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Abstract 

A fast algorithm for linear least-squares smoothing and boundary value problems using number-theoretic transforms 
(NTT) is presented. The algorithm utilizes the fact that the fixed interval smoother can be imbedded in a boundary value 
problem, which can be reformulated as a problem of solving a perturbed-circulant system of equations. The new 
algorithm solves this perturbed-circulant system of equations by decomposing the solution into a circular deconvolution 
filter, which can be implemented using NTT, and a small-kernel FIR filter, which only involves a small matrix inversion. 
The major advantages of this algorithm are (1) it avoids roundoff error and attendant conditioning problems, (2) no 
storage or computation of complex, irrational roots of unity is required, and (3) computations involving large numbers 
are broken up into computations involving smaller numbers, which can be performed faster and in parallel. 

Zusammenfassung 

Ein schneller Algorithmus zur Linearen Least-Squares Gl~ittung und ffir Randwertprobleme mit Hilfe zahlentheoreti- 
scher Transformationen (ZTT) wird vorgestellt. Der Algorithmus nfitzt die Tatsache aus, dab die Gl~ittung fiber ein festes 
lntervall in ein Randwert-problem eingebettet werden kann, das wiederum in ein Problem umgeschrieben werden kann, 
das die L6sung eines gest6rten zirkulanten Gleichungssystems darstellt. Der Algorithmus 16st dieses System, indem die 
L6sung in ein zirkulares Entfaltungsfilter, das mit Hilfe der ZTT realisiert wird, und ein kurzes FIR Filter zerlegt wird, 
bei dem nur eine kleine Matrix invertiert werden muB. Die Hauptvorteile des Algorithmus sind: (1) Er vermeidet 
Rundungs-fehler und daraus entstehende Konditionierungsprobleme. (2) Man braucht komplexe, irrationale Einheit- 
swurzeln weder zu berechnen noch zu speichern. (3) Berechnungen, bei denen grol3e Zahlen auftreten, werden in 
Berechnungen iiberffihrt, bei denen kleinere Zahlen verwendet werden, wobei man dann parallel und deshalb schneller 
arbeiten kann. 

R~sume 

Nous pr~sentons dans cet article un algorithme rapide pour l'adoucissement lin~aire aux moindres carr~s et pour des 
probl6mes de valeurs limites bast  sur les transformations de type th~orie des nombres (NTT). Cet algorithme utilise le fait 
que l'adoucisseur fi intervalle fixe peut ~tre immerg6 dans un probl6me de valeurs limites, qui peut 6tre reformul6 en tar/t 
que probl6me de r6solution d'un syst6me circulant perturb6 d'6quations. Cet algorithme nouveau r6soud ce syst6me 
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circulant perturb6 d'6quations en d6composant la solution en un filtre de d6convolution circulaire, qui peut ~tre implant6 
l'aide de la NTT, et en un petit filtre FIR noyau, qui implique seulement l'inversion d'une petite matrice. Les avantages 

majeurs de cet algorithme sont: (1) il 6vite les erreurs d'arrondi et les probl6mes li6s de conditionnement; (2) aucun 
stockage ou calcul de racines complexes irrationnelles de l'unit~ n'est requis; (3) les calculs impliquant des nombres 61ev6s 
sont divis~s en calcul impliquant des nombres plus petits, qui peuvent ~tre ex6cut6s plus vite et en parall61e. 

Key words: Number-theoretic transforms; Linear least-squares; Fast algorithms 

1. Introduction 

Since the introduction of Kalman's recursive 
filter [6, 7], numerous algorithms for linear least- 
squares estimation have emerged [5, 8, 10]. Most of 
these algorithms are recursive and rely on solving 
a Riccati equation or equivalent recursive equa- 
tions. 

Recently, new algorithms for fixed interval 
smoothing, solution of Riccati equations, and block 
filtering problems that arise in linear least-squares 
estimation theory for discrete, time-invariant sys- 
tems, have been proposed [4]. These algorithms 
reformulate the above three problems into a two- 
point boundary value problem, and then into a per- 
turbed-circulant system of equations. They have 
several interesting features which make them at- 
tractive in the context of modern digital signal 
processing: they are nonrecursive; they are based 
on the fast Fourier transform (FFT); and they seem 
to be less sensitive to roundoff and truncation 
errors. As a result, they could be used to process 
large data sets efficiently in parallel, and they would 
be well suited for VLSI architecture. 

