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Abstract

We consider the problem of assigning optimal due dates and optimal starting
times to a set of identical jobs on a single machine when processing time on the
machine is random. There are N identical jobs ready to be scheduled in the facility.
Processing time at the machine is random with known distribution and raw material
is available at no additional cost. There is an earliness cost for holding a finished
job an extra unit of time and a tardiness cost for being short an extra unit of time
past the due date. There is also a cost for quoting an uncompetitive due date for
each job in the set, this cost being zero if the quoted due date does not exceed a
certain "acceptable” value A. The objective is to minimize the expected total cost

of quoting the due dates and scheduling the jobs in the set. The optimal due dates



and the optimal starting times are determined analytically. They are the unique
solutions to a set of first order conditions. We show that there exists an optimal
solution where the due date of each job is at least equal to A, with the exception
of the first job to be processed. The optimal starting time for a particular job in
the set is described by a simple wait-until policy. This optimal policy is completely
determined by a single critical number, which represents the optimal planned lead
time for that job. We show that the optimal planned lead times are non-increasing
with the position of the job in the sequence, with the exception of the planned
lead time of the first job to be processed being the smallest. Finally we show that
adding another job results in quoting earlier (or the same) due dates to the jobs in

the preexisting set.

1 The Problem

1.1 Introduction

A set of N identical jobs are ready to be scheduled for processing on a machine. The
optimal due dates for these identical jobs need to be quoted before any processing occurs
on the machine. There are no other jobs in the facility, raw material is available at
no additional cost and the machine cannot process more than one job at a time. The
jobs consist of projects that must be completed once started in order to be delivered to
different customers, hence preemption is not allowed. Job N is the job with the earliest
due date, hence the job to be started first since all jobs are identical. The processing
time 7 at the machine is random with known distribution F. Once the due dates df,
i =1,.., N of the jobs have been quoted, it is required to determine the optimal starting
policy yr (L, di1,...,dy), i.e. the optimal waiting time before starting the processing of
job 4,7 =1,...,N, given that d; is [; units of time away and given the previously quoted

due dates d;_y,...,d;. Obviously, yx (In,dNn-1,...,d1) = 0. This observation stems from



the fact that having assumed job N is ready to be processed, we would like to quote its
due date as early as possible, hence Iy = dy. The objective is to minimize the cost of
quoting the due dates and scheduling jobs N through 1. A holding cost h per unit time
1s incurred if a job is completed before its quoted due date and a shortage cost p per
unit time is incurred otherwise. The cost of quoting an uncompetitive due date is C (.),
assumed to be a strictly increasing function of the due date, convex, continuous, twice
differentiable, and zero for a due date no greater the acceptable limit A (Jones [10]). A
is a value determined by the market and by the customer conception of how long is she

willing to wait before her order is delivered.

1.2 Background

Considerable research has been done on assigning optimal due-dates for the single ma-
chine scheduling problem with earliness/tardiness penalties. In their surveys, Baker [1]
and Cheng [3] report of no analytical work done with the machine having random pro-
cessing time. Further work with deterministic processing time have been done by De,
assuming a given common due date in [7] and assigning distinct due dates in [8], and by
Cheng [4] assigning the same time window (flow allowance) to all jobs. Random machine
processing time has been considered in conjunction with random due dates as in De [6]
and Emmons [9] with the objective of minimizing the weighted number of tardy jobs. We
are not aware of any past research that considers random processing time and assigns
distinct optimal due dates with earliness and tardiness penalties. Cheng [5] describes a
model that assigns optimal due dates in the presence of tardiness/earliness penalties, and
in which the due dates are random. In his model, d; = p; +k; for each job ¢, where d; is the
due date, p; is the random processing time and k; is a job waiting allowance, a decision
variable. Cheng assumes in his model that the distribution of w;, the time elapsed until
the start of job ¢ processing time, is given. This model suffers from two serious deficiencies

which prevents it from addressing and analyzing the problem that the author has set to.



The first deficiency is that one cannot quote a random due date. The second deficiency
is that if job 7 is processed before job j, then the distribution of w; depends on p; and k;,
hence a) the search for k¥ must be carried using sequential decision making i.e. using the

information given by the realization of p; and b) f; (w;) is not data but rather a function

of ]iq

This paper is organized as follows. In section 2 we analyze the case when N = 2, i.e.
determine the optimal due dates d} and d} and the optimal starting policy y; (I;) for job 1.
We also analyze the case when N = 3 to illustrate the derivation of the optimal starting
policy when there is more than one remaining job to be processed, a situation that is not
present when N = 2. Hence for N = 3 we determine y; (I3,d), y5 (1), d3, d; and dj. We
show in this section that for N = 2 there exists an optimal solution where the due date
of the second job to be processed is at least equal to A and that for N = 3, there exists
an optimal solution where the due date of the second and the third job to be processed is
at least equal to A. We also show for N = 3 that, a) the optimal planned lead time (that
completely determines the optimal starting policy) of the second job to be processed is at
least equal to the optimal planned lead time of the third job and that b) adding the third
job results in quoting an earlier (or the same) due date for the second job than the one
quoted in the case when N = 2, i.e. when the second job was the last job to be processed.
We discuss in section 3 the economic interpretation of the first order conditions that give
rise to the optimal due dates and to the optimal starting policy in sections 2. We also
discuss in section 3 the managerial insights provided by the practical results obtained in
section 2. We generalize in section 4 for N > 3. Section 4 may be skipped if the reader is
not interested in the mathematics. We conclude in section 5 by suggesting some further

directions in research.



