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We construct L2-orthonormal bases of vector-valued wavelets
for divergence-free vector fields in four dimensions. They have
exponential decay and any degree of smoothness one chooses for
the construction. Although a momentum vortex field construction
is possible in the special case of four dimensions, our method can
be applied to an arbitrary number of dimensions. © 1994 Academic
Press, Inc.

1. INTRODUCTION

Phase cell decompositions have applications to many ar-
eas of the mathematical sciences, from signal analysis to
the analysis of long-distance correlations in statistical me-
chanics. The phase cells index a set of expansion functions
for analyzing a configuration. They also label locations
in phase space about which the functions are more or less
concentrated in both position coordinates and Fourier trans-
form coordinates. Since the Fourier transform iroposes se-
vere limits on the amount of localization possible in phase
space for a complete set of phase cells, the idea of wavelet
expansions is to break up this obstacle into an indefinite
hierarchy of scales, where the wavelets are well-localized
in the scale-commensurate sense. Since many of the math-
ematical sciences involve differential equations of one kind
or another, we are currently interested in the construction of
complete sets of wavelets satisfying differential constraints.

In a previous paper [1] we constructed an orthonormal
basis of wavelets for the space of square-integrable diver-
gence-free vector fields in three dimensions. These wave-
lets are exponentially localized with an arbitrary degree of
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smoothness and number of vanishing moments. Such a ba-
sis will be useful in the analysis of the mechanics of in-
compressible fluid flow (2,3].

Although our construction in [1] may appear peculiar to
three dimensions, we shall establish in this paper that it
actually generalizes to an arbitrary number of dimensions.
Our construction here will be confined to four dimensions
only. The divergence-free condition in four dimensions is
the down-to-earth continuity equation for conserved cur-
rents, so we expect such a basis of space—time wavelets to
be useful in that context, whether the physics is relativistic
or not. On the other hand, the multidimensional general-
ization of our construction will become clear in principle
as we describe the four-dimensional construction. In any
case, the complexity of the algebra grows with the dimen-
sion. We suppress most of our calculations, but they are
already much lengthier in four dimensions than in three.

We have learned that Lemarié [4,5] has constructed a
nonorthogonal basis of wavelets for divergence-free vector
fields in an arbitrary number of dimensions. His wavelets
have compact support as well as an arbitrary degree of
smoothness. Although they are not orthogonal, the dual
basis is as easy to construct and also consists of compactly
supported functions.

Recall that in three dimensions our basic construction

was to minimize [(dA)* for a vector field A with respect
to different sets of loop integral averaging constraints on

Aanda gauge-fixing condition. We then took the exterior

derivative dA, of our solutions A, as our L?-orthogonal
divergence-free wavelets. This approach works because the
exterior derivative of a three-dimensional vector field is just
the curl, whose divergence is identically zero. Obviously
the exterior derivative of a vector field in four dimensions is
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an antisymmetric tensor with six independent components,
so we cannot play quite the same game here.

The idea in four dimensions is to minimize [(dF)* for
an antisymmetric tensor field F with respect to sets of av-
eraging constraints and a gauge-fixing condition. We then
apply the exterior derivative to our tensor solutions to ob-
tain L2-orthogonal vector wavelets that are automatically
divergence-free. The point is that in 4 dimensions the ex-
terior derivative of F is a pseudovector field. The exterior
derivative of such a pseudovector is identically zero and
can be written as the divergence of the corresponding real
vector field.

What is the geometric nature of the averaging con-

straints? In the case of minimizing [(d A)* for a vector

field A, the geometric objects whose translates were av-
eraged were canonical loop integrals, where the canonical
loops were oriented boundaries of plaquettes. In our case
they are the oriented boundary integrals that the usual gen-
eralization of Stoke’s Theorem relates our particular exte-
rior derivative to. Since dF is the exterior derivative of
an antisymmetric tensor, the boundary integrals are normal
surface integrals instead of the path integrals arising in the
vector case. The surfaces consist of the plaquette faces
of the three-dimensional cubes or “hyperplaquettes,” where
the normal directions on the surface boundaries are anti-
symmetric tensors. If e, denotes the unit uth-coordinate
vector and if we consider, say, a three-dimensional cube in
the uvh-coordinate hyperplane with vertices on Z*, then the
normal directions are given by
N=e,Ae, N=e\,Ae, N=e, Ae,
for the max —x,—, max —x, —, and max —x, —faces, respec-
tively—or by the same rule corresponding to a permutation
of u, v, A. The cyclic relation is necessary for the orientation
of the surface boundary to be consistent with the exterior
derivative of .
We minimize the quadratic form

/ ( OF apw
v, )‘ ax)‘ Xy

on antisymmetric tensors F with respect to the constraints

OF,
2

Ox,

/ n(x— m) / / F-Ndodx = s,a\(m), me Z*, (1.3)
Spntx

where 7 is an averaging function satisfying the Meyer func-
tional equation

(L.

