taking the secondderivativeof
ln((PR2),evaluatedwhenthe squareroot vanishes,we seethat the extremumis a
maximum of ln((PR2). In other words, the first derivative of ln((PR2) passes
through zero and then becomesnegative.We can make the connectionthat the
squareroot in Eq. (40) is equivalentto the first derivativeof ln((PR2) and so we
know that the squareroot falls smoothly through zero, becomingnegative.)The
solution for H is then Eq. (16) with the negative square root, H = I 4p.
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Closed Universe with Shrinking Planck Mass

/
valuesat collapse .

•\

1 ~ squareroot vanishes

tim ~

Fig. 5. A closed Brans—Dickecosmology with a shrinking Planck mass.Here is showna schematic
pictureof the sumof positive terms,e

2~i2+ H~,versusthe magnitudeof the curvatureterm, 1/R2.As
the figure demonstrates,the universe beginsto contract after the sum of positive termsequalsthe
curvatureterm and the squareroot vanishes.In other words, the universebeginscollapse after the
squarerootgoesnegative.

— ./~2p.2+ H~— K/’R2. We find that solutions to H with negativesquare root

growout of solutionsto H which beganwith positive squareroot.
As the magnitudeof the squareroot grows, it eventuallybalancesthe 4p. term

until H = 0. The expandingphaseendsand the universebeginsto contract.This
will happenat the samecollapsetemperatureas defined in Eq. (38) for p. > 0.
Thus T~

01of Eqs. (34) and(38) is the generalexpressiondefining the temperature
at which a closedBrans:Dickeuniversebegins to contract.As (P drops to the
value ‘Pcol’ which is > (P, the expansionceasesand reversesdirection. As the
universecollapses,(P continuesto drop.

Before we close this section,we note that we tracedback to R —s 0 to draw
conclusions.We cannot actually trace back all the way to R —‘ 0 sincewe would
enter the epoch of quantum gravity at some finite R. If insteadwe start the
evolution of the universeat finite R then the relative importanceof the terms
contributingto the squareroot dependson the relative amplitudes.For p. <0, in
principle we could begin at finite R with a positivesolution for H with a negative
squareroot. What we haveshown is that, in general,solutionsto H with negative
squareroot grow out of solutions to H which beganwith the positivesquareroot.
In Fig. 5 is drawn a schematicpictureof the sumof the positive termsversusthe
magnitudeof the curvatureterm.Along the horizontalaxis time grows from left to
right. This figure showsthat theuniversecollapsesafterthe sumof positiveterms
equalsthe curvatureterm andthe squareroot vanishes,aswe havearguedabove.
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To the left of the crossingpoint, the squareroot is positivewhile to the right of the
crossingpoint, the squareroot is negative. In principle, for p. <0, as this figure
shows,onecould begin with the universeat finite R betweenthe points in Fig. 5
when the squareroot vanishesand the universebegins to collapse.So one could
begin with growing solutions(H> 0) with negativesquareroot, for somerangeof
parameters.

Now thatwe havea pictureof thelarge-scalebehaviorof a curvedcosmologyin
a theoryof modified gravity, we candiscussthe flatnessproblemin thesetheories.
We will work in analogywith the standardmodel andso build the frameworkfor
the standardflatnessdiscussionhere.

4. The flatnessproblem in the standard model

We arguedin the introductionthat, generically,adiabaticcosmologieswill have
to contendwith a large S and so a flatnessproblem.In this sectionwe interpret
flatnessfor the standardcosmologyin termsof the earlycosmic dynamicsandthe
energydensityof the universe[13].