Our goal in this paper is to develop a fast and 
error-free algorithm for boundary value problems 
or, equivalently, a solution of a perturbed-circulant 
system of equations. Our algorithm is similar to 
that of [4], but operates in a Galois field. Instead of 
using Fourier transforms, we use number-theoretic 
transforms (NTTs) [2] to implement circular con- 
volutions. This creates two advantages: (1) since 
NTTs only involve integer operations, there is no 
roundoff error; and (2) if the Mersenne or Fermat 
NTT is used, no multiplications are required, since 
multiplication by a power of two can be imple- 
mented using bit shifting. Otherwise, Cooley- 
Tukey decompositions can be used to implement 

the NTTs efficiently, provided the transform length 
is properly chosen. 

Although NTTs have these advantages over 
FFTs, and map convolutions to multiplications as 
FFTs do, replacing the FFTs in [4] with NTTs 
entails the following problems. (i) NTTs can only be 
used in a Galois field, which is a field with a finite 
number of elements. Hence, the data must be scaled 
into integers. However, since the boundary value 
problem is nonlinear, scaling at the beginning will 
only complicate the problem. (ii) In a Galois field, 
division is much more expensive than multiplica- 
tion. Hence, an efficient algorithm for division is 
necessary. (iii) Since all solutions in the Galois field 
are integers, they must be meaningfully related to 
the solutions in the original real or complex field. 

The first problem is overcome by reformulating 
the two-point boundary value problem as a prob- 
lem of solving a perturbed-circulant system of 
equations. The procedure to compute all entries of 
the system of equations involves nonlinear opera- 
tions; therefore, it must be done in the real field. 
Once the system of equations is obtained, all entries 
can be scaled into integers; the problem can then be 
solved using an NTT-based algorithm. The second 
problem is solved by using the Chinese remainder 
theorem and the Euclidean algorithm to compute 
divisions in the Galois field [3]. Finally, the third 
problem of mapping integers into rationals is dis- 
cussed in [3]. 

The advantages of our NTT-based algorithm 
over a direct floating-point implementation of the 
algorithm of [4] are as follows: 
1. NTTs using two as a root of unity in a Galois 

field require no multiplications. NTTs using 
three or some other integer as a root of unity 
have the following advantages over a floating- 
point FFT: (i) no storage or computation of 
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complex roots of unity e j2ni/N, i =  1, . . . ,  N, is 
necessary; and (ii) no roundofferrors in comput- 
ing or storing complex roots of unity, which lead 
to a nonorthonormal  transform, are incurred. 

2. Since the algorithm uses only integers, there is 
no roundoff error in any computation. This can 
be significant in poorly conditioned problems. 
There are word length (overflow) constraints, 
but these can be made arbitrarily large using 
residue number systems. 

3. The use of a residue number system entails the 
following advantages: (i) computations for each 
modulus can be performed entirely in parallel; 
(ii) computations for each modulus involve 
small word lengths (i.e., fewer bits to represent 
smaller integers), so that additions and multipli- 
cations can be performed faster; and (iii) over- 
flows for each modulus constitute no problem, 
as long as the final solution constructed by com- 
bining results from different moduli does not 
overflow. 

It should also be noted that while our algorithm is 
adapted from the algorithm of [4], it is not merely 
an NTT-based implementation of it, since there are 
several nontrivial issues that arise in the adaption. 
These issues are summarized in the conclusion. 

This paper is organized as follows. Section 2 brie- 
fly reviews the algorithm of [4]. Section 3 presents 
our algorithm for solving the perturbed-circulant 
system of equations. Section 4 presents and dis- 
cusses some illustrative numerical examples. Sec- 
tion 5 concludes the paper with a summary. 