2
OF ) dx

Bx#

=0, (1.2)
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700 =Y c=n(2x— m) (1.4)

m

for some sequence {c’;,}, S is the surface of the unit cube
in the pvk-coordinate hyperplane with minimum-coordinate
vertex at the origin, the dot product here signifies contrac-

tion product of tensors, and the numbers su,,x(ﬁ) associated
with these constraints must satisfy certain conditions. First,

there are compatibility conditions: su.,x(;z) must be antisym-
metric in the indices and it must satisfy the lattice exterior
derivative condition

[s;w)\(;' + Ec) - S;w)\(’;’)] - [sa;w(’;l + E)\) - Sayu(;l)]

+ [S)\ap(;l + 2l/) - s)\ay(;l)]

- [S,,)\g(;'l + ;y) - sv)\a(;t)] =0. (L.5)

This equation must hold if our “hyperplaquette” constraints
are to be compatible, and it will play a crucial role in our

calculations. Second, S,L,,)\(r_l-l) must satisfy an averaging
constraint itself it our solutions on different scales are to
be orthogonal. The constraint is

Zc— Z Sun(m +2n+u e, +' e, +. €,) = 0, (1.6)

et =0

and we omit the proof that it guarantees orthogonality. It
is entirely similar to the proof of the parallel claim in three
dimensions [1].

We emphasize that the constrained minimization problem
solved here in four dimensions is quite different from the
problem solved in [6,7], which involves the exterior deriva-
tive of a vector field in four dimensions. The purpose of
the authors was to construct gauge field modes, and at first
glance it may seem that they accomplish our purpose as
well, and in a more straightforward way. After all, their
gauge-fixing constraint is precisely the divergence-free con-

dition on A. Unfortunately, their solution is not exponen-
tially localized. They can gauge away this problem, and
this suits their own purposes, but this option also destroys
the divergence-free condition.

In our context the gauge-fixing constraint is (1.2) and is
needed for obtaining a unique solution for F. Although this
constraint is a divergence-free condition on the antisymmet-
ric tensor field, it has nothing to do with the divergence-free
condition on the vector field that we ultimately obtain.

The format of this paper is similar to that of [1] in some
respects. In the next section we derive the momentum ex-
pression for the solution of the unconstrained minimiza-
tion problem obtained by introducing a constraint parame-
ter < 0o. In the @ = oc limit we have to invert a singular
matrix on the orthogonal complement of its kernel. In Sec-
tion 3 we do just that and then take the exterior derivative of
the antisymmetric-tensor-valued solution which this inver-
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sion computes for us in momentum space. As in [1,6,7], the
solution does not have exponential decay, but the exterior
derivative does.

Following [1], we choose our averaging function 7 to be
a compactly supported spline of arbitrary degree. Specifi-
cally,

7i(p) (1.7

= H Q(PM)N

m
where x is the characteristic function of [0,1]. We may
choose N as large as we like, and the resulting divergence-
free wavelets are of class C¥~¢ with vanishing moments
of order < N. As usual, the basis constructed by our
constrained minimization technique is inter-scale orthog-
onal but not intrascale orthogonal as it stands. Translation-
invariant orthogonalization on each scale is a canonical pro-
cedure if the overlap matrix is positive definite with positive
lower bound. The proof of that property is nontrivial but
differs in no interesting way from the proof in the three-
dimensional case [1], so we omit it.

In Section 4 we prove that the exterior derivative of our
solution does indeed have exponential decay, but our proof
is unappealing. Instead of deriving the property from some
characteristic of our construction, we simply prove that the
momentum expression is real analytic. This means that
one has to compute the restricted inverse matrix mentioned
above. This had to be done in the three-dimensional case
[1] as well, but in the four-dimensional case the calculation
is tedious.

In Section 5 we take time out to discuss completeness—
an issue that is often lost in the complexity of our con-
structions. We do not say much about it in [1], but here
we explain why one so rarely worries about it. We give
the proof for scalar one-dimensional wavelets in the con-
text of the constrained minimization approach, and then we
describe how one extends the argument to our geometric
sophistication of that approach.

Finally, it is clear how to generalize the construction to
arbitrary dimension d. By regarding the divergence of a
vector field as just the exterior derivative of a pseudovector
field, one needs only to construct antisymmetric (d — 2)-
order tensor wavelets orthogonal with respect to the
Sobolev pseudonorm based on the exterior derivative of
such tensors. The averaging constraints are based on the
unit-normal-tensor (d—2)-dimensional surface integrals over
the boundaries of the (d — 1)-dimensional hyperplaquettes.