Consider a closed cosmology so that K = + 1. According to the standard
Einsteinequations,H2 + K/R2 = 837p/3M~,for K = + 1 the expansionceasesand
the universethenstarts to collapseat a temperatureof

M
0

T~01= yI/

2~l/3’ (41)

with y
4~37

3g~(t)and g
5(t) is the numberof relativistic degreesof freedomin

equilibrium at time t. For easeof notationwe againusethe definition S = R
3T3,

where 5 5(4) . (~372)g ~ and S is the constantentropy. For moderatevaluesof
S, then T~

01 M0. At a temperatureof M0 the universe would reach its
maximum extent and then implode. If we require that the universecontinuesto
expanduntil today so that ~ < T0, then it must be that ~1/3 ~ M0/T0 1032.
Thus the arbitrary constantentropy of the standardbig bang model must be
extraordinarlylargeif theuniverseis to surviveuntil a temperatureof T0 —~ 2.74 K.

We canrelatethe flatnessproblemto the commonlyusedparameter12
where p is the total energydensityof the universeand Per is the critical value
required to just close the universe;that is, Per is that value of the energydensity
requiredto just balanceH

2 if K = 0,

(42)

Numerically, Pcr = 1.88 x 1029h~gm cm3,where h
0 = ~©H0 k.m . s Mpc’.

According to the standardEinsteinequations,we canwrite for general K

K
12—1= . (43)

H
2R2
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If ~‘c/H
2R2 —‘ 0 andthe cosmologyis nearlyflat, then 12 —s 1. Written anotherway,

1
12= 1—x(t) (44)

and
p 21col

2/32 or x= K. (45)

For the closedcosmologyof K = + 1, Eqs. (44) and (45) say that when T=

x = 1 and 12 —s co• Thus 12 —, 1 is unstableand (1 will quickly divergefor tempera-
tures below T~

01.In terms of 12, a large value for S means a small collapse
temperatureandso a small x. A small x in turn renders(2 —, 1, corresponding to a
nearlyflat universe.

So the flatnessproblemcanbe statedin termsof 12. As 12 — 1 is very unstable,
it is unlikely and in some sense unnatural for it to be near 1 today. The
observationsthat today (2~ 1 would require,for instance,at a temperatureof the
Planck scale, that 12(T=M0) —1— 0(1060). In words, for (2 to be of order 1
today requiresthe universeto be createdwith the extremeconditionthat initially
(2 be identical to 1 to better thanonepart in 1060.

Similarly, in a standardopen cosmologyfor which K = — 1, thereis a flatness
problem.Neara temperatureof T~01given in (41), x(T~0i) — 1 and 12= 4 which,
astrophysicallyspeaking, is on the order of 1. For temperaturesT < 1~,the
universewill not collapseas in the closedcase.However,x gets largeandnegative
as the temperaturedrops below T~01and this drives (1—s 0. Thus, even for a
standardopencosmology,thetemperaturedefinedas T~01representsthetempera-
ture at which (2= 1 becomesunstable.If today f2~ 1 then today0 > x(T0)~ — 1.
The requirementthat (2~ 1 today demands that T~01< T~which in turn demands
that ~1/3 ~ M0/T0. If this werenot the case,the universewould cool to the low
temperaturesof today in a Plancktime, i.e., i0~ s.

5. Defining fi for scalar gravity

In subsect. 3.3., the collapse temperature was defined in Eq. (34) for a closed
Brans—Dicke cosmology. Before addressing the flatness problem in the Brans—
Dicke model,we first developthe last tool neededanddefinehere a new measure
of the energydensityof the universe,(2.

We want to cast a flatnessargumentin analogywith the treatmentfor the
standardcosmology.To do so, we heredefine a quantity

12~Ptot/Pcr.where Ptot is
the sum of all energy densities,including the energydensity in (P, and where
(8~T/3(P)Pcr= H2 correspondsto the value of the total energydensityrequired to
just close the universe.Equivalently,Q~(H2 + K/R2)/H2 or, using Eq. (11),

— 837p (P w ~ 2 8~ -1

12= ———-H+— — Cr . (46)
3(P (P 6(P 3(P
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With this definition for (2 we canwrite the equationof motion (11) as

H
2R2 (47)

If i/H2R2 —s 0 then 12 —s 1. Written another way,

— 1
12= (48)

1—x(t)

and

2
K 837p (P w (P K/R2

x=~ ~_~H+~(~) H2+K/R2~ (49)

With some work we can rewrite x as

K
(50)

(T/~
01)2[1 + (T2/)x~(1 + 2c~1+~ - Q2X2)]

There are several things to notice about these expressions for x. Firstly, for
K = + 1, thefar right hand side of Eq. (49) makesclear that x = 1 at H = 0 and so
x = 1 when T = T~01.At x = 1, 12 —.s ~ according to (48). This adheresto our
expectations.At the collapsetemperature,(2—j 1 becomesunstable.