2 Dynamic Programming Formulation

2.1 Two-Jobs Model

Suppose that N = 2. We will use backward stochastic dynamic programming to determine
d3, di and y; (). The first stage is triggered when job 2 is done processing. Figure 1
depicts the time advances in a two-job model. The first stage problem is defined as

following:

h-un

i h) = Mingpoh [ [ =y) =0 fi Ot 4p [ = (h-mlf)d (1

where the first term is the first term is the expected holding cost and the second term
is the expected shortage cost. It can be easily checked that J; (I;) is convex in y; by
differentiating it twice. Therefore, the optimal solution y} (I;) to the first stage problem
is obtained by differentiating equation (1) with respect to y; and setting to zero. Doing
this we get the following wait-until policy, where we wait l; — X units of time before

processing the job if [y — X} > 0, and process immediately otherwise.

h-X; ifh > X;
yi (h) = 1 1 (2)

0 otherwise

where X7 = F! [;;Lh] is called the optimal planned lead time for job 1. Figure 1 shows

that ly = I + r; — 7. Hence the second stage problem is defined as following:

d2
Min J; (dy,r1) = Cwﬁ+erHﬂ+hA (dy — ) fo (u) du +
p[ (w=d) fou)dut B} (471 =7,) )
2
s.t. dg, ™ 2 0
Our goal is to show that the Hessian of J, (d,71) is non-negative. The Hessian of the

first four terms is non-negative by assumption and from the first stage analysis. Suppose
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that J7 () is convex in I3, then we are done. Our goal is to show that J; (I;) is convex

in l;. Substituting (2) in (1), we get

Rl (Xp =) [t dt+p g (t— X7) i (1) dt b > X;

Ji(h) =
hlot (b —t) fi (8) dt +p [ (t = 1) fu (t) dt XT2h

(4)

It is easy to see that (4) is continuous and differentiable at ;; = X}. Finally, differen-
tiating J§ (h) twice shows that it is convex in I; and hence the Hessian of J, (dy,r;) is
non-negative. To determine d; and r}, we substitute ly by (dz + 7, — 73) in (4), apply the
expectation operator, differentiate (3) with respect to d, and r; and set to zero. Doing

this we get

da+ry

E[Ji (dy+m—7)] = h /d /0 T = umt) f1 (8) () didu +

2+ —-X¢

da+7) 00
p/d i /d (t+u—dy—r1) fi(t) f2 (u) dtdu +

b+r1—-X{ Jd24ri—u

P/ (1 +u—dy—ry) fr(u)du+
d2+71

[h [ -0 Ay

da+r1-X¢

o= xpn0a) [ g

and hence

. 5 * A
e R YT
67‘1 0

P = XD A0 e tr - x4

da+ry do4r1—u
b ' /0+ f1(0) fa () dedu -

2+r1-X!
Xt

hfy (dy + 11 —X;*)/0 (XE—1t) fy () dt —

o O Rt ) [ ) de -

2+r1—-X{ Jdotri—u
[o.¢]
»
1

phy(dy+11 - X7) /X (t= X7 fu () dt —
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p . alw)du=puifaldy+ ) =0
da+r

6']2 ((1277‘1) _ ! 4 % =
ARy AT LRy AT

which reduce to

61> (do. 1 da+71 da+ri—u
2O )tk [T [ 0 ) deda -
67'1 do+7) - X'
e ) dtd
p/dz-l—rl X! /d2+r1—uf ( )f2( ‘T p/z +71 f2
(SJ‘), (d2,7']) _ ,', 6J2 (d2’r1) _
s +h/ Ja(u) du ”/ h T

dy > 0 can be determined easily from (9). d; satisfies

p—C'(d3) .
— I <L
p+h A

d;=F‘1[

It can be seen that r} > 0 since substituting r; by 0 in (8) gives

6J; (dz, 7'1)

67'1 l7'1=0

= (&) +h/ / u) dtdu —
p / AR / fulu)du

h+p/ / Ty u) dtdu — p

8J; (ds,
< C'(d;)+(h+p)/(; fz(u)d"—p=%1‘zi)|d2=d;=0

(10)

Denote the integral terms in (8) by ¥} (d5 + ;). ¥} (dj + ;) is non-decreasing in r; and

vanishes at ry > 7 + X7 — dj where 7 is the largest realization of the machine processing

time. This can be shown by differentiating it with respect to r;. Doing this we get

, di+m Xl‘
V) (& +m) = h H Sl —u) fy(n)du— b /0 fo s+ 71 = X2) 1 (8) dt
d;-l'-’l'l " 00 *
+p fuldytri—w) hwdu=p [~ f(d+m - X;) i () de
d3+ri-X? 0
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b [ Rd 4 = X3 (Od4 pfa (4 — X

d3+m1

= (h+p) fildy+r—u) fo(uw)du>0
d;+r1—X;'

Hence W} (d&5 + r1) < 0Vr; > 0. Note also that C' (dj 4+ r;) = 0 for ry < A—d;. Therefore
letting d; = dy + 1y we get