2. PRELIMINARY MOMENTUM EXPRESSION

We deal with the constrained minimization in the same
way as it was dealt with in [6,7]. In this case the quadratic
form
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2
/(BFW OFr | BF,,)\) i
l-“/)\ OX)\ Xy 6x#
2
F,.,
+aZZ/ 8 — | dx

+a’ Z Z {Suux(r_;l) —/n(x— r;t)//s . F- Ndadx:l2

JTR7R Y m
2.1)

is minimized on the space of antisymmetric tensors. We

then take the & = oo limit of the a-dependent solution.
Qur first step in obtaining that solution is to write the

averaging functional as an inner product—as we did in three

dimensions [1]. In this case we have

/n(x— r;t)// F-Ndodx
Santx

- / F(x) - RPMNa— m)dx,  (2.2)

R*Mx) =// __ _ nNde.
Suntx—e,~e,.—e\

Now for the orientation of the surface to be consistent with
the exterior derivative, we must have

(2.3)

N =-é# A _é,,, N =_éx A E“, N ‘—‘E,, A E)\,

for the max —x\—, max —x,—, and max —x,—faces of §,,,,
respectively. Since this orientation is changed by permu-
tations of u, v, N\, we are obviously summing over all pos-
sible surface orientations in four dimensions of a three-
dimensional cube as well as over such cubes that live on

the unit-scale lattice. In momentum space we get

R (p) = A3 ()X (D)
X [(6;/#51/1/ - 6;;’1/61/;1)(1 - eip)‘)
+ (Bunbuy — 601 — ')

+ Buvbun — 86,1 — €P4)],  (2.4)
and it is useful to observe that matrices of the form
Ay = Oy prpys (2.5
By = by pu Py (2.6)
annihilate R**(p) because
Pux(py) = i(e'?* — 1). 2.7)

This is relevant to the propagator, which we now calculate.
If we write the differential part of the quadratic form in
terms of momentum integrals, that contribution is
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/lpu 2% P) + p)\Fp,u(P) + pUF)\y P)| dp

uuk

+a (p) dp. (2.8)

Straightforward algebra, in which the antisymmetry of F,
is exploited, reduces this quadratic form to

53 / Bl D) BalPhpv Fro(p)dp,  (29)
wy ouw
Aa(p)yu,p’u’ =p 6yu'6uu‘ + (C! - 1)5pp’pvpu’
+(@ = Doy pupy. (2.10)

where * denotes complex conjugation. This matrix operator
on tensors preserves the subspace of antisymmetric tensors.

Note. The special operator Ag(p) is positive definite on
this subspace but not on the whole space of tensors.

For a # 0, A,(p) is invertible on this subspace, and that
inverse C,(p) is given by

1 1 1
Ca(p);u/,p'l/ = _26;4p’5uu’ Rl B 1 —46uy’puplf‘
p a P

1 1
+ ——1) — 0 o (211
(1) petwpaps. @10

Obviously C,(p)AL(p) = Au(p)C.(p) = 1 on the sub-
space—not on the whole space—because the matrix con-
tribution

(2.12)

P;w.;z’u’ = PuPu PvPv

annthilates antisymmetric tensors.

Now if we apply this propagator to I]i"'”‘(p), it follows
from our observation about the matrices A and B that

Co(pP)R#M(p) = #ﬂi“")‘(p). (2.13)

We now turn to the actual solution of the minimization
problem.

The integral-differential equation determining the mini-
mizatjon of (2.1) is seen to be

~AF,y +(1—d?) Z[a,‘,,auau, + 80,0, IF
+a2 3 STR(—m) / F(x) - R“ x— m)dx

JTRIAN m
u)\
- Y YR

[7R78 N m

— msa(m). (2.14)
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Solving this equation by the same routine method that was
applied to the three-dimensional analogue [1], we obtain the
momentum expression for the solution:

F(p) = &®G(p)* - [1 + EM(P)"'Co(PR(p),  (2.15)
M(p)/,w)\,u’u’)\' = Z Iﬁ‘w)\(p + 27 —é)*
£
X Colp + 21 ORN(p + 27 €), (2.16)
G;.w)\(p) = zspu)\(’;’)ei;l'p, (217)

m

where [1 + a’?M(p)]~! acts on the tensor-valued oriented-

cube vector R(p) as an oriented-cube vector. The dot prod-
uct in (2.15) is the contraction over oriented-cube indices
(1, v, \), while the dot product in (2.16) is the tensor inner
product; but (2.13) reduces (2.15) and (2.16) to