In an open cosmology (K = — 1), the universe does not collapse as it does in the
closed(K = + 1) universe. Still, near a temperature of T~01given in (38),x(T~01)
— 1 and (1= 4. For temperatures T ~ 1~, x —, — ~ and 12—s0. If (2~ ~(1)

today, then 0 > x(T0) � ~(— 1) today. Thus, the requirement that (2~ 1 today
brings the sameconclusionas that of the K = + 1 case.

6. The flatness problem in Brans—Dicke cosmology

The flatnessproblem in a Brans—Dickecosmologycan be quite complicated.
Herewe take m01 ñz~1 to move slowly and to be near the value M0 = 1019 GeV,
so that thereis little deviationfrom standardEinsteingravity. Theseassumptions
greatlysimplify the discussion.We will discussin the next sectionsa Planckmass
far from the value M0.

As for the standard model, we discuss the huge entropy condition in terms of a
collapse temperature and consider first the closed cosmology (K = + 1). With
(P/(P 0 the universe evolves as in a standard cosmology with M0 replacedby
th1~. If we study our example of the closed cosmology again, we find that the
collapse temperature of Eq. (41) reduces to

~o1 = ~l/2~l/3 (51)
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For moderatevaluesof 5, the universewould contractat a temperaturenear the
Planck scale.

Although Eq. (51) only holds true during radiation domination, we can easily
correct for the era of matter domination to have a rough indication of the
condition through to today. If we want the universe to survive until today, then
T~01< T~with th~ M0 and it must be that S � i0~°. Of course, we should guess
that the standardmodel flatnessproblem surfaceshere sincewe assumedthat the
cosmologylooks like standardEinsteingravity.

7. MAD gravity and the horizon, monopole,and flatness problems

A more complicated situation arises if we allow for a large deviation from
Einstein gravity. In particular,a conflict arisesfor MAD gravity which tries to
exploit modified gravity to addressthe horizonandmonopoleproblems.Although
the universe is in principle made flatter in MADgravity, we show here that the
flatnessproblemis not solvedif an assumptionof adiabaticityis made.

The standard cosmologydoes not explain the remarkablesmoothnessand
flatnessof the observeduniverse.We canpresentlyseeacrossmany regionswhich
were not in causalcontactat earlier times. All the same,today the universedoes
seemto belargelyhomogeneousandisotropic.This apparentsmoothnessseemsto
violate causality.As well, the universeappearsto be roughly flat today; that is,
matter continues to be important in determining the cosmic evolution so it must be
that curvature does not completely dominate. In the standardcosmology, a
universewhich beganwith arbitrary initial conditions would quickly veer away
from a flat appearance.In the absenceof a dynamicalexplanation,a nearlyflat
universetoday requiresextraordinaryinitial conditionswhich renderthe universe
extremelyclose to flat at early times. In addition, the inclusion of grandunified
theories into the standardcosmologygives rise to a cosmologically disastrous
abundanceof monopoles.Although the monopoleproblem has a very different
sourcefrom the horizonproblem andflatnessproblem,solutions to oneareoften
intimately connectedwith solutions to the others.

