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The main purpose of this paper is to present an explicit formula for the general
hierarchy of soliton equations constructed by Kac-Wakimoto from the basic
representation of an arbitrary affine Kac-Moody algebra. The results turn out that
the differential operators of the corresponding Hirota bilinear equations can be
written explicitly in terms of skew Schur functions for both principal and
homogeneous hierarchies. The principat hierarchy includes the classical KP and
KdV equations. The homogeneous hierarchy turns out to be related to the classical
non-linear Schrodinger equation for type A{!’ and to the classical 2-dimensional
Toda lattice equation for type AL).  © 1994 Academic Press, Inc.

INTRODUCTION

The connection between the soliton theory and the representation theory
of classical affine Kac-Moody algebras was developed by Date, Jimbo,
Kashiwara, and Miwa [DJKM, DKM], using the boson-fermion corre-
spondence in 2-dimensional quantum field theory and certain vertex
operator realizations of the algebras.

The basic representations of the classical affine Kac-Moody Lie algebra
were constructed on a polynomial ring by using vertex operators. The
group orbit of the highest weight vector is an infinite dimensional
Grassmann manifold. Its defining equations on the space of polynomial
functions, expressed in the form of differential equations, turn out to be the
soliton equations (cf. [DJKM]). For instance, the Kadomtsev—Petviashvili
(KP) hierarchy can be constructed by using the basic representations of the
Lie algebra gi(oo), while the Korteweg—de Vries (KdV) hierarchy can be
done by using the basic representations of the simplest affine Kac-Moody
Lie algebra $i(2).

Recently, Kac-Wakimoto constructed the hierarchy associated to an
arbitrary affine Kac-Moody algebras in a unified way [KW ], including the
exceptional ones. Their construction is based on the explicit realization of
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the basic representation L(A,) (cf. [LW, KKJW, FK, S]). By calculating
the action of generalized Casimir operator on the tensor product L(A4,)®
L(A,), they obtained a generating series of Hirota bilinear equations which
characterize the t-functions. The soliton solutions to these equations can be
obtained from the action of vertex operators on the vacuum vector.

The main purpose of this paper is to find an explicit formula for the
general hierarchy of soliton equations constructed by Kac—Wakimoto
[KW]. The result turns out to be that the corresponding Hirota bilinear
equation can be explicitly written in terms of skew Schur functions for both
principal and homogeneous realizations. Note that the similar result for
KP and modified KP hicrarchy can be found in [L7], where the problem
was posed by V. Kac.

The paper is organized as follows. We begin with the two constructions
(principal and homogeneous) of the basic representation of Kac—Moody
algebra in Section 1. Some results on Schur function needed are reviewed
in Section 2. In Section 3 we give an explicit formula of Hirota bilinear
differential equation for the principal hierarchy, while a formula for the
homogeneous hierarchy is presented in Section 4. In the last section the
formula for the BKP hierarchy is found.

Througout the paper, our Lie algebras and their representations are all
defined over the field C of complex numbers. Symbols Z and N stand for
the set of all integers, all positive integers, respectively. We use notations
and basic definitions of Ref. [K ] unless otherwise specified.

1. Two CONSTRUCTIONS OF THE BASIC REPRESENTATION

Let us recall first the construction of the basic representations in
[KKLW] which is called the principal realization of the basic module.

Let ¢ be an affine Kac-Moody Lie algebra of type X ¢’ (with X = 4, D,
or E) and rank / over the complex field C. Let ¢ € ¢ be the canonical central
element and /4 the Coxeter number of g.