~ 2 ~
F(p) = %G(m* 1+ &?M(p)] ' R(p), (2.18)
1
M(p)yu)\,u‘x/’)\’ = Z - =
; (p+2n £)?
X REAp + 21 €)* -R¥N(p + 2 ). (2.19)

Now it follows from a tedious but straightforward calcula-
tion that

M(P)uu)\,u'u')\' = fp(P)*fu(P)*fx(P)*
X AMo(Pluor o\ MDY (D) fu(p),  (220)
fulp) = P — 1, (2.21)
(hp) = |ip+2m €)1°h(p+2m £), (222)
p (p+2n £)?
1
MO(p)m/)\,y”v”)\” = ﬁ(épy”éuu” - 6u)\"6uu" + 6;1!/”61/)\”)
ulv
i
+ =5 (60w ba — by ban + 6 Orn)
v Px

1
+ 55 (=86 + uurbrn

P)\pu

— burb). (2.23)

If we list our oriented-cube directions in the order 432, 431,
421, 321, the matrix array for My(p) is

1 1 1 1
=3+t =3+ 73 =3
P3P 1274) PaPy PaP3
1 1 + 1 + 1
PaP3 np P11P4 P3Py
1
1141’2 P4P11
pPipy Pam
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1 1
l;d’z PaPlz
% Pipt 3P
1 + 1 + 1 1
il " Pt Pt P3P}
1 1 1 + 1
P2 P3P§ 12340 np

It is easy to see that Mo(p) is a rank 3 matrix which anni-
hilates the vector

1
-1
1
-1

3. THE a = oo LIMIT

Clearly {M(p)) is also a rank 3 matrix that annihilates

1
-1
1 b
-1
so we have the same problem that we had in three dimen-

sions: the @ = oo limit of a(1 + a®?M(p))~! cannot exist
because

M(p) = D(pXMo(p))D(p)*, (3.1)
where in this case D{(p) is the 4 X 4 matrix
D(p)uu)\,u'u')\' = fy(p)fu(p)f)\(p)‘suy'éllv'6)\)\' (32)

with the four components labeled by 432, 431 421, and 321.

We have almost a routine attitude toward this special
kind of problem, because it is solved by the lattice exte-
rior derivative condition on the constraints. The singularity
of the matrix arises from the nature of the averaging, which
in turn imposes that lattice condition. This consistency is
precisely what enables us to make sense of the a = oo limit
of the whole expression. Specifically, note that the kernel
of M(p) is generated by the vector

Hip*
- f2(p)*
fpy |’
—f4(p)*

while the dot product of this oriented-cube vector with
G(p)* is zero as a result of writing the lattice exterior
derivative condition in terms of Fourier series. Thus the
a = oo limit of (2.18) exists and is realized by the inver-
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sion of the matrix M(p) as an operator on the orthogonal
complement of its kernel.
Let U be a unitary matrix which maps the vector

1 2
-1 01
1 to ol
-1 0
for example, pick
1 -1 1 -1
V2 V2 0 0
U=3l 1 -1 -1 (3:3)
0 0 V2 V2
The point is that
0O 0 0 O
- 0 J J J
UM U 1 — 11 12 13 .
(Mo(p) Rl L
0 Ja Ja Jn
where J is an invertible 3 X 3 matrix. Let
0 0 0 0
0 Uiy UMz U
I = - _ _ .
P=lo Gy G p G| GV
0 UM UM U

be the matrix obtained from the admittedly tedious inver-
sion of J. Then
L(p) = U I (pU (3.6)

is the inversion of (M(p)) on the orthogonal complement
of

Now if we set
3.7)

1
Quv =\ 533
g <ﬁﬁ>

then obviously

q23 + q34 + q24 g3

(Mo(p)) = 934 913+ qua + g3
—q24 q14
q23 —q13
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—q24 q23
q14 —413 (3.8)
912 + @24 + q14 q12
q12 qi2 + q13 + q23
After extracting J from (3.4) we find that
detJ = Z qduvdrnoYx.-
{urh{ra)ix.} distinct as sets
no index value occurs more than twice
(3.9)

We omit the matrix elements of /, as they depend on our
choice of U anyway.

Remark. By elementary combinatorics, our expression
for det J consists of 16 terms. After the chore of inverting J,
the remaining calculation in (3.6) is quite lengthy due to the
number of terms in each matrix element of J~'. However,
one finally obtains

C
= 3o 2

{ur).{re} distinct as sets

L(p)KL NZ?/,kaquuq)\a (3.10)

with N, ,, given as follows.

Case A. k + . and k + ¢ is even.

