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1. INTRODUCTION

The present work is an exploratory study on the acoustic generation in a compressible flow
through ducts using one of the well-established approaches in the field of transient gas
dynamics. The basic problem under consideration consists of a constant-area duct through
which a compressible fluid flows. Duge to the fact that certain machines are adjacent, or
that the duct is fastened to the machine, the vibration of the machine causes vibration of
the duct wall. As a result, the duct wall generates acoustic waves in the fluid, especially
when the thickness of the wall is thin. The problem points to a localized vibration of the
duct wall, as shown in Figure 1. The length of the duct is long compared with the hydraulic
diameter of the duct. Even though many papers are available in the literature on the sound
propagation through the fluid in ducts [1-11], the problem of a long duct with a localized
vibration is a topic which has not been treated.

Vibration of the wall as a result of the vibration of the machine on, e.g., both sides of
the duct can be modelled as a localized perturbation change of the cross-sectional area, as

F=Fy+(cFy) e %, (1)

where F is the duct area without disturbance, ¢F, is the maximum amplitude of the change
in cross-sectional area due to vibration of the duct wall, x; is the location of the wall
vibration, w (=2xf) is the angular frequency of vibration, and 8 is the parameter indicating
the degree of localization, respectively.

In handling this type of problem, the unsteady one-dimensional model, in which the
length of the duct is long compared with the cross-sectional area, is well established in the
field of unsteady gas dynamics and is the only practical method for the analysis of such
problems. It will be seen that as a result of applying this model to the present problem,
an analytical solution relating all the physical parameters can now be obtained. An
analytical solution is always preferred in any physical or engineering analysis even though
certain unavoidable assumptions must be made to achieve this goal. The present work,
therefore, does serve a useful purpose.

Similar to other complicated problems, the problem must be studied from different
angles before any definitive conclusions can be finalized. The present work, therefore,
offers very useful results from the one-dimensional point of view—an approach that is well
established in the field of gas dynamics. The one-ditnensional approach, by its very nature,
supplies only information on the variation of the flow and acoustic properties averaged
over the cross-sectional area of the duct as a function of the axial distance along the axial
direction. It is hoped that, by presenting the analytical solution using the present model,
further works, both analytical and experimental, can be stimulated in the literature.
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Location of vibration

Figure 1. The physical duct model.

2. ANALYSIS

2.1. Basic equations

The solution of the problem, as modelled in the last section, is therefore reduced to the
solution of the equations governing the unsteady, one-dimensional isentropic flow with a
time-dependent cross-sectional area. The governing differential equation can therefore be
derived in the same manner as in any standard gas dynamics text, such as in reference [12],
by adding the feature of a time-dependent area. The differential equations are as follows:
continuity equation,

%{Z—f‘+u%§}+%{%’;+ug—z}+g§=0; (2
momentum equation,
%‘; u g—z + :—)gi; =0; (3)
equation of state,
p=pRT, a’=3dp[dp; 4,5)
Second Law of Thermodynamics,
plp*=C. (6)

Here, p, u, p, T and a are, respectively, the density, velocity, pressure, temperature and
sonic velocity of the fluid. The area of the channel is represented by F which, for the model
adapted in this work, is a function of both x and 7. As in the case of steady isentropic
flow, the energy equation is not an independent equation and therefore not included. For
a given F(x, 1), equations (2)—(6) are the five equations for the solution of five dependent
variables (p,u,p, T and a). By eliminating p, p and T from equations (2)—(6) and
introducing the dimensionless variables,

X=x/L, Z=t@L, U=u/@ A=a/@ @=+kRT,, ()

equations (2) and (3) become

k—-14 (¢F oF 0d k-1 U ©0A
T?{&*Uaif}JfUa»““T“a*ﬁ“O’ ®)
k—11{aU au 04
2 {az+UaX}+AaX“O’ @

which can be used to solve for U/ and 4. Once these two variables are solved, the remaining
three variables, namely, p, p, and T, can then be solved from equations (4)—(6).
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Following established practice in gas dynamics, the boundary conditions at x =0
and x =L for unsteady isentropic processes can be obtained by using the energy
equation

u2
F+GT=GT,

which, in terms of dimensionless variables, gives

UYZ,0) 4¥Z2,0) 1

= = 1
for X =0, > + —1 —1’ (10)
UXZ, 1) AXZ,1) 1
for X =1, 2 + 1 TR o1 (1)