The inflationary model proposedby Guth addressesthe horizon, flatness, and
monopoleproblems.In the inflationary scenario,a potentialenergydensitydrives
a period of acceleratedgrowth of the scalefactor. During this period, a causally
connectedregionthatwassmall at the beginningof inflation grows largeenoughto
containour observeduniverse.Thenthe homogeneityof the observeduniversecan
be explainedby a common history. As the universe inflates, the monopole
abundanceis diluted, as is everythingelse.Subsequentto this eraof supercooling,
entropy is producedas the potential energy is convertedto radiation and the
universeresumesan ordinaryevolution. The generousentropyproductionreheats
the universeto some high temperature,arrangedto bebelow the temperatureat
which monopolesform. Thus inflation explainsthe presenthomogeneityandlack
of monopoles. In addition, an inflationary epoch also allows the universe to begin
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with moderateinitial valuesfor the entropy. The enormousvalue of the entropy
neededto explain the cosmicflatnesstoday is generateddynamically.

In refs. [4,5] we suggestedthat a cosmologywith a dynamicalPlanckmass,such
as the Brans—Dicke model studied in this paper, can provide an alternative
resolution to the horizon and monopoleproblems,thoughnot the flatnessprob-
lem. The horizon problem is resolvedby slowing the evolution of the universe
during theeraof radiationdomination.Early in the universe’shistory the structure
of gravity slows the Hubbleexpansion,thus slowing the cosmologicalevolution.As
a result,the universeat a given temperatureis much older than in the standard
model.Thus enoughtime elapsesfor theentireobservableuniverseto be in causal
contact. Large regions could therebybecomesmoothwithout violating causality.
Expanding the horizon can also dilute the monopole density. As well, the slow
Hubble expansionkeepsmonopole—antimonopoleannihilations in equilibrium
longer, allowing for a very low relic monopole abundanceat the end of the day.

Adiabaticity was assumedin the original formulationsof MAD gravity to make
clear the role of the dynamicalPlanckmass.In refs. [9,10]obstaclesto completing
the adiabatic MAD picture are discussed.Some of these obstaclescould be
circumvented if the assumptionof adiabaticity is removed or if higher-order
theoriesof gravity are considered.Regardlessof the troubles the MAD model
faces,it is alwaysthe casethat adiabaticMAD gravity will not addressthe flatness
problem.The persistenceof a flatnessproblem in the Brans—Dickemodel is a
direct consequenceof the assumptionof adiabaticity.

Since the flatness problem and the horizon problem are related, we first
introduce the horizon problem and sketch the MAD prescription. A causal
explanationof the homogenityof our observableuniversecould exist if a region
causally connectedat some high temperaturegrows big enough to encompass
everythingwecansee.Sincewe canseebackto the time of decoupling,the sizeof
the observableuniverseis roughly the distancelight could havetraveledsincethat
time, ~t

0 H~1, where Ht) is the Hubble constanttoday. Thus we can take the
presentcomovingHubble radius,1/H0R0,as a measureof thecomovingradius of
the observableuniverse.The particle horizon defines the extent of a causally
connectedregion. In the standardmodel the horizon H ~,so that the causality
conditioncanbe written as

1 1
> . (52)

H~R~ H0R0

The subscriptc denotesvalues at an early time and subscript0 denotesvalues
today. (This equationonly holds if the horizon size, dhorjz, obeys dhoriz H
More generally the causalitycondition is dhO~IZ(tC)R~

1� dhoriz(t~)R~.) The ob-
servableuniversetodayfits inside a regioncausallyconnectedat time t~if Eq. (52)
is satisfied.Then the horizon size at t~before nucleosynthesisis large enoughto
allow for a causalexplanationfor the smoothnessof the universetoday. Since
H = R/R, Eq. (52) is equivalentto the requirementR

0 ~ R~that is, the scale
factor grows faster today than at earlier times and thus theremust havebeena
periodof accelerationbetweent~andtoday.
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For Brans—Dicke gravity with general curvature, the causality condition (52)
would require

(P1/2 [sinh20~+Q2 exp(—20~)I~’2 M
0

sinh
20~+ 2� sinh0~cosh O~+ Q2(1 —2�)exp(—20~)~

(53)

Notice that as —s 0, (28), (29), and(53) reduceto the correspondingresults for a
flat universe,as it must. Similarly, for large0, e2°—.s 0, andwe havethe same
causalitycondition asin the caseof the flat universe.