1. If {u, v} N{\, 0} = &, then
a. N =4 if {«, ¢} is one of the sets.
b. Niao = —4 if {k, ¢} meets both sets.
2. If {u,v} and {\, o} meet, then
a. N, = 1 if neither « nor ¢ lie in both sets.
b. Njias = —3 if either « or ¢ lies in both sets.

Case B. « + ¢ is odd. In this case we have the same
rules as in Case A but with all signs reversed.

Case C.

K = L.

L If {u,v} N {\ o} = ¢, then Nj, ,, = 4.
2. If {u, v} and {\, o} meet, then
a. N, = 1 if k does not lie in both sets.
b. Naae = 9if {u,v} N {\ 0} = {«}.
Remark. The sum in (3.10) consists of 15 terms.
In summary, the solution F of the original constrained
minimization problem is given by

Fp) = ﬁcw)' Dp) LD R(p),  (.11)

7ilp)

uPv

R.(p) = D(p)w,,. (3.12)
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6#46112 - 6/,1461/3 - 6#36112
5M6u] - 6#461/3 - 6/.1.36111
5;446111 - 6u46u2 - 6#251/1
6;436111 - 6;436112 - 6#261/1

Wy =

(3.13)

for 4 > v. Naturally, it is the exterior derivative of F(x)
that we want:

0
FI-W + TFM‘ + —F,,.

ity o, (3.14)

B;w)\ =
Clearly,

Euu)\(p) = lP)\ﬁpu(P) + lpuﬁ)\;z(p) + leﬁu)\(P)
1
= ?G(p)‘ -D(p)~"* L(p)D(p) ™"

X [iPnLup) + iDEru(p) + ip e (3.15)

because the matrices act on R(p) as an oriented-cube vector
and not as an antisymmetric tensor. Hence

Bualp) = —I;’gcw)’“z)(p)"*L<p)n(p)

7 Wy + — 7 Wau +
v P)\Pp

X pubvP [ 1 1 ] (3.16)
vFA wpn | .
# o 2px

where we have written the vector dot product with the
(oriented-cube) column vector G(p)* as the matrix prod-

uct with the row vector G(p)T‘.

4. EXPONENTIAL LOCALIZATION

As always, one establishes exponential decay of a func-
tion by showing that its Fourier transform is real-analytic
and satisfies the decay bounds necessary for contour-

shifting. We analyze only the component §432(p), as the

analysis of §43l(p), §421(p), and §321(p) is similar. By (3.13)
and (3.16) we have

Ban(p) = pi;G(p>T*D(p)-'*L<p)n<p)

1
P3P

4 P3 , (41)

4

j_

1
4 P3

=

2P

,—'vj
—_
&

X pap3p2

&

12

s

3Py

while multiplication of L(p) with this column vector can be
written as the column vector

1
" detJ 2

{ur}. {00} distinct as sets

K (p )/.w,)\a q;w (/)08 (42)
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where the column-vector-valued matrix K(p) is given by

1 1 1
KL(p)= _ﬁ(NL1+NL2)+ 3 2(NL1_NL3)+ﬂ(NLl+NL4).
3

pap P2pPs p3p2
(4.3)
Hence
~ A(p) 1 1
B = —j—5- —
432(p) i e pap3p2 L, £,(p)" detd
X Z Guvre Z G(p)*
{wr}{ro} distinct as sets ¢
XfL(P)‘KL(P)yu,)\a’ (44)
where we have used
filpp O 0 0
0 falp O 0
D = . .
0 0 0  falp)

Our main task is to derive the expressions that arise when
(4.3) is inserted in (4.2) for each .. We calculate (exploiting
cancellations)

11 12
(N;w,)w + N;w,)\a)q;wq)\a
{uv},{r\a} distinct as sets

= 4g23q24 + 12913q14 + 8g23q14 + 891324 + 12912913
+ 4912923 + 4g12924 + 12912914,  (4.6.1)

21 22
(N;u/,)m + Nuv,)\a)q;wq)\o
{u.r}.{r o) distinct as sets

= 12g23924 + 4913914 + 8923912 + 8q13g24 + 4412913
+12g12g23 + 4q12q14 + 12q12g24,  (4.6.2)

31 32
(Nuu,ka + N;w,)\o)quuq)\o
{u,r}{N o} distinct as sets

= 8¢13g24 + 4923924 — 491314 — 892314 — 4912913
+44912g23 + 4412924 — 4912914,  (4.6.3)

41 42
(N/.w.ka + Nuu,ka)quuqxa
{ur}{ro} distinct as sets

= 8¢24q13 + 4913914 — 4q23q24 — 8914923 + 4912913
+4912q14 — 4912923 — 441224, (4.6.4)