2.2. The vibrating surface

As discussed in the introduction, the vibrating surface of the duct is modelled using
a localized change of area, F(X, Z). Let F, represent the cross-sectional area of the
duct. The vibration of the duct wall is modelled using a local change in the cross-
sectional area with frequency @ and a decreasing amplitude from the point of vibration,
as shown in Figure 1. In terms of dimensionless quantities, the change of area is
modelled by

AF = eFye ¥~ % 5in G Z, (12)

where © = w(2rL)/@. The parameter ¢F, is the amplitude of the change of area at
the point of vibration, and « is a parameter which indicates the extent of localization of
the vibration. In this paper, data are generated using two values of «, namely 1000 and
100, respectively. For these values of a, the amplitude of vibration drops to 1 per cent
of its maximum value at 7 per cent and 21 per cent, respectively, of the axial distance
on ecither side of the location of vibration. The localized nature of the vibration is
therefore insured. In terms of the dimensionless variables, the area of the duct, F, can be
written as

F=F{l+ce¥-%¥s5in 37} = Fy(l + ¢G,), (13
which can be substituted into equation (8). Equations (8) and (9) then become

k—1 84 k-1 &U a4
A e XX cos GZ — 2aUg(X — Xy)sin@Z} + U+ —— A= +-= =0,

¢ x 2 “axtez

(14)
k—1{oU ou oA
oy u—=trat =0
> {az“LUaX}J“ ax =0 13
2.3. Perturbation expansions
We will now expand U and 4 in series form as
U=UD+£UI+"', A=A0+€A|+"', (16,17)

where ¢ is the perturbation parameter. Substituting the series from equations (16} and (17)
into equations (14) and (15) and separating terms of power of ¢, we obtain, for €°,

A = constant, U, = constant, (18)
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and for €',

aAl k ] an aAl k - 1
—alX — Xp)?
9z T Ay UGyt A

x {@ cos wZ — 20Uy (X — X,)sinwZ} =0, (19)
k—lBU‘ k—1__oU, d4,
7 ez v Uy Ay =
The zeroth order solutions, U, and A4,, represent the undisturbed flow. For isentropic
flows in a constant area duct, both U, and 4, are constants. For a given Mach number

in the duct, the pressure and the temperature are given by

12
T+ (k — OMI[2}fE=D°

0. (20)

T,
{1+ (k- OM32}°

b= T,=

from which

Ay={a/@} =/ T)/T,, Uy= M, \/kRT/@. (21)

The first order solutions, U, and A4,, are the responses of the fluid flow to the vibrating
wall of the duct. In view of the fact that equation (19) involves two terms, with one
containing a cosine function and the other a sine function, this suggests the application
of the superposition principle to separate the dependent variables into two terms, as
follows:

Uy=0U,+U;, A =4, + 4p. (22)

Equations (19) and (20) are now separated into two systems of boundary value problems.
For U,, and 4,,, we have

aA” k aU“ 6.{4“ k - 1 - X X)Z _
X - - o
37 3 Ao 5% + Uy 6){ 3 ADe W cosaZ =10, 2%
18U, k- ou,, 04,
2 3z T2 U ax Ty =0 24)
subject to the boundary conditions
U0U11(0)+ 4,4,,(0) =0, Uy U1|(1)+ Ay Ay (1)=0. (25)

-1 -1

For U,; and A,z, we have
34, k-1 0U Y k-1 o
3zt L, 24 U T2 -2 4 UpX — X e sin dZ =0 (26)

~13U;  k—10Us  24n

27
2 sz T3 ax Thax O 27)
subject to the boundary conditions
2
Uo U12(O)+ 1A0A12(0) 0 UoUlz(l)'*“IE‘*‘_—TAoAlz(l):O- (28)