Let ¢ = @ £, be the principal gradition of ¢, E (resp. E, ) be the set with
multiplicities of all (resp. all positive) exponents of g. For each je E, one
can choose H;e g, such that

[H, H]=i, ;c

L—j

The subalgebra §=Cc+3% _, CH, is called a principal Heisenberg sub-
algebra of g.
For each i€ Z and r=1, ..., /, there exist elements X " e g, such that

[(H,X"1=8,,X!7), forsome B, eC,
[dX"]=ix".
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The elements H,, X'\, ¢, d form a basis of ¢. Since the Lie algebra g
carries a non-degenerate invariant bilinear form (-|-) (¢f. [KW1]), one can
choose Y{"eg, (ieZ, r=1,..,1) such that

(Y1 X5)=96,.8, ,, (Y ]8)=(XP[$§)=0.
Then it follows from the invariance of (-|-) that
[H, Y")=-8,,Y7),
[d, Y"]=ivY".
Put
XOz)y=Y Xz
ieZ

Y(r) Z Y"’z“,

ieZ

then the basic representation L(A,) is constructed on the space L{4,)=
C[x,; je E, ] by the vertex operators

Hra,; for jeFE,

X"’(z)l——»)?"’(z)=C,exp( Y ija—jz’)exp(— > éi—',—’a—jz‘j>,

JeE. jeE, J
(r) v — ﬁr! J 'Br Fro—j%j J
YOz Y 2)=D,exp| — Y, Lz/)exp|{ ¥
JjeEy J JeEy J
c— 1,

d— — Z X%

JEE,
where o, =0/0x;, a_;=jx; for je E, and
Co=—h"'(p| X{),
D,=—h"Yp| YY)

Note that this construction obtained in [LW, KKLW, FK, S] is called
the principal realization for the simply laced or twisted affine Kac-Moody
algebra of type X (.

The second realization called homogeneous realization of the basic

representation was constructed for all simply-laced affine Kac-Moody Lie
algebras (cf. [FK]), which can be described as follows:

481,166/3-13



614 SHIRONG LU

Let g be a finite dimensional Lie algebra of rank / and type 4-D-E. Let
A be the root system and Q be the root lattice of g. Choose on Q a
C-valued symmetric, invariant bilinear form (-|-) normalized by the condi-
tion {a | &) =2 for all roots a € 4. There is a (non-symmetric) bilinear form
R: Q0 x Q> Z such that

(d l ﬂ)=R((Z, ﬁ)+R(ﬂs OC).

(one way to construct R is to choose the (directed) Dynkin diagram
labelled by simple roots o, and put R(a;, 2;)=1, R(a;, a;)=0 for i#j
except when there is an arrow «, — «, for which we put R(«;, 2;,)= —1).

Define ¢(a, f)=(—1)%*#), then ¢ is a 2-cocycle of the group @ with
values in { 1} satisfying two additional properties,

(@) e B)e(oa)=(=1)7,
(b) (e, —a)=¢(2, 0)=1.

Let 4 be the Cartan subalgebra spanned by the set of «, (i=1, 2, ..., /).
One can choose a root vector E, for each root o€ 4 such that

g=h® ), CE,

xed

and they satisfy the following commutation relations:
(A, h]=0, (h, E.J=(a|hYE, for heh,
[E,, Eg]=0, if a+péau {0},
[E,,E_,]= ~q, [E,, Egl=e(2, BYE, 4, if a+fed
The bilinear form (-|-) can be extended to g by putting
(1 E)=0 and (| Ep)=~b, ,.
Then the affine Kac-Moody algebra ¢ associated to g is
§=C[t,t"'"1®g+Cc+Cd
with commutation relation given by
[x(m), y(n)] =[x, yl(m+n)+m(x | y)d,, nc,
[d, x(m)] = mx(m),
[c.§1=0,

where x(m)=1"® x for meZ, xeg.
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Choose a basis u; of h and a dual basis u’ of h with respect to (-|-). The
homogeneous realization of the basic representation L(A,) of § can be
constructed in the space (cf. [FK])

L(A45)=C[x]®C[Q]1=C[x; 1<i<LkeN]® Y Ce
xe Q

with ¢ acting as follows:
u(—k)=kx, w/(k)=06/ox{), 1<j<!, keN;
HO)/®e’)=p(H) f@e’ for Heh,

d(f®e”)=(— D) kX“’iJr%lﬂlzf)@e”,

k=1 i=1 g axi"]
E(—k)f®e’)=e(y, p) Xu(n)(f®ef)  for yed,

where

Xy, 2)= ), Xuly)2*

keZ

= Z 2 (exp Y Y(J—,j)zfxexp— Y Z!‘_j—.)z‘j)(@e?zay

jeE; jeE,

is the vertex operator defined generally for any element y in Q.
Here the operator z% acts as

267'(f® eﬂ) = (Al 'yff@ ef.