>

{pv}h{r o} distinct as sets
= 4g23913 + 8912g34 + 8g23q14 + 12q13q1a + 4934413
+4q3sq23 + 1212913 + 12q12q14,  (4.7.1)

21 23
(N wr o N Uv.\o )quuq Ao
{ur}.{\0} distinct as sets

= 4913q14 + 8923q14 — 4913923 — 891234 + 4912413
+4q12q14 — 4q13q38 — 4q23q3a,  (4.7.2)

11 13
(N;u/,)w - Nuu,)\o)q;qua

BATTLE AND FEDERBUSH

2

{u.v},{r0} distinct as sets
= —(12g23q13 + 8923q14 + 4913914 + 812934 + 12q34913
+ 12g34923 + 4912913 + 4912q14),  (4.7.3)

41 43
(N#V,)\U - N/u/,)\a)q;wqha
{uv}.{r0} distinct as sets

= 4413914 + 8912934 — 4923913 — 8914923 + 4912913
+ 4412914 — 4934923 — 4934913, (4.7.4)

(N;:inlz,)m - Nz?z,)\o)quuq)\cr

11 14
(NIW.RU + N;w.)\v)q;qua
{u,v},{\o} distinct as sets

= 12q13q1s + 8913924 + 4914924 + 8912934 + 12912913
+ 12¢12q14 + 4934914 + 4934924, (4.8.1)

21 24
(N;w,)\a + Nyu,)\a)q;wq)\a
{ur}.{\ o} distinct as sets

= 4q13q14 + 8913924 — 4914924 — 8q12934 + 4912913
+4412914 — 4931914 — 4931924, (4.8.2)

31 34
(N#U.Mr + Nyu,)\a)unQ)\a
{u,v}.{x.0} distinct as sets

= 4424914 + 8913924 — 4913914 — 8912934 + 4934914
+4¢31q24 — 4912913 — 4912914,  (4.8.3)

41 44
(Nuu,)\a + Npu,ha)q,uuq)w
{ur},{ra} distinct as sets

= 12q2aq14 + 8924413 + 4q14q13 + 8912934 + 12934914
+ 1243424 + 4912914 + 4912913.  (4.8.4)

Now to establish real analyticity of the momentum expres-

sion for §43z(p), we first make some basic observations
analogous to those made in [1],

PPipig. = 1A +Tu(p),  (49)

P’ (H pﬁ) detJ = |#(p)|(1 + T(p)), (4.10)
i

where I'(p) and T, (p) are functions analytic and vanishing
at p = 0. The latter relation follows from Formula (2.22)
for detJ and the identity

2 _
(H pﬂ) > (pipipipipipt) ! = p*.
H {u.v},{Noh{x,} distinct as sets
no index occurs more than twice
(4.11)
This will settle our concerns about the analyticity of p* detJ
in (4.4), but this means that the numerator is multiplied by
I1p} as well. If we single out the ¢ = 1 contribution in
“w
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(4.4), it is straightforward to see that there is a function
A1(p) analytic and vanishing at p = 0 such that

4
(m2) =
u {ur}.{ro} distinct as sets

= 12IApN* + Alp). (4.12)

K] (P)yu,)\cr quvre

One simply extracts the leading terms with the correspon-
dence

1
G © 55— 1(P)I? (4.13)
T pPpipt

given by (4.9) and combines them algebraically. The “mir-
acle” is that one obtains the perfect square

2
1
—4(21’5) =1
P\

for the leading contribution, while the remainder A;(p) is
a quadratic combination of the functions I, (p). There are
similar functions A,(p), ¢ = 2, 3,4, such that

(H pﬁ) Z Kb(p)p,u,)\aquuq)\a
u {nr){ro} distinct as sets

= 4(—1)*|A(p)|*(1 + A(p).

(4.14)

4.15)

Thus (4.4) becomes

- . Hp) 1 1

B = —i— -t

anlp) TP PP £ 1T+ T(p)
N

x [12(1 + Ai(p) f1(p)* Gi(p)*

+4Y (-1 + AL(p))fL(p)"G‘(p)*], (4.16)

L]

and at first glance, it may seem that we are in trouble, since
the factor f1(p)* in the denominator vanishes for p; = 0
and there is no factor p; in the numerator to cancel that sin-
gularity. Now the G'(p)* f1(p)*-terms in the brackets ob-
viously solve this problem, but what about the other terms?
The key observation is the lattice exterior derivative condi-
tion

GH(p)f1(p) — GE(P)f2(p) + G (p)f3(p) — GH(p)falp)
= G p) f/1(p) — Gan1(p) f2(p) + Gaar(p) f3(p)