7.1. The MAD slow roll limit

In comparisonto the complicatedconstraintEq. (53), considerthe simplifying
assumptionsof a slowly rolling Planckmassand a flat cosmology.In the slow roll
limit the condition(53) becomesmuch moresimple,

m
1(t) T

/3C

If the Planckmasswere this largeduring an earlyhot epochandthusthe strength
of gravity was weak, then a causallyconnectedregion would havetime to grow
largeenoughto encompasseverythingwe can see.Subsequentto t~,the strength
of gravity must grow as the Planck mass drops. In the absenceof all entropy
production,it is difficult to drive the Planckmassfrom the largevalueindicatedin
Eq. (54) to the value M0 [9,10].

In principle, the disparity betweenthe large early value of the Planck mass
neededto resolvethe horizonproblem in the slow roll limit and the Planck mass
today leadsto a flatter universe.As the Planckmassdrops after time t~andthe
strengthof G increases,the universebecomesflatter; that is, since G describesthe
strengthwith whichmatteraffectsthe cosmicdevelopment,curvaturebecomesless
important than matteras the coupling strengthincreases.Still, the flatnessprob-
lem is not removedentirely in a MAD era.Insteadit is pushedto a higherenergy
scale.We studythisquestionin detail herefor a MAD Brans—Dicketheory.

First notice that in termsof 12 = 1/(1 — x) for p. identically zero, x reducesto

(P T
2

x= _

2/)2K or x= —i-- K. (55)

Since p. = cl)/(P, the above expressioncan be takenas an approximationin the
slow roll limit. Betweent~andtoday, x changesby

2 2
M0 T

____ —~- <1 (56)
x, m~1(t~) T0
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wherethe secondrelation follows from thehorizonconditionfor a nearlyconstant
Planckmass,Eq. (54). In otherwords,oncethe Planckmassreachesthe value M0,
thereis a new collapsetemperature,T~01(M0)= [M0/m~1(t~)]

2T~
01(t~).In the stan-

dard model,on the otherhand,x would havegrown by a factor of (7~/T0)
2.For

example, if T~= 1016 GeV, x would have grown by a monstrousfactor of i0~.
Thus, MADassiststhe approachto flatness.

Although the universegets flatter, thereis still a flatnessproblem.Considera
closedcosmology.If the universedoesnot surviveuntil the temperaturedrops to
TC, then the MAD model does not have the opportunity to address even the
horizon problem.We will thereforealways require that the universecontinuesto
expanduntil a temperaturebelow T~.By the way, it is also true in an inflationary
cosmologythat the temperatureat which the universebeginsto collapsemustalso
be belowthe temperatureat which inflation begins.

In the slow roll limit, the collapse temperature is given roughly by

T~
01=~1/~1/2~ (57)

For the slow roll MADmodel, mp1 is many ordersof magnitudelarger than in the
standard model. As a result of the huge Planck scale the temperature at which the
universebeginsto collapseis correspondinglylarger. Given T~01< 1~,Eq. (57) can
be expressed as a condition on the entropy

~1/3 ~ ~2~• (58)

The constraint on the Planck mass in the slow roll limit for a MADmodel which
addressesthe horizonproblem in Eq. (54) can be used to fix the constrainton the
entropy.We find

- M
(59)

0

that is to say,S � i0~°.A largeentropyis neededif thecurvatureof the universeis
not to takeoverjust below thevery largePlanckscale.Although the universegets
flatter, the initial requirementof Eq. (59) that S

1~3� f3M
0/T0 is not alleviated.

ForS 1, the hugePlanckscaleandthusearlyPlancktime leadsto the instability
of 12 1 well aboveT~.Thus thereis a flatnessproblem.