There is a natural Z,-gradation on the space L(A,) defined by
deg e’ :=4(B | B) and deg x{) :=k. We let, for brevity, x =(x{"), <</ ke n-

2. ScHUR FuUNCTIONS

We now review some basic results about symmetric functions. One can
find basic definitions and notations in [M]. Let

A=C[xy, x5, -]

be the polynomial ring in infinitely many variables x,, x,, ....
Define p;(x,, x,, ..) by the generating series

Y pj(x)tjzexp( Y xkt").

j=0 k=1
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For a partition A= (4, 4,---4,), we put

pix)=det(p, _ i+j(x))-

Then it is well known that the set of all functions p, (1€ Par), called
Schur functions, forms a basis of the ring A.
Note that if we let

X, =

n

£,

1

8

I
n .

7
then p;(x)=+s,(£) is symmetric in (&, &,,..) and is the classic Schur
function studied in [M]. One sees that if we let deg x;=/, then p, is
homogeneous of degree |4].

The multiplication of two Schur functions p; and p, can be written as a
linear combination of Schur functions

PP =, CoDs (1)

with the coefficients cf;veZ + which can be computed by the celebrated

Littlewood—Richardson rule.
Suppose A= (4, 4,, ...) and u=(u,, y,, ...) are partitions with g, < 4, for
all i. We then write u < A. The skew Schur function p,,, is defined by

p)./y(x) = det(p).,'fuj—ifi(x))’
We then have the following well-known property.

THeOREM 2.1 [M]. If Az u. Then
p/i/u =Z cprv'
PROPOSITION 2.1.  The following identity holds

exp < Y x,,yn) =3 pi(%) pAy),
n=l A

where X =(x,, x,/2, x3/3, ..).

Proof. Introduce new variables ¢=(&,, ¢, ), n=(1,,92,..), by
putting for k> 1,

yk=k(n’f+n§+---)-
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Then we have

pi(%)=s,(&), pi(y)=s.:(n)

exp Z Xp Vi =€CXP Z i(z‘iﬁ’j)k)

k=1 k=1

1
=expY, T (Em)*

ij k=1

=exp . (—log(1—¢&.1))

LJ

=,-[,I(1 —&my)
But it is known that (cf. [M]) |
I} (1=¢&m,)~" =§sg(é)s4(v1).
Therefore |

eXp Z ka’k=Z 5;(8) Sz('?)=z 5;(%) 5,(y)
k=1 i A

which finishes the proof.

Now suppose 4 is a partition of n. Let y* be the character of symmetric
group of S, corresponding to 4. Define

t .
Vo = = Y x*(o) x*(e) x’(0).

“6eS,

In the same way as we prove Proposition 2.1, we obtain the following
result from [M, p. 63].

PropOSITION 2.2. We have
Pix, Y X2p2, ) =Y vhPUR) PAY)
H,v
Since y) =49, ,, it then follows

COROLLARY 2.1. p.(x,yy, X3¥2, ) =ZM~" Pu(X) p,(¥)

PROPOSITION 2.3 [MY. The following identity holds

n—1

nx,= Z (* l)jp(n—s, l-‘)(x)'

§s=0



618 SHIRONG LU
3. PRINCIPAL HIERARCHY OF A-D-E AND EXCEPTIONAL TYPE

Consider the basic representation of simply laced or twisted affine Kac-
Moody algebra g of rank [ and type X%’ (with X=4, D, or E) on the
space L(A4,)=C[x;:je E, ] (see Section 1). Let G be the simply connected
algebraic group over C with the Lie algebra g. The corresponding affine
Kac-Moody group G is then the central extention of G(C[t, t~']) by C*.
The representation L(4,) of £ can be extended to give a projective
representation of the group G.