- Ga(pifap) =0, (4.17)
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which enables us to write the bracketed expression as

16G'(p)* f1(p)* + 12A(p)G'(p)* f1(p)*
+4> (-1FA(P)GHP) f.(p)".

v#1

(4.18)

However, this condition has to be applied again and more
subtly. A, (p) consists of the contributions

S i (Hp“) (q “ |3(p)|* ) 1
VAGIf T A x vire — y
A Iap) I\ * P oiinivt ) pipj
where {u,v} and {\, o} are distinct as sets and {i, j} does
not include 1. Let A;(p) consist of those contributions for
which {u, v} N {\, o} = {1} and let A{'(p) consist of the
remaining contributions. The second algebraic “miracle” is
that

Ay(p) = A5(p) = As(p) = A'(p), (4.19)
which can be seen by collecting the products ¢2q;3, 412914,
and ¢j3g14 in our formulae (4.6-4.8) inserted in (4.15).
Hence (4.17) reduces the bracketed expression still further
to

16G'(p)” f1(p)* + 120,(p)G"(p)* f1(p)*
+4A(PIGN(p)* f1(p)* + 4> _(~1)'A/(P)G'(p)* f.(p)",

vl

and our problem is finally solved by the straightforward
observation that A} (p)-contributions can all have a factor
of pf extracted from them.

Remark. We have concentrated on a neighborhood of
p = 0 because that is the hardest case. Analyzing a neigh-

borhood of p = 27 ¢ for te Z*\{0} is a bit easier, but one
would multiply and divide by [],(p, + 27€,)%, etc.

Our analysis of the regularity properties is identical to
that done in the three-dimensional case, so we omit it.

5. COMPLETENESS

We address here the issue of completeness for the set
of wavelets we have constructed. Since our point of view
differs from that of Meyer and his co-workers {8,9], it is
instructive to first consider the scalar one-dimensional case
in our own language and show that the substance of our
completeness argument is not all that different.

Without loss we replace the real line R with the lattice 62
where the spacing § > 0 is arbitrary. The continuum limit
poses no problem for the adaptation of our construction to
this discrete setting. Let us be the discrete measure with
point mass 6. There are two operators on the Hilbert space
L*(us) — the averaging transformation T and the minimizer
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M. With {c,} the one-dimensional binomial sequence in
the scaling relation (1.4) for the continuum 7 given by

A ~

A= XN, (5.1)

the averaging transformation is defined by

(T)) = —% > cdb(2x + n6) (5.2)

for an arbitrary lattice configuration ¢ € L*(u;). The min-
imizer M is defined such that the configuration ¢ = M¢
minimizes the norm with respect to the constraints

Ty = ¢. (5.3)

These operators lie at the heart of renormalization group
analysis.

Obviously M is a right inverse of T. On the other hand,
M is automatically orthogonal to any configuration T an-
nihilates. Hence

P=MT (54

is an orthogonal projection because

P = M(TM)T = MT =P,
(Py, ) = (Py, PP) + (Py,(1 — P)y)

= (P, Py) = 0, (5.5

where Py = MTy is orthogonal to (1 — P)y as a conse-
quence of the identity

T(1-P)=T-TMT

=0. (5.6)

The same manipulation shows that the operators

P =MTE (5.7
are orthogonal projections with
P 1Py = PePeyy = Py (5.8)

Thus we have the orthogonal decomposition

Lps) = Y _ran(P¢ — Peyy) (5.9)
€=0

with Py = 1, and this is the basic part of the completeness
argument for the wavelets defined below. It is easy to verify
the property

BATTLE AND FEDERBUSH

elim Pep =0 (5.10)
by computing the momentum expression for the mini-
mizer—a routine calculation [10] which we omit here—but
the key observation is that
Jim T =0 (5.11)
for square-summable .
The decomposition (5.9) is the multiscale resolution of

Meyer and Mallat in the lattice seiting, and the lattice ana-
log of a wavelet with length scale equal to 2% is

$M(x) = gelx — 261 6m), x € 62, (5.12)
Yo = 50 = M sy, (5.13)
Wo(nd) = Yso(nd) = (—1)ci-,. (5.14)

In the continuum limit, the unit-scale wavelet located at the
origin is given by

lim - o(r2=%)
—oc

at a given fixed dyadic point 727%. We need to show that
(m) } spans (P¢ — Pg4y) for each € if we are to prove com-

{we

pleteness for this set of functions that we are really con-
structing by constrained minimization.

Reminder. Our wavelets are not intra-scale orthogonal
in their initial construction, but, as usual, this additional
orthogonality can be obtained, if desired, because there is
no glitch here with boundedness for the inverse square root
of the overlap matrix.