In an inflationary model where inflation begins at 1~= M0, the flatness problem
is solved. On the other hand,if T~<M0, then an inflationary model may require
5>> 1 in order for the universe to be able to reach the temperature at which
inflation begins. In particular, in a closed universe, inflation requires that 51,/3 ~

M0/T~01,where T~01mustbe less than the temperatureat which inflation ensues.
Here we can take T~to mean the temperature at which an inflationary epoch
begins.For example,if inflation beginsat T~ i0’~ GeV, then S ~ 1015 is needed
for the universe to survive to T~.Although thenumerical value of S will be smaller
in an inflationary universe than in a MADuniverse, the numerical value of x(T) at
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a given temperature above T~will be similar. Comparing Xinflation before an
inflationary epoch begins to Xmad above temperature T~,shows that Xinflation = Xmad

(T~c~i/T)2, where T~
01is chosenless than 7~that is, 12(T) is the sameat a given

temperature above T~in a MAD world as it is before inflation. The distinction is
that the Planck scale in inflation is only i0’~ GeV while in MADit canbe many
ordersof magnitudelarger.Thus,for S 1 the Planck time at which (2= 1 would
becomeunstableis muchsmallerin a MAD universethanin inflation. As a result,
larger values of the constantof motion S are required in the MAD model to
ensurethat the universesurvivesuntil T~.

More generally,if the Planck massis moving rapidly, the flatnessproblem is a
bit stickier to discussalthoughin the end the conclusionsaremuch the same.The
interestedreaderis referredto the appendix.

The flatness problem in an open MADmodel has not been discussed here. We
statewithout proof that the flatnessproblempersists in the open model as well.
The reason is that the MAD prescriptionrequires an old universe at a high
temperature.From our experiencewith the standardmodel we learnedthat if the
entropy is of order one, then the universewould cool below 2.74 K in 10h1 s.
Similarly, in MAD gravity, if S 1, the universewould rapidly grow cold while the
universewasstill quite young.

8. Conclusions

We presented a detailed description of the Brans—Dicke early universe. For a
homogeneousand isotropic cosmology, the threevalues of the curvature K =

+ 1, — 1, and 0 separate the Brans—Dicke universe into expanding and recontract-
ing, expandingforever, and the critical casebetweenthe two extremes,just as it
doeswith standardcosmology.

In the Brans—Dicke action there is no coupling of the Planck mass directly to
matter. As a result, no energy is transferedfrom the Planck sectorinto radiation
and the cosmic evolution is adiabatic.As a direct result of this assumptionof
adiabaticity, the Brans—Dicke universe has the usual standardmodel flatness
problem.An enormousvalueof the constantentropy S is requiredfor the universe
to surviveuntil today.However, if a direct coupling of the Planckmassto matteris
considered,then it could be that energyis transferredfrom the Plancksectorinto
radiation and entropy is produced. In the spirit of inflation, a large entropy
productioncould explain the presentcosmic flatness.

Any dynamical model which solves the horizon problem automaticallymakes
the universeflatter. For instancein the MAD model, Brans—Dickegravity canbe
used to allow our presentcosmologyto be in causalcontactduring our earliest
history. ln thelimit of a slowly rolling Brans—Dickefield, this is accomplishedwith
a largeearlyvaluefor the Planckmassandthusa weakstrengthof gravity. As the
strengthof gravity increases,curvaturebecomeslessand less important.Thus the
universedoesbecomeflatter. However,becauseof the largeearlyPlanckmassand
thussmall Plancktime, the universequickly becomescurvaturedominated,before
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the strength of gravity increases,unless the universeis very nearly flat at the
Planck scale. As it stands,this generatesthe sameflatnessproblem as in the
standardmodel.Again,this is a directconsequenceof the assumptionof adiabatic-
ity in Brans—Dickegravity. The tenaciousflatnessproblem may encourageus to
move away from the adiabaticassumptionand allow for the possibility of entropy
productionin a MAD cosmology ~.
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Appendix A. MAD flatness problem with a variable Planck mass

In this appendix we will study in some detail the flatness problem in a closed
(K = + 1) MADcosmology with a variable Planck mass.