&= {r,z e [T+ X}, A]} fT7+X; <A (1)
> A otherwise

2.2 Three-Jobs Model

Before extending the problem to N jobs, it is necessary to analyze the case when there
are three jobs in order to illustrate the computation of y; (I3,d;) = y5 (I5,7,) where r; =
dy —d,. In a three jobs problem, job 2 is not started immediately as in a two jobs problem.
Suppose its due date has already been set and cannot be changed. Hence its starting time
must depend on the remaining time till its due date and the due date of job 1 at the
time job 3 is done processing, since this is when stage 2 is triggered. As a result, it also
depends on the optimal planned lead time of job 1. Figure 2 depicts the time advances in
a three jobs problem. In a three jobs problem, the decision variables are d3, r, and r; at
stage 3 (where ry = dy — d3), y, at stage 2 and y, at stage 1. y7 is given by the optimal
starting policy defined in (2). To determine y;, we solve

-

b-y2
Ji () =Mingyo b [ (= 12) =t fa(t) dt +

p[C b--wlhOd+EEG] ()

To solve (12), we substitute {; by (lz —y2+7r1 —7) in (4), substitute [, — y, by X
in (12), differentiate (12) with respect to X, and set it to zero. Note that convexity in

X3 is conserved since the Hessian of J; (dz,71) is non-negative in a two jobs problem and
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(’(.) is convex (equation (3)). Doing this, we obtain a first order condition similar to

equation (7), but with X, instead of d; and without the due date cost terms.

dJ, ly,my X2 0 . |
]d();z ):"/0 f‘z(”)du—z’/xz fa(u)du+ 0 (Xz + 1) (13)

and hence y; is given by the following wait-until starting policy:

l,—X; ifl,> X
gy () =4 ° 7 ’ (14)
0 otherwise

where X3, the optimal planned lead time of job 2, satisfies (13). Note that X3 > X7 since
substituting X, by X7 in (13) gives

dJy (ly,r X; . *
zd();z 1).|x2=x; = h/o fz(u)du—p/x; fo(u)du + 95 (X} + 1)

But we have shown previously that W} (d} + 1) < 0 V¥r; > 0. Using the same arguments,
we also have that W} (X} +r1) < 0. As a result X; > X;. To determine d3, r; and r},

we solve

Min J3(ds,r2,71) = C(d3) + C(ds+ry)+C(dz+r, +r)+
BT =0 )t [ (0= do) o)+
E[J; (d3+7‘2—T3,7‘1)] (15)

s.t. d3,7'2,7'1 2 0

Our goal is to show that the Hessian of J3 (d3,r3,) is non-negative. The Hessian of the
first five terms is non-negative by assumption and from the first stage analysis. Suppose

that the Hessian of J; (I3,1) is non-negative, then we are done. Our goal is to show that



the Hessian of J; (I;,71) is non-negative. Substituting (14) in (12), we get

B Iyt (X5 —u) fo(w) du+p 55 (u — X3) fo (u) dut
I (o) = E[J; (X5 4+ —7)] ly > X3 (16)
Bt (b = u) fo (u) du +p [2° (u = b) fo (u) du+t
| B[} (4711 — 7)) X;>1,

Using (13), it is easy to see that (16) is continuous and differentiable at I, = X3. Since
Ji (L) is convex, then the Hessian of J; (I;,r) is non-negative and therefore the Hes-
sian of J3(d3,73,71) is non-negative. To determine d5, r; and r}, we substitute I, by
(ds + 72 — 73), apply the expectation operator, differentiate (15) with respect to ds, r,

and r and set to zero. Doing this we get

dy+r2=X2 X2
BU; (datra=mym)] = b (X2 =) fi (u) fi (v) dudv +
d3+r2—X;
p / (u = Xs) fy (u) fs (v) dufdv +
d3+ro—v
h/w LT et — v =) fo () o (0) dudv +
33+:2 ’ 00
/d+r X /d+r _v(u+v—d3 —13) fo (u) f3(v) dudv +

P/ (B2 +v—ds—1y) fs(v)dv +

dz+r2—X;
E[Jik ()(2‘*'7'1—7'2)]‘/0 f3(v)dv+

/ EJ; (ds 412+ —v—m7)] f3(v)dv (17)
d3+r2—- X2
and hence
o.J. d,'-, / Ig* ttra= X
__3_(%_@ = C'(ds+ry+m)+E'[JF(Xo+ 7 —72)]/0 o 2f3(v)dv+
1

/d°° E'[J} (ds + 7o+ 11— 73 — )] fo (v) dv

3+re—X2

But £ [Jl"‘ (&3 +m —7)] = ¥j(d; +r1) as defined in a two jobs problem. Substituting
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we get