Then we have the following due to Kac-Wakimoto.

THEOREM 3.1 [KM1. A non-zero element t of L(A,) lies in the orbit
G.1 if and only if t© satisfies the hierarchy of Hirota bilinear differential
equations,

!
[—2/1 S gD+ Y b, Y pECB, ) Pff’(-%ilD;)]

jeE, r=1 nx=l1

x eZieE WDig .1 =0, 2)

where b,=(p | X\ p | Y{') and p'F(x) (ne Z ) are defined by

n

Y pﬁ,“(x)z”=exp( Y szj>.

nz0 jeEy

The hierarchy (2) of Hirota bilinear equation is called the principal
hierarchy of type X . Now define

I'4
P(x,y):.—[—2h S o+ Y b Y PR,y p‘f’(—%‘—’x;)]

JjeE, r=1 nzl

X @LieEs i, (3)

Since the Schur function p;(y) (A€ Par) forms a basis of the polynomial
ring C[ y,, 1, .. ]. The function P(x, y) can be written as a linear combina-
tion of p,(y). Now define Q,(x) by the following

P(x,y)= Z Q.(x) pa(y). (4)
i€ Par
Then the principal hierarchy (2) is equivalent to the following Hirota
bilinear equation

Q:(0/0u)(t(x + u) 1(x — u))lu—0=0. (5)

The following theorem gives an explicit formula for the differential
operators Q;.
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THEOREM 3.2. The differential operator Q; is given by

Q;.(X)=[—2h S (1) x4 )

rzl,s=20

r+sek,
L e I L C] ST
= u#0

where
pYplx)=det(pid ., (%))
Proof. Since
(Ej(x) pn(-x Ixj 0,jeEt

We then have from Corollary 2.1

28, .
PEQB, )= T py) (ﬂ( ﬂ) ™
phn J
By Proposition 2.1, we see
eZet =% plE(E) py(y) (8)
ve Par

Therefore we obtain from Theorem 2.1 and identities (1), (7), (8)

2
pEN2B, y;) eXeE =% p( y)p""( . )piE’( %) p.(y)

Uln Y

ve Par

2 R
Y puy) PAY) ‘E’( /j’) pEAR)

HhEn

ve Par

- 3 (Tetnin) i (L) pieve
phbn N4
ve Par

Yo T e (L) o)
A whn

ve Par

=Xp0) X (% crt ) i ()

uhn NvePar J

~2 i) T ot ol ().

ukn J



620 SHIRONG LU

Hence

Z p(E)(zﬂr jy_l) p(E)( Br’,‘j x;‘) pTict, VY
J

nzl

Z ZPA()’) Z pﬂ,)(x)p‘5’< B}.—j> p:zE)(_E"_._lxj>

n=1 4 ubn J

“Y 50 ¥ p<E>(2’3; f)p:fe(—”;.-f )pﬁi](x). 9)

n#*
On the other hand, we have from Proposition 2.3

j—1

jy,-= Z (—l)xp(jfs,lj)(y)' (10)

s=0

Using again Theorem 2.1 and identities (1), (8), (10), it then follows that

Y jijjez,wx,z< Y Y (= 1) py sy )( 5 pﬂ(y)p“”(x))

jeE, jeE, s=0 nePar

=T T S (1) p s () Pa¥) %P )

n jeE, s=0

=Z Z (—l)sp(r,]’)(y)pu(y) r+:pi¢£)(i)

u rzl,s=0
r+se £y

=) 2 (=0 (Zcu(rl‘)PA(J’)) x, 4, pENF)

u rzl,s20
r+sefEy

“Y ) ¥ (—1)"<Zci(,,,s,pf’(f)>xm
i H

rzl,s=0
r+sekE,

=X piy) Y (=1 x, . pi% (%) (11)
A rzl,s=0
r+sef,

Combining the above identities (9), (11), and (3), we find

PE=Z 00 (<2 T (=15l )

rzl,s20
r+se kb

! 2 ; .
+ 3 0 3 o () iy (< ) i)
= u#(z
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Therefore it follows from the definition of Q,

Ql(x)=(—2h Y (=1 x s p B ()

rz1,s520
r+sek,
’ 28, - Br.—,
+ Z b, Z (5)( J) Pl[fl)(_ tro I x )pﬂﬁ}(X)).
r=1 HES ] J

The proof is completed.