If p. = (P/(P* 0 the flatnessproblem in a closed cosmologyis a bit stickier
althoughin the end the conclusionsaremuch the same. We work with the more
general collapse temperature of Eq. (34). Wepurposely wrote T~01to look similar
to the collapse temperature in a standard model. To ensure that the universe
survivesat least until T = T~,the temperatureat which the causalitycondition is
met, we can require that the temperature at which the universe starts to collapse is
less than T~.Subsequent to time t~theuniversewill becomeflatterso we only have
to worry about thevery high-temperaturebehavior.

The collapsetemperatureis clearly more involved than if the Planck mass is
constant.Wewill studylooselythe imposedrequirementthat ~ < 1~for differ-
ent rangesof the constantsof integrationS,C,ñZ01,etc..(We will restrict ourselves
to w ~ 1 since we are using Brans—Dicke gravity for which the observations have
constrainedw > 500 [14].) Demandingthat 1~<T~gives the requirement

1/2

(4E

2 — 1) (P1/2~1/3~Qxi/2H~1/3(1+ ~1+Q2 ~2 ) � ~i/2’ (60)

where ~col is definedin Eq. (39).
If Q2 is small to moderate,say Q2 <few, then Eq. (60) reduces to roughly

(P1/2
~1/3> col (61)

The flatnessproblem is rooted in the assumptionthat an entropyof S> 1090 is unnaturalwhile

S = 0(1) is preferred;this assumptioncould somedaybe foundto be incorrect.
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Sucha large S is consistentwith a small Q
2 as canbeseenfrom the definition for

Q2 in Eq. (22). For a small Q2, Eq. (39) shows that ~col (P. Therefore the
universewill begin to collapsewhen (P nears(P. Wecanusethe causalitycondition
to constrain ~~ol and then make the bound on S more specific. The weakest
requirementon (P from the causalitycondition camefrom the slow roll limit of
(P(T~) (P,for which

~1/2 M~
1

(62)
T~

If the Planck mass had not enteredthe slow roll limit then (P would only have
beendriven to even largevaluesthanEq. (62) demands.Since ‘Peol (P here,we
havethe boundon ~co1 of

(P1/2 M0
—~—>p——. (63)

TC~TO

Finally then (63) in (61) gives

- M
51/3>f30 (64)

0

This is similar to the standardmodel of cosmologywhich needsa very large 5,
correspondingto a nearly flat universe, to avoid the immediate collapseof the
universe.

If insteadQ

2 is large,thenEq. (60) becomesroughly

— (P1/2

(65)

Also, we seefrom Eq. (39), that

Ql/2~ (66)

and ‘Pool is far from (P. If Q —s ~, then the curvature dependence is substantial. A
dominantcurvaturedrives the Planck scaleat which collapseensuesfurther and
further from the value (P.

The causalityconditionbecomesdifficult to satisfy if Q2 is large.Notice, at high
temperatures and values of (P far from (P,that 0>> 1. Both a huge Q2 and a huge
0 suppressthe left hand side of Eq. (53) driving (P1/2 = m

01(T~)to higher and
higherscalesto reachthe demandsof this condition.Usingthe causalitycondition
(53) in the constraintEq. (65) gives

1 2 sinh
20~ + 2� sinh0~cosh O~+ Q2(1 —2�)exp(—20~) M

0
Q [sinh20c+Q2exp(_20c)]’~”

2 T
0

(67)
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From expression (66) we can identify e° Q~’2,and since this is large we can also
approximate sinh 0 4e°. Putting this information together in (67) gives crudely

— � Q2(1+2�)+Q(1—2�) M
0 M0

S�-~. (Q2+Q)’/

2 (68)

in the limit of large Q. Wefind in fact that unless S is large it is impossible to both
satisfy the causalitycondition andfix T~

01< T~.
We conclude in general that although a MAD world gets flatter below a

temperature of T~,the flatness of the early universe is not explained. The huge
Planck scale and so very early Planck time would quickly lead to a curvature
dominated cosmology unless the otherwise arbitrary constant entropy is quite
huge.
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