0J3 (ds,ry, 7 d3+ra— X,
_i%%ﬂiﬁ = W@h+m+r0+wﬂXrHﬂA f3(v)dv + (18)
1
at+ro+ri=X{ pdatratri—v d3+ra+ri—u—v ) 3 dtdud
/3-}-7‘2 X2 /dg+r2+1'1 X‘—‘U\/(; fl( )f2 (U) f' (v) U v+
d3+ra+rm) d3+ra+ri—v pdg+ratri—u—v
/ / / £ (8) o () £3 (v) dedudy —
dz+ra+r =X JO
da+ra+r— X‘ d3trat+ri—v ; 3 dtdud
/+r2-—X2 /da+r2+r1—X -v /ds+rz+n—u vf ( )f2 (U)f (U) e
d3+ro+r)— 00
/ / f3(v) dudv —
d3+r2— X3 da+T2+T1—v
dy+ra+7] /da+T2+Tl—v/ ; 3( )dtd d
/d3+1'2+7'1 Xy Jo d3+ra+r1—u— vf ( )f2 (U)f Y Ha
/d3+7'2+1'1 /oo )d d /oo f ( )d 0
udv — =
dz+ro+r1-X{ Jdz+ro4ri— v ( Y d3+r2+m 3\
Also
§ .
_.__Jf’(d;;”’“) = C'(ds+r)+C (d3+r2+m1) +
2
d3+r2 d3+r2—v
h /d s /0 f2 (w) 3 (v) dudv —
/dm /°° f (u) f3 (v) dud / v)d
- +
P d3+ra—Xz Jdz+ra—v ( ) wwep s+r2 v
/ E'Jf(ds+ry+r—1—v)]f3(v)dv=0 (19)
d3+r2—X2
and finally
Js (dg, 7y, 1 d 00 6J5(d
6]'3( S,TZ’H):Cl(d3)+h/3f3(v)d'v—p/ f3(v)dv+ ']3( 3,7‘2,7‘1)___0 (20)
dds 0 ds ory

d3 is obtained from (20). 3, r} and X are determined simultaneously using (13) and the

following set of first-order conditions:

. vy di+r—-X
—-————6]3(d3’72’”) = C'(dy+ra+m)+ 9]} (X;>,+7‘1)/3 2 2fa(v)dv+
67'1 0
\I’ (d*+7'2,d +7'2+7’1) 0 (21)
8Js (d3, ry, 7
———3(;7ﬂ’2”‘) = C'(&+12)+C (&5 +r+m1) +
2
U2 (dy + 1) + V3 (df + 1o,y + 3 +74) =0 (22)

11



where W3 (d5 4 ra,d5 + 5 + 1) and W2 (d3 + ry) are as defined in (18) and (19). Clearly
d3 is equal to the due date of the first job to be processed in a two jobs problem, hence
d; < X7 < X;. We want to show that 5 > 0. To show this, equation (19) can be

rewritten as

6J3 (dz, T2, 7‘1)

5 = C'(d3+r) +C (A3 +r24+m1) +
2

d3+72 d3+r2—v
h/d / f2 (u) 3 (v) dudv —

;+1‘2-X2 0

P pw @ - [ o)+

atra—Xz Jdi¥ra—v d3+r2
6‘]3 (d3a ra, 7'])
67‘1

; di+ra~X,
WL (Xg +11) /0 fs(v)dv =0 (23)

—C'(d§+7'2+7'1)—

Substituting r; by 0 in (23) and using the fact that dj < X we get

6']3((113,7'2,7'1) _ N d‘_v
o +h/ / v) dudv -
p / / _ufz(u)fs(v)dudv—p / s (v) do
dj—v

= C'(d3) + h+p/ / v) dudv —p
§J5 (ds, ra,

< c'(d;)+(h+p)/ f3(v)dv—p=—M|d3=d;=0

0 (5d3

We want to show that v > 0. Substituting r; by 0 in (21) and C” (d§ + r3) from (22) we

get
6']' d.,",' 1 [ 7 * d3+ri-X " ™ *
.—.L(;"_L”_I)L'l:O = C(d3+r2)+\I/;(X2)/O3 2 2f3(v)dv+‘11;(d3+r2,d3+r2)
1
! Bri=a 1 px *x 7k * 2 ( g% *
= 203 00) [T S (0)do W (&5 415,54 15) — R (G 1)

But we have shown previously that W} (dj + r1) <0, ¥r; > 0. Using the same arguments

12



we also have W} (X;) < 0. Therefore it is sufficient to show that W} (d% + 73, d5 +13) <
U3 (d5 +r;) and we are done. In fact comparing the holding cost coefficients in both

expressions we get

di+ry—=X?  pdi+ri-v d3+ry—u— v
/ / fa (w) £3 (v) dtdudv +
d3+r3-Xo Jdj+ri-X 0
d;+r2 dX +r2—u dr +r2—u v
/ / f2 (u) f3 (v) didudv <
d3+ry— 0
'+r2—X‘ dy+ry—v pdi4ri-u— v
/ / / f2 (u) 3 (v) dtdudv +
d‘+1'2-X2 0 0

T T R0 A 13 deduds =
0 _

‘+T2 X‘

IN
/{-l:Tim/o i /()d5+'2"“ ’ f2 (u) £3 (v) dtdudv <
/:54"2 /d§+fz-v f2 (u) £3(v) dudv

3+ra—X2 JO

o

Comparing the shortage cost coefficients, the terms with single and double integrals can-
cel and only the terms with triple integrals in W3 (dj + r},d% + r}) remain. Therefore
U3 (d5 +75,d5 + r3) < W2 (d3 +r3) and 1§ > 0. Equations (21) and (22) can be rewritten

as
al} * 1 d;-}-'rz—Xg 1 % *
C'(d5+r4+rm) == (X, + rl)/o fs(v)dv — V3 (dy +ro,d + 1 + r) (24)
and

C'(d3+1y) + C' (dy +ry +11) = —V2 (d + rp) — WL (d + 1 dy+ry+1) (25)