From Theorem 3.2, one can obtain the differential equations for the prin-
cipal hierarchy up to any high order by computing the constants B.;
b,. The constants §, ; were computed in [D] for the affine Lie algebra of
type £ (n=6, 7, 8). The non-trivial equations of lowest degree in some
cases were computed in [KW].

Now applied to A{",, we have from [KKLW]

ﬁr.j= (1 _erj)»

br=(~1)('1“_*€,)—2,

where ¢ is a primitive /th root of unity,
Theorem 3.2 now gives the following

PROPOSITION 3.1.  The function t lies in the orbit GL,(C[1,t~'])-1 if
and only if

-1 r

ot (1 __sr)z
$ 1)

x Y p“’<2(1] ))PTL’.<—1_;U )pi’/’(x)]r‘r=0, (12)

L X%
where p'!(x) is defined by the generating series,

Y pP(x) t"=exp< Y x,,t").

nz=0

[2 Z (—'1)3 xr+sp511/;r,11)(lx~)+

=

k=1
k#0 (mod /)

ExaMmpLE 3.1. Consider the simplest case A{". The corresponding
principal hierarchy of (12) becomes (A e Par)

l: Z (-l)s xr+sﬁi./(r. 1’)(X-)

rz1,s20
r+sodd

) z p#( )plul( 2X)p4/#(x)]‘[ =0, (13)

u#@
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where
ﬁ).(x) =p).(xl’ 03 x37 0’ )

The unique non-trivial Hirota bilinear equation of lowest degree is
obtained by choosing the partition A= (2, 2) in Eq. (13). One obtains the
following equation by calculating directly the bracket in Eq. (13) (cf.
[DIKM, KW1]),

(D*—~4D,D,)1-7=0. (14)

Putting x = x,, { = x5, and all other x,,_, = constant. Denote

62
u(x, t)=2-— (log t(x, t, ¢s, ¢4, ...)).
ox

Then Eq. (14) is equivalent to the classical KdV equation,
u!= %uux+ :lfuxxx' (15)

It is well known that the basic module L(A4,) carries a contravariant
Hermitian form defined by

k]
x=0

P, 00> =(P(£) o)

where Q is obtained from Q by conjugating the coefficients.
Now L(A44)® L(A,) can be thought of as the space of polynomials on
two sets of variables: C[x;, x/';je E, ]. We introduce new variables

x;=3(x; + x}),
1
y;=3(xj—x)

The Hermitian form on the tensor product is induced from that on L{A,).
We then have the orthogonal decomposition

L(Ag) ® L(Ag) = L(24,) @® L(24)"*
with
L(24,)* = C[x]® Hir
and

Hir=C[y]n L(24,)*
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is a subspace of C[y;;je E,]. Then it is easy to show by a standard
argument

PROPOSITION 3.2.  The polynomials Q,(y) (A€ Par) span the space Hir.

Remark. Q;(y) (4ePar) are not linearly independent. Let Hir, denote
the space spanned by Q, (4 }-n). Then by comparing the g-dimension we
obtain

dim, L(24,)
dim, L(A,)’

q

Z dim(Hir,) ¢" = dim,, L(A4,) —

where dim, L(A1) denotes the g-dimension of L(A).

4. HoMOGENEOUS HIERARCHY OF TYPE A-D-E

Our goal in this section is to find an explicit expression of Hirota
bilinear equations for the homogeneous hierarchy. It turns out that they
can be written in terms of skew Schur functions depending on / partitions.