Solutions of U \(Z, X), A,,(Z, X), U,(Z, X) and A»(Z, X) can be obtained by the
method of complex superposition by writing
Un(Z, X)=Re {{Uyp +iUy} €95, An(Z, X)=Re {{Uyg+ily,} e},
(29, 30)
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Up(Z, X) = Im {{Usp +1U 1y} €97}, Ap(Z, X)=Tm {{Uppp + iUy} €97},
(31,32)
where Re and Im are, respectively, the real and imaginary parts of the complex functions.
Substituting equations (29)—(32) into equations (23)-(28) and separating the various
terms, a system of boundary value problems consisting of eight simultaneous ordinary
differential equations will be obtained for the solution of U\, Uy, A1z Aurs Uizgs Usaps

A2z and A, respectively. Since the solution procedure is routine [13], details will be
omitted here.

2.4, The sound pressure level
The pressure at any section of the channel is given by
plp= A=) = (g + 4, P40

or, expanded by the binomial theorem,
P e A FE-N N 2k A4 _p 2k A,
=4 l+e— ~ A | —r=—gl+e——1.
b ° +£A0 ’ +6k_1A0 P +Ek_1A0

The pressure pulse can, thercfore, be written as

, 2k A,
P —P—Pr*-ﬁprmjo, (33)

from which the root mean square pressure can be found by

N
Prme=_[(LIN) 3, (). (34)
n=1
The sound pressure level is

Lp = 20 logl[} {prms/pref} (dB)’ (35)

where p,,= 0-00002 N/m?,
Combining equations (33)-(35), we obtain

e 1N 4kr A2

Lp = 20 logm {pref\/N ngl (k _ ])zp.l’ AD} 1 (36)
where the function A4,(X) is obtained from the solution of the system of boundary value
problem as described in the analysis in the previous section. Since A,(X) is a function of
the axial distance, equation (36) therefore gives an analytical expression of the sound
pressure level as a function of the axial distance, X. It is seen therefore that the present
analysis provides a method for the derivation of an analytical expression of the sound
pressure level as a function of the axial distance and the physical variables involved.

3. NUMERICAL SOLUTIONS

With the analytical expression of the sound pressure level derived in the last section as
a function of the axial distance, it is possible to explore the effects of any physical
parameter involved in the problem as needed. In the brief discussion here, only a few simple
solutions will be generated. These results are for the case in which the location of excitation
is arbitrarily selected at the mid-point of the duct. From equation (36), it is seen that the
pattern of the sound pressure level distribution along the duct will be dependent on the
amplitude of the vibration, ¢, the degree of localization, «, the frequency of vibration, f,
and the Mach number at the entrance section of the duct, M, respectively.
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Figure 2. The sound pressure level distribution for a« = 100, f= 1000 Hz, M,=0-2.
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The effect of ¢ can be seen easily from equation (36), which shows that the difference
in L, for two values of ¢’s is

AL, =L, — L, =201og; (e /e,). 37

For ¢, = 0-00001 and ¢;, = 0-0005, AL, is equal to 34 and for ¢, = 0-0005 and ¢, = 0-05,
4L, is equal to 38. In the figures to be presented, three values of € will be given. Equation
(37) gives the distances between curves of different values of €. One physical significance
of these results is that a localized vibration of even extremely small amplitude will generate
sound of considerable sound pressure level.

The effect of the frequency, £, is more profound, as shown in Figures 2-5, Figures 2 and 3
are for & = 100 and an entrance Mach number of 0-2. The difference between the figures
lies in the frequency, f. Figure 2 is for a frequency of 1000 Hz, while Figure 3 is for a
frequency of 2000 Hz. Increasing the frequency is seen to create a region at the location
of excitation where the sound pressure level increases relatively smoothly to a maximum
value and then decreases to a regular pattern. The creation of such a region in a way pushes
the peaks and valleys of the sound pressure level to both sides of this band. This implies
that energy is evenly distributed along the duct at low frequency excitation, but the energy
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Figure 3. The sound pressure level distribution for « = 100, f = 2000 Hz, M, =0-2.
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Figure 4, The sound pressure level distribution for « = 100, f = 1000 Hz, M,=(-4.

is concentrated in the region of excitation at high frequency. Similar results are observed
by comparing Figures 4 and 5.