Denote by R} and R} the right-hand side of (24) and (25) respectively. Differentiating R}
with respect to r; and using the fact that X; = F~![p/ (p + k)] we get

§RL di+ra+r=X;  pditrotri—v
3 = _(h+p)[/d /d ’ fi(dz 41y +r1—u—0) fo(u) £3 (v) dudv+

ory 2 4ra-Xa 3 tradri—XF—v

dy+ratry dy+rotry—v .
Sy A== 0) () 3 0) due

n d;+r2—X2
—W (X, +r1)/0 f5(v)dv <0

13



Differentiating R} with respect to r, we get

ORy  ORj
éry bry

+ ‘I’é (XZ +m)fs (d§ +ry— X‘Z) - ‘I’; (Xz + Tl)fs (d;, +ry— X2) <0
Differentiating R3 with respect to 7, and using the facts that X; = F~'[p/ (p + )] and
X satisfies (13) we get

SR d3+ms
2= ) [ faldtra—v) fo(o)dv
)

d§+T2—X2

d3+rotr =X} pditratri-v .
—(h+p) / / fi(d3+ra4+1m—u—v)fo(u) f3(v) dudv+
d;-I-Tg—Xz d;+T2+T1—X; -v

d3+ra+r) d}+rot+ri—v
/ / fi(ds+ra+r—u—0) fo(u) f3(v)dudv| <0
d§+r2+r1—Xl‘ 0

Note that R} and Rj vanish at dj+ra+ry > 27+ X}, dj+r; > 7+ X and ry > 7+ X7 — X7
Note also that X5 <7+ X} since substituting X, in (13) by 7+ X} gives A > 0. Consider

figure 3 and the fact that equation (25) can be rewritten using equation (24) as

2 l} * * 2 * * 1 d;+T;‘X2
C'(d+15) = UG +r) + G (Xatr) [ folo)dw  (26)
where U} (X, + ;) <0 and
12 ¢ 1% d;-{-rz *
U tr) = (htp) [ L) folo)do 20
3 TT2—A2

From figure 3, if A > 27 + X then there exists r; = A —djand 1} = A — a5 — 3. If
T+ X; < A< 27+ X then rf > A — d5 — r} and there exists rj = A — d%. Otherwise,
ry 2 A—djand rf > A—dj—r}. Letting d; = d3 + r, + 7, and dy = ds + 75, we have
that if A > 27 + X7, then there exists dj = Aand & = A. K7+ X; < A< 27+ X;

then df > A and there exists dj = A. Otherwise, df > A and d§ = A. Before leaving

14



the three jobs problem we want to compare the optimal due date of the second job to be
processed in a two jobs problem to the optimal due date of the second job to be processed
in a three jobs problem to study the effect of adding a third job on the optimal due date

of the second job to be processed. In a two jobs problems, r} is given by

C'(dy +17) = =05 (d5 + 1) (27)

where
"1/ g% d3+m * »
VG tn) = (tp) [ A+ - ) fa(e)du >0 (28)

as was shown previously. In a three jobs problem, r; satisfies equation (26). As can be
seen in figure 4, the right-hand sides of (27) and (26) are equal at 7, = 0 and r, = 0
respectively since d; = d3 < X7 < X;. Furthermore, the derivative of the right-hand side
of equation (26) is steeper than the derivative of the right-hand side of equation (27), that

1s

d3+72
~htp) [ A=) (o) o+ W (Xa ) fo(d5 475~ o) <
dy+r1 .
_(h+p)/d‘+ 1 X'fl (d5+ 71 —u) fo(v)du
2 TT1=4,

since dj = d and X7 < X3. As a result, the right-hand side of (26) intersects C" (d + )
at a smaller value than the one at which the right-hand side of (27) intersects C’ (d} + r,),
1.e. 13 < i and hence the optimal due date of the second job to be processed in a two

jobs problem is at least equal to the optimal due date of the second job to be processed

in a three jobs problem.

3 Economic Interpretation

In this problem, the due dates must be quoted before any processing occurs on the ma-

chine. However, due to the randomness in the processing times, once the due dates have
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been quoted and processing has started, then the starting time of the next job in the se-
quence must be determined given the set of predetermined due dates of the jobs remaining
to be processed. In this section we shall provide an economic interpretation to the first-
order conditions that give rise to the optimal due dates (equations (22), (21) and (8)) and
the optimal starting times (equation (13)), in the two and three jobs problems analyzed

in the previous section.

3.1 Optimal Starting Times

Consider the three jobs problem. Suppose that there remains one job that has not been
processed yet and whose due date have been already set. Then its starting time is de-
termined by (2), determined completely by the solution of the classical Newscat problem
which balances the tardiness cost p and the earliness cost h to find the optimal start-
ing time X;. The problem is more complicated when there remains two unprocessed
jobs whose due dates have already been set. As in the previous case, the starting time
for the next job is determined by (14), determined completely by the solution to (13).