Now suppose g is a simply laced affine algebra of type X'}’ and rank /
(X=A, D or E) with the corresponding group G. Choose a basis u; of h
and a dual basis ¥/ (j=1, 2, .., /) as in Section 1. Define P(x), Q7 (x) for
any ye Q and neZ by

y Pﬁ(x):exp(i i y,u)x‘”f‘)
k=1 j=1
!

n=0

Y. Oi(x)=exp ( Z Y Ly, uly x,‘j’z").

n20 k=1 j=1

Then we have the following result.

THEOREM 4.1 [KW]. Anelement t=3% ., rﬂ®e’i of L(4)=C[x]®
C[ Q] lies in the G orbit of the vacum vector 1 ® €° if and only zf the follow-
ing differential equation is satisfied

[ .
(2 Y Y kDY +14 Ia—ﬁP) eTW P 1,4 Y e(y, a—B)
kzl j=1 yed

X Y QU2 Pl s aop(—D) WP, 1y =0 (16)

nz0

The hierarchy (16) is called the homogeneous hierarchy of type X'}
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Now for any j=1,2,..,1 and A e Par, we let
x = (x{, x¥, )
and denote p,(x")y=p;(x?, x¥, ..).
If ¢ is any constant we put
pic)=pilc c, ).

Then we have the following

THEOREM 4.2. Fix a, B Q and define for | partitions 4,, 25, ..., 4,

/
Qﬁf£,4..i,(x)=2 Z Z (—1y x“)sl’ ( My.. P, 15)()?”))"'[71,(55“))

j=1 rz1,520

+ % ‘a—ﬁlzpil(i(])) o .p).[(i(”)’

QEI};)/Z (x)= Z Pm(2<%u1>)"'Py,(2<)’,u’>)P72|u,|v2+(y|aAg,(—i)
K1, e HE
X Py (X)) Py (RO,

Then the homogeneous hierarchy is equivalent to the Hirota bilinear
differential equation,

O aTa Tt Y ey =B OV, Ta o Tpe, =0, (17)
yed

Proof. Denote for brevity

CH(H1y s ) =P (20, 4" D) P (2<3, u' ).

Then we have by the definition of Q7(x),

Q120 =Y C'(pys s ) P(3™) - p (). (18)
[TIy—Y
> iuil=n

By using Theorem 2.1, Proposition 2.1, and (1), (18), we obtain

£ )
Q1) e= W = T Oy, e ) P D) (31
K1y ey Y
le‘:""

e ¥

xpu (¥ p, (¥ Py (B - p (D)
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= Z Cy(#ly ery .ul)

Bl B
Slml=n
VI e W
(ZC Py ‘”))---(Z ,‘,v,pA(y‘”)>
A

xp, (&D)-p, (%7)

= Y Cup, e i) pi,(¥) - p, (v

Aly s AL
Ao
Sluil=n

(Z CumPVl “) ) (Z mepw(x(” )

= Z C'(phys s ) P}l( “')"'PA,()’”))

Al AL

X Py (D) - P (R,
Let us use the following abbreviation: for two sets of partitions
A=Ay A E= (R e )
we put |i|=3 |y,| and
C(i@) = C"(p1s o 1)
PI(X)=PAI(X(”)"'Pi,(xm)’
Pra() =Py (X - P (xD),
Then we arrive at

3 ~ (), ()
Y QUM Py g —F) eZ P

nz0

=3 2 Cpi») PR Pl siyapl—3%)

nz0 /.ﬁ

=S s (T Pl 2via pl =R pp(®). (19
A

e
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In the same way, using Theorem 2.1, Propositions 2.1 and 2.3, and (1)
we obtain

!
Y (kyY'x) eT O

ST T T (SRR i 52 50) ).
(20)
Combining Egs. (19), (20), and Theorem 4.1 will finish the proof.

Let us consider the case for the simplest affine Kac-Moody algebra of
type A{". Choose u;=a,, u' =30, and let 7,=1,,. Then we have the
following.