To see that ¢‘;’" actually lies in ran(P¢ — P, ), we note
that

(m) (m)
Peayy” = MEITH g ”

- M(+1T¢8")’ (5.15)
(T(l’gn))(ré) - % Z Cnl[’()(zr& —2mé + n6)

= % z C,,(— 1)"01—2r+2m—n

o (5.16)

where the sum vanishes by antisymmetry under the index

change n — 1 — 2r + 2m — n. Thus P, annihilates 1/;(5"'),

(m)

while ¢, lies in the range of P, because

o = Mty (5.17)

and T is onto.



SPACE-TIME WAVELET BASIS FOR THE CONTINUITY EQUATION

To conclude our completeness proof, consider an arbi-
trary configuration ¢ in the subspace and set

¢ =Ty (5.18)
Clearly,
=Py = Mo, (5.19)

while the annihilation of by M¢*!T¢*! = P,., implies

Té =Ty =0 (5.20)
because M**! has zero kernel. Hence
> cad(2x + no) =0, (5.21)
"
so if we let
h(p) = Zc,,ei”"’, (5.22)
g(p) = > _ p(né)e™”, (5.23)
"
we obtain the relation
gp(p)* + g(p+ mh(p +)* =0 (5.24)
whose general solution is
g(p) = ePh(p + )" a(p) (5.25)
with a(p) an arbitrary w-periodic function. Since
ePh(p + )" =D _(=1)'ci_ne™, (5.26)
the Fourier series
alp) = ) ane™™? (5.27)
n
yields the expansion
$(nd) = Y olnd — 2mb)am, (5.28)
m
which is an expansion of ¢ in the . Thus
¢ =M
= > anMyg”
=D amy”, (5.29)

which is the desired result.
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Given the completeness argument for the scalar one-
dimensional case, one can easily extend it to more compli-
cated cases. Now, as explained in the Introduction, the con-
struction of antisymmetric-tensor-valued wavelets orthogo-
nal with respect to the exterior-derivative Sobolev norm is
the key to obtaining the L?-orthogonal divergence-free vec-
tor wavelets in four dimensions. The lattice version of this
scheme is to replace the anti-symmetric-valued configura-
tions with scalar-valued functions on the set of oriented
plaquettes on 6Z*. The Hilbert space norm is based on the
lattice exterior derivative:

3
IFI2=6*>" > Fi,

#=0 cerj

(5.30)

where ITj is the set of oriented three-dimensional cubes on
8Z* perpendicular to the u-coordinate direction and

Foc = (F(P) — F(P) + F(PS,) — F(PY,)

+FP3) ~ KPP N6 (531)
with y,v,\, 0 distinct and P;, (resp. P,,) as the vA-
coordinate face on the positive (resp. negative) o-coordinate
side of C, both plaquettes oriented in the same direction.
The order (v,\,0) is chosen such that P}y, Py, PZ, are
oriented out of C (resp. into C) if C has outward (resp.
inward) orientation. The degeneracy of the Hilbert space
norm is eliminated by defining the Hilbert space itself as
the space of configurations F such that ||F|] < co and

S F P+ X +6e)—FPL+X) =0, X€6Z% (5.32)
v=0

where P, is the plaquette on 6Z* in the uv-coordinate plane
with vertex at the origin and orientation e, A e,. This lat-
tice divergence-free condition is not to be confused with the
divergence-free property of the vector wavelets ultimately
constructed. It is only a type of gauge-fixing condition.
Our geometric sophistication of the completeness argu-
ment has an additional twist. The averaging transforma-
tion T for € steps maps our Hilbert space onto the Hilbert
space of functions on the set of oriented three-dimensional
cubes on 6Z* annihilated by the fourth-order lattice exterior
derivative and with the L2-norm. Specifically,
Te =T, (5.33)
where O denotes the third-order lattice exterior derivative
and

(TGXC) = %Zc,, > G2C + no) (5.34)

n Ces,
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with %, the set of subcubes of C obtained from bisection in
each direction. On the other hand the minimizer M, maps
the latter Hilbert space back into the former one. M, is
defined such that the configuration F = M,G minimizes the
norm with respect to the constraints (5.32) and

G =T,F. (5.35)

The condition (5.32) makes it impossible to express M, as a
power of one-step minimizers, but M, is still a right inverse
of T¢, and M,T, is still on orthogonal projection of the
former Hilbert space.

Note added in proof. Shortly before the appearance of
this article, these authors—together with Paul Uhlig—
found an easy construction for the four-dimensional case
[11]. It is a momentum vortex field construction that ap-
plies only to two, four, and eight dimensions.
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