Equation (13) has a very appealing economic interpretation. It can be rewritten as

dJy (I, )

dX = h[P’I'{TgSXz}—I'PT{TzZXZ—X{+7'1,T1+T2SX2+T1}]—
2

plPr{n>X}+Prin>Xo - X{ +r,n+7> Xo+ )] = (29)

[t illustrates the combined impact of the marginal costs associated with each of the two
jobs, on the decision to determine the optimal planned lead time X3, i.e. the time window
inside which the next job (job 2 in our case) must be processed. Again, the effect of job
2 is the one of the Newsalien problem, indicated by the first probability term inside
the marginal holding and shortages cost brackets in the middle side of (29). The effect
of the second job (job 1) on the current decision is less myopic in nature. Marginal

savings in holding cost due to waiting an extra unit of time before starting job 2 are
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acheived only if the processing time of job 2 continues past the predetermined starting
time of the next job and job 1 processing time did not end past its due date. While
the second condition is a reminder of the savings achieved in the newsgirl problem, the
first condition complicates the non-myopicity of the decision process, in the sense that
no marginal savings in holding cost of job 1 due to waiting an extra unit of time before
starting job 2 are acheived if some slack time is realized between the completion of job 2
and the start of job 1. Similarly, the marginal increases in shortage cost of job 1 due to
waiting an extra unit of time before starting job 2 occur only if the processing time of job
2 continues past the predetermined starting time of the next job and job 1 processing time
does end past its due date. Equivalently, no marginal increases in shortage cost of job 1
due to waiting an extra unit of time before starting job 2 are incurred if some slack time
is realized between the completion of job 2 and the start of job 1. This information agrees
with the intuition that job 1 has no impact on the starting time of job 2 if it is certain
that some slack time will be realized after the completion of job 2. If X5 < X7 —ry, then
it is predetermined a priori that no slack is allowed between the two jobs and job 1 is

rushed immediately after the completion of job 2. In that case
Pr{m <0}=Pr{n>X;-(X;-r)}=1

For a three jobs problem, we have shown that X5 > X} > X} — ry hence we never decide
a priori to rush the next job and X; is indeed determined by (29). This property can
be generalized for larger number of jobs. We prove it for any number of jobs in the next

section.

3.2 Optimal Due Dates
Equations (22), (21) and (8) also have an appealing economic interpretation. They can
be rewritten respectively as

(7, (d; + 7'2) = —hP'I‘ {Tg _>_ d; - X2 + T2, T32 S d; + 7'2} +
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pPrim > d; — Xy 4 19,735 > d5 + 13}

(7/(d§+1'2+7‘1) = —hPT'{T;; > d;—'X2+7'2,T32 S_ d;+7’2+7”1 —X;,T;n < d;-{-’l‘l +7

(30)

)+

pPrims > ds = Xo+ 1yt 2 dz+ry+ 1 — X{, 70 2 &3+ 11+ 12} (31)

C'(dy+m) = —hPri{m>dy— X;+r,mm <dy+r}+

pPri{r > d;— X7 +ry,m > dy+ 11}

The marginal costs associated with the first job to be processed are obvious as illustrated
in (9) and (??) for a two and three jobs problem respectively. Determining the optimal
due date for the next job in the sequence is slightly more complicated. Consider (30). For
a three jobs problem, the marginal increases in holding cost associated with job 2 due to
quoting a due date one unit of time longer are incurred only if job 3 is completed past the
predetermined starting time of job 2 and job 3 is completed before its quoted due date.
In other words, no marginal costs in holding cost are incurred due to delaying delivery
one unit of time if some slack is realized after the completion of job 3. On the other hand,
marginal savings in shortage cost associated with job 2 due to quoting a due date one unit
of time longer are acheived only if job 3 is completed past the predetermined starting time
of job 2 and job 3 is completed after its due date. For each job, the combined marginal
effects of increases in holding cost and savings in shortage cost is negatively decreasing
with increasing values for the quoted due date of that job, as the positively decreasing
right-hand side of equations (30) and (31) indicate. In other words, the tardiness argument
is stronger than the earliness argument for job 2 and 1. Consider job 2 and equation (30).
This is due to the fact that marginal savings and marginal increases occur jointly, only
when there is no slack after the completion of job 3. Moreover, savings occur only if the
processing time of job 2 exceeds its due date, while increases occur only if it does not.
As a result, the rate of the marginal savings is positive and the rate of marginal increases
is negative because the higher the due date of job 2, the more likely the processing time

of job 2 will exceeds it if no slack is going to be realized after the completion of job 3.
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Equation (30) and (31) illustrate the intuitive fact that if there was no cost for quoting an
uncompetitive due date, then one would quote due date values at least equal to ?+ X for
job 2 and 27+ X7 for job 1. However if that cost exists and Max{A4, 27 + X;,7 + X;} = A,
then 7+ X; < d; < A and 27+ X7 < dj < A. These ranges of multiple optimal due date
values represents the guaranteed slack that the manager will have after the completion of
job 3 and after the completion of job 2 respectively under the optimal starting policy. We
assumed the marginal effect of uncompetitive due date cost to be positively increasing with
increasing values for the quoted due date of that job. In instances when A is sufficiently
small so that the latter does not apply, the quoted due date must be larger than A if the
combined marginal effects of the three costs is negative at A, and exactly A otherwise.
As a result, if the cost of quoting an uncompetitive the due date is linear to the right of A
with slope ¢, it is more likely to quote A when c is high. Several additional observations
can be made from equations (30) and (31). The higher is p and the smaller is h, the slower
is the rate of negatively decreasing combined marginal effects of savings in holding cost
and costs in shortage cost, hence the more likely that it is higher in abslolute value than
C'(A) and the further is the due date. Furthermore, the larger is the processing time
variance, the higher is the term containing p and the less likely is that the due date is A.
Therefore, the tradeoffs are that high p/low h and high variance increase the quoted due
date, force us to produce early and keep a high chance of introducing slack time between
the processing of consecutive jobs, while the cost of quoting an uncompetitive due date
have the opposite effect and ensures that jobs are rushed without any slack in between.
Finally, the analysis presented shows that r¥ > 0,: = 1,..,N — 1 and hence quoting a
common due date for all the jobs is suboptimal in single machine problems with random

processing time and earliness/tardiness costs.
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4 Extension to N-Jobs