COROLLARY 4.1. The homogeneous hierarchy of type A\" is given by

[2 Z (=1) Xry s, 1!)()?)"’(”7—”)2.”1(3?)] Tn Trn

rzl,s20

+(_1)mfn Z pu(z)plule(mfni»IJ(—2-‘X-)pi/u(j) To—t " Tms1

HEA
+(=1)"" Z PA=2)P s 20m—n-1)2E) Pyy(X) To i T (=0
st (21)

Note that Eq. (21) is called the non-linear Schrodinger hierarchy since
some of the equations of lower degree produce the classical non-linear
Schrodinger equation (¢f. [KW, P]).

ExAaMPLE 4.1. Let A=(k), k is a positive integer. Then the above
equation becomes

[2 Z Xe Pk —r) x)+( )Zpk(i)] Tn T

r=1

k
+(-n"~" Z PP amena (=28 Pl () Tp_ (T

r=0

k
_+_(__1)m—n Z P,-(_z) pr+2(m—nflj(2i) p(k—r)(j) Tt 'rm—l=0'

r=0

If k=2, m=n, this gives (D,7, -7,=0 is trivial)

Dit,-t,+2t, ,-1,,,=0. (22)
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Note that if we put

Tn+l

u,(x)=log (x, c;, €3, ..0),

n

then one obtains (cf. [TB, KW]) the Hirota bilinear equations of
1-dimensional Toda lattice equation

L (23)

ExampLE 4.2. Consider the case of type 44" For i=1,2, choose the
basis u,=«,” and its dual basis u' = w, (the fundamental weights of s/(3)).
Put 0 =a, + a,, then we have

Q5 (x) =4x{"x{?,
if y=4+86,
otherwise.

4
00\ = 4G <ty ={

Take a=f=n0, A, =4,=(1) and let 1,=1,,. Then the corresponding
equation in Theorem 4.2 gives

D(II)D(IZ)Tn'rn+2tn+l'tn~1=0' (24)

Define t,(x, y)=1, by putting x|\ =x, x{¥=y, and all other x{’=
constant. Denote

T"+1(X, y)

u,(x, y)=log )

Then Eq. (24) is equivalent to the classical 2-dimensional Toda lattice
equation (cf. [UT]),

(un)xy=eun*"n—-l_e“n+l*"n' (25)

5. ExpLICIT FORMULA FOR THE BKP HIERARCHY

In this section we give an analogous result for BKP hierarchy which is
associated to the spin representation of B_. The polynomial solutions to
the BKP hierarchy turn out to be the so called Schur Q-functions (cf.
[DJKM, Y]), which connect to the projective representation of symmetric

group (cf. [St]).
Define p;(x) by the following

Zﬁj(x)2j=exp( y xkzk)

j=0 k>1o0dd
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It is known [DJKM] that the BKP hierarchy is equivalent to the Hirota
bilinear equation

Y. Bi(—2y) p,(2D) eX o6 Pit. 1 =0, (26)
jz 1

where D = (8/dx,, $(8/0x,), 1(&/dx;), ..).
The following result can be deduced in the same way as we obtain the
principal hierarchy. So the proof is omitted.

THEOREM 5.1. A function t(x) is a solution for the BKP hierarchy if and
only if it satisfies the differential equations (4 € Par)

2
[ 5 ﬁ#(—;)ﬁ.y.(z)z)ﬁ,«.m(f)]r-r=o, 27)

FApu< i
where ﬁ)./u(x) = det(ﬁl,’—pj-kifj(x"))'

Note that some of these equations of form (27) of lower degrees can be
found in [JM]. Define for any partition 4

- 2\ . .

Oi= ¥ 2u(=3) huR) pul).
BAUSA J

Let BKP(n)=the space spanned by {(;; 4} n}. Then the dimension of

BKP(#n) i1s given by

dim BKP(n) =p'°(n) — p©'(n),

where p©(n) (resp. p*)(n)) is the number of partitions into odd (resp.
even) parts.
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