The effect of M, on the sound pressure level can be seen clearly by comparing Figure 2
with Figure 4, where the Mach numbers are equal to 0-2 and 0-4, respectively. For the case
in which M, is equal to 0-2 (Figure 2), the sound pressure level distribution along the duct
is seen to have a range of approximately 50 dB between its minimum and maximum values.
For the case in which M, is equal to 0-4 (Figure 4), the range is decreased to approximately
35dB. Similar conclusions can be drawn by comparing Figure 3 with Figure 5. It is
therefore seen that Figures 2-5 show that, by increasing M,, the average of the sound
pressure level is increased with larger values of AM,.

As stated earlier, the parameter « represents the degree of localization of the vibration.
The typical influence can be seen by comparing Figure 3 with Figure 6. The vibration is
more localized for « equal to 150 in Figure 6 than for the results in Figure 3, where the
value of a is smaller, meaning less localized. The width of the significant change in the
vicinity of the disturbance is seen to be narrower as the degree of localization of the
disturbance is increased. Another feature, as seen from these two figures, is that the average
sound pressure level over the length of the duct is higher when the vibration is more
localized. The higher sound pressure level at the more localized vibration can be due to
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Figure 5. The sound pressure level distribution for o = 100, f=2000 Hz, M, = 0-4.
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Figure 6. The sound pressure level distribution for « = 150, f = 2000 Hz, M,=0-2.

the gradient of the cross-sectional area, dF/3X, being greater than the gradient value at
a less localized vibration,

4. CONCLUSIONS

A theoretical study of the sound generation by a localized vibration is made based on
a transient gas dynamics model. This one-dimensional model is standard in the gas
dynamics field where the transient flow through long ducts is analyzed. An analytical
expression of the sound pressure level distribution along the axiat length of the duct is
obtained in terms of the four physical parameters in the formulation. The method used
here is very general. By treating the disturbance as a perturbation to an otherwise steady
flow in the solution procedure, the perturbation equations are, therefore, linear. This
enables the extension of the analysis to the case in which the excitation is periodic but not
harmonic. In such cases, the excitation can be represented by a Fourier series consisting
of sin¢ and/or cosine functions, where the principle of superposition can be applied. Each
term can be solved by the present technique.

It should be emphasized that the problem under consideration is inherently a difficult
one. If the localized vibration of the surface is considered to consist of an infinite number
of sound sources simultaneously added to the duct with different magnitudes and phase
angles, the resultant acoustic pressure or the sound pressure level will be the superposition
of all these sources. Adding the complicated forward-and-reflected motion of pressure
waves in a channel, it is understandable that a physical interpretation of the phenomena
is difficult before further extensive research on the subject is conducted. The present letter,
using a one-dimensional model which is standard in the unsteady gas dynamics fteld, does
provide a way to obtain an analytical solution of the sound pressure level distribution and
is, it is hoped, the basis for further theoretical and experimental studies in the future.
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APPENDIX: NOMENCLATURE

sonic velocity of the fluid

dimensionless sonic velocity

constant pressure specific heat of the fluid
hydraulic diameter

vibration frequency

duct cross-sectional area

sound intensity

adiabatic constant

length of the duct

sound intensity level (dB)

sound pressure level (dB)

inlet flow Mach number

number of time intervals per cycle

flow mean pressure

pressure disturbance

pressure at Mach number M,
root-mean-square of pressure disturbance
pressure at temperature T,

gas constant

temperature

temperature at Mach number M,
reference temperature

flow velocity

dimensionless flow velocity

axial co-ordinate

location of vibration source
dimensionless co-ordinate

dimensionless time

area change factor

density

parameters for the extent of localization
angular frequency

normalized angular frequency

reference sonic velocity at temperature T,