Extending the problem to N > 3 jobs, the problem becomes for 1 <: < NN —I:

li—yi 0
T (s ictyem) = Mingso h ]0 [ —y:) — 4] fi (£) dt +p /1-_y. it — (I = yi)] fi (t) dt +

E [Ji"_1 (li = yi + izt — TiyTicgy ey rl)] (33)

and for 1 = N:

Mill .]N (dN,T'N_], ...,7'1) = C (dN) +’C(dN + TN—I) + + C(dN + T'N-1 + e + 7‘1) +
dn 00
h/o (dN—t)fN(t)dt-i-p/dN (t = dv) fv (2) dt +
E [JR;_I (AN 4 TN=1 = TN, TN=2, oors 7‘1)] (34)

s.t. dy,TN=1y ., 71 20

where r; =diy1 —diy 2 =1,..,N - 1.

Proposition 1 y (l;,d;_y,....d1) = yr(l;yric1,...,71), the optimal waiting time before
processing of job 1 is started, given that d; is l; units of time away and given the quoted

due dates d;_y,...,dy, is expressed by

. L-Xr ifl; > X;
yi (lyicty ey m1) = (35)
0 otherwise

where X}, the optimal planned lead time of job 1, solves dJ; (I;,7i_1,...,71) /dX; =0 (after
subtituting l; — y; by X;).

It is true for ¢ = 1 and 2. To prove this for 3 <1 < N, we assume that J?_; (li—1,7i=2, ..., 71)
is convex in [;_y, hence (35) is true for job i, and show that this implies J; (I;,7;-1,...,71)

is convex in [;, hence (35) is true for job ¢ + 1. In fact, substituting y; (4, ri-1,...,71) in

20



.]i (lia i1y eeny 7'1), we g(:-t

BI (X7 =) f: () dt 4+ p [ (t = X7) fi () dt+
E [J,-*_l (X +rioy —1i,rmicg, ...,7-1)] L> X
Ji (lyricaseesmt) = O (X4 i, 7ty o 71) ltyi=0,x,=1i} = (36)
ho (=) fi (8 dt +p [ (8 = L) fi (t) d+
E [‘]i*—l (li 4+ 7ric1 = Tiy iy, .--,7‘1)] < X:

It is clearly convex in [; for [; < X} since the first 2 terms are convex in /; and we
assumed that J? , (li_1,7i_3,...,71) is convex in l;_;, hence convex in ;. Furthermore
dJ; (liyricy...yr1) [dl; = 0 at [; = X since we assumed that X! solves dJ; (I;,ri-1,...,r1) [dX; =
0 (after subtituting l; —y; by X;), hence solves dJ; (X; + yi, i1, ..., 71) l{yi=o0.xi=1}/dl; = 0.

Proposition 2 X7, 1 <i < N —1 solves the following equation (after subtituting I; — y;
by Xi):
d] (l,,h 1y- 71

X, = hZPT‘{ZTk<ZTk+X,, Z Tk>Zrk+X X;,

=J k=j k=j+1 k=j

Z Tkz E T‘k+X X;+l’ ..... }—

k=j+2 =i+1
i i i1 i i1

P Prid m >3 rm+ X, Y n>2Y e+ Xi-X
i=1 k=j k=j k=j+1 Py

1

Z Tk> Z T'k+X XJ*+1’ ..... }=0 (37)

k=j3+2 k=j+1

It is true for ¢ = 1 and 2. To prove this for 3 < ¢ < N — 1, assume that it is true for
v Jf (L ricyy o) s given by (36) and Jiyq (Liga, 74, ...y 71) is given by (33). Substituting
li by liy1 = Yigr + 7 — Tipq in (33), letting Ly — yiy1 = Xip1, differentiating (33) with
respect to X7y, setting it to zero, and after doing further manipulations we get

d']i-H (li+1a Ty ey T‘])
dXip

= hPr{np < Xip} = pPr{mig > Xin} +

d.]; (Xi-H + i = Tig1, Tic1y e TI)

£ dXin

=0 (38)
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but from (36), we have that

. .. *
dJF (Xip1 7 = Tig1,Picty s T1) 0 if i1 < Xip1 4+ = X

dX1+] dJi(liyr;;lv"'vrl!'l

i=Xij1+ri-miyy Otherwise

(39)

For 741 2 Xiy1 + 1 — X}, it is given by the middle side of (37) evaluated at X; =

Xit1 + 7 — Tig1. Substituting this latter in (38) gives the following first order condition:

h (Pr {Ti1 < X} + 30

J=1

00 i+1
Pr T <) e+ X;
—/X.'+1+r.'-X‘ Z Z b

k=j k=j

i+1 i i+1
Yoyt X —X, Y n> E e+ Xipn — X7y, }f1+1( ) du )—
k=j+1 k=j k—-g+2 k—]+1
00 1+1
PT'{T2+1 >X,+1}+Z / PT ZTk>ETk+X,+1,
XI+I+TI—X‘ k=j k=3
i+1 1 i+1
Z TkZZ7‘k+Xi+1 XJ, Z Tk 2 Z i+ Xip1 — ]+1, o firn(w)du] | =0
k=j+1 k=j k=342 k=j+1

which reduces to

d']H'l (li'Ha Tiyeeey 7'1)
dXip

= hPr{rgy < Xipa} —pPr{ng > Xip} +

t+1 i+1 1
hZPT{ZTk < ZTH'XH-], Yo=Y et X — X,

Jj=1 k=3 =) k=3+1 k=3

i+1 1
)IRTIDY rk+Xi+1—X;+l,....}_

k=j+2 k=j+1
i+1 i+1 i

hZPT Yom > Zrk+Xz+l, Yo 2 Y e+ Xip — X,
k=j k=j k=j+1 k=j .

1+1
Z Tk 2 E rk+Xi+1—X;+1,....}=0

k=542 k=j+1
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and finally to

dJivr (Lig1, 7y ey 1) i+l i+l i1 ;
s Ty eees - hEPr ETk<E7'k+Xz+1a Z TkZET‘k+X,-+1—X;‘,
d‘X'i+1 k=3 k=741 k=;

1+1
Y n> Z rr + Xip1 — f+1,-~-}—

k=j+2 k=j+1
i+1 1+1 141 '
hZPr Zrk>2rk+X,+1, Z Tk227'k+X¢+1—X;,
k=j k=j k=541 k=j
+1
Yo we> Z e+ Xigr — Xipp o p =0 (40)
k=j+2 k=j+1

and we are done.

Proposition 3 X > X ,,1=2,..,N-1

Proposition 4 77, 1 =1,.., N — 1 satisfy the following set of first-order conditions:

N-1 n N-1
' (d*N+7'(N—1)+---+Ti) = —hPT‘{ZTk< Zrk+d1\1, Z Ty 2 Erk+dN—Xi,
k=1 k=1 k=i+1 =1
n N-1
Z TkZ Z T‘k+dN-X,'+1, ..... }
k=142 k=141
N-1 N-1
+pPT{ZTk> Erk+dNasz> Zrk-{-d]v X
k=1 k=1 k=1+1 k=1

N N-1
Z Tk 2 Z Tk+dN—Xi+1, ..... =0 (41)

k=142 k=1+1

The proof is by differentiating (34) with respect to r; and noting that §Jy (dn,rN_1,...,71) /67
is nothing but the due date cost terms plus the terms containing r; in (37), for 7 =

Iy N=1.
Proposition 5 dy is given by:
C'(dy) = =hPr{ry < dny} +pPr{ry > dy} =0 (42)
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The proof is by differentiating (34) with respect to dy and noting that éJy (dn,rn-1,...,71) /édn

is nothing but the due date cost terms plus the terms containing Xy in (37).
Proposition 6 Denoting by W (ri,...,7n, Xa, ..., Xn_1) the right-hand side of (41), we
get fori=1,..,N —1:

{rre (V=074 X7 —dy - TSl

A=dy -4 ]} if(N-i)T+X; <A

A-dy - Tisn if (N-9)T+ X! > A and
‘I’}V (A—d*N - kN=—1}}-1 T'Z,...,TN,

Xy ey Xn-1) < C' (A)

7 otherwise

(43)

The proof is by showing that the derivative of W (r;,...,7n, X2, ..., Xn_1) With respect
to r; is negative for 7 = 1,..., N — 1, and that it vanishes at r; = (N —4)7 4+ X} — djy —
N- *
k=i1+1 Tk
Proposition 7 Let dV* be the quoted due date for job 1 in an N jobs problem. dgﬁ"{)l)* <
&N, i=1,..,N.

5 Conclusion

We have considered the problem of assigning optimal due dates and starting times to a
set of identical jobs ready to be processed. We have shown that optimal quoted due dates
can be obtained analytically by balancing the marginal effects of holding cost, shortage

cost and cost of quoting an uncompetitive due date for each job, due to quoting a due
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date one unit of time longer. The optimal due date shave been shown to be at least
equal to A, the "acceptable” value set by the market or by the cutomer conception, below
which any quoted due date will be assigned without any extra cost. We have also shown
that once the due dates are quoted, optimal starting times of subsequent jobs in the
sequence can be also obtained analytically by balancing the marginal effects of holding
and shortage costs, due to waiting an extra unit of time before starting the job with the
earliest due date. The issue of sequencing the jobs was not raised because we assumed the
jobs to be identical with same processing time distribution on the machine and same cost
structure. However, a future direction on research could be one in which this assumption
is relaxed. Hence it would be required t;) find the optimal sequence in which the jobs must
be processed on the machine, their quoted due dates and the optimal starting time policy
once processing has started. It would be interesting to determine necessary conditions
on the cost structure and/or processing time distributions and parameters that will allow
for some specific sequences to be optimal and to question whether these conditions are
reasonable. Another direction in research may be the generalization of this model to serial

production lines and flow shops.
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