21 Review of the FFT algorithm for linear least- 
squares smoothing problems 

2.1. Problem formulat ion 

Consider the following discrete-time multichan- 
nel ARMA system model: 

U k + l  ~ E AiUk+l i -~- ~k, 
i=1 (1) 

7 

Zk = E C i U k + l - i  ~- r/k; 
i = 1  

EEeke,~] = KiJk.,, EEr/kr/~] = R6k.,, (2) 

where Uk e N", ek e R" ,  Zk e N q, r/k e R q, and {ek} and 
{r/k} are zero-mean white processes uncorrelated 
with each other and with the random variable uo. 
This system can be rewritten in state variable form 
a s  

Uk+ 1 = AUk + Beg, 

Zk = CU k dr- t~k, 

eEUoUo ~] = Q0, 

where 

H k ~--- 

l Uk 

(3) 

A = 

m 0] 
0 I,, 

~, - ' '  h 1 

C[ l 
The fixed interval smoothing problem for this sys- 
tem is to find the linear least-squares estimate 
Xk = fik of Uk for k = 0 . . . . .  N, given the observa- 
tions {Zk, k = 0 . . . . .  N}. This is known to be equiv- 
alent to solving the following two-point boundary 
value problem [1]: 

Xk+ 1 = A x  k + BKBT,~k+I, 

2k = AT2k+l + CXR- I (Zk  - CXk), 

Xo = QoZo, 
(4) 

/~N+ 1 ~ O.  

Here x k denotes the smoothing estimate of u k. 
This boundary value problem can be solved with 

the fast Fourier transform by using a generalization 
of the circular decomposition algorithm [4]. Basi- 
cally, this method decomposes the solution into 
a circular deconvolution filter, which can be imple- 
mented using the FFT, and a small-kernel FIR 
filter which operates only on the boundary obser- 
vations and the boundary outputs of the F F T  filter. 
This avoids solving a Riccati equation, which is the 
standard method for solving (4) [9]. 
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2.2. Solution using the algorithm of [4] 

The a lgor i thm in [4] for solving the two-poin t  
bounda ry  value p rob lem (4), and  thus the smooth-  
ing p rob lem for (1), can be summar ized  as follows. 

Step 1. Define the following quantities: 

Ao = - I . , ,  Co = O, 

) ~ i  = " , 3 ~ i  = : , 

X0 -.] r 

~, = • , • '  = ! , 

L XN XN-r ] 

O,,j = ATK-~Aj + C~R-ICj, 

Define Vo = [0, ... ,0, K ] ,  V/+I = [ E A T ] ,  where 
the V/are  m x n matr ices  (n = mT): 

Wi= viCTR -1, i=O .... , 7 -  1, 

f j-l-i 
Z Wi+j - lCr  - l+l + A ~ - i - j  
l=j 

if 1<~j<~ 7 - i ,  
T?+ I,j -~- r 

~. W i + j - l C r - l + l  
l=j 

if ) , - -  i < j ~ <  7, 0 ~ < i < T ;  

0 i f j < 7 - - i +  1, 

J Ar i f j = 7 - - i +  1, 
T,i~j = ~ j - r + i - i  

~A,_,+,- Z W,-, +,-r-tCr-,+, 
i f J > 7 - - i + l ;  

r 
.41= ~ Di, i-t f o r l / > 0 ;  A t = - 4 T I  

i=l 
for I <  0. 

H = a block circulant mat r ix  of  order  N - ? whose 
first row is 

[~io, ~i, . . . .  , X .  o . . . .  ,o, ~i_~, ... , ~ i _ , ] ,  

S = Q o  1, 

Gi°l = 

T 

Dl+j-i,j + Si.l if 1 ~< l ~< i, 
j = l - l + ) ,  

i-l+T 
Z Dl+j-i,J "j- S i ,  l if ? />  l > i; 

j = l - l + r  

I O  i-l Dl+j-i+r,j  
Gil, t = j=o 

if l > i ;  

if l <~ l <~ i, 

0 -  - 4 - r - i + l  if i ~< 1, 
El,t= if i > l ;  

a t ~ g T, 

qJll = E(G°) -1G1, tga2 = -  E, 

~[J21 ~-'~" -- ET, ~J22 =ET(T°) -1T1. 

Step 2. C o m p u t e  the inverse H - 1  of the block 
circulant matr ix  H. Then compu te  the L U  de- 
compos i t ion  of the 2n × 2n matr ix  (note that  
n = m?<<N; see (1)) 

= i2 n _ jT H-  Ijqj, 

where 

 T['o 0 0] 
• .. 0 I ,  

Step 3. FIR-fi l ter  the observat ions  Zk to obta in  the 
sequence 

T 
5°= ~ CfR-'Zk+j_,, l<~k<~N-7.  

j = l  

This is the convolu t ion  of  the observat ions  {Zk} 
with a F I R  filter (~k defined as 

{ C~_k÷IR -1, - 7 + l ~ < k ~ < O ,  

C k =  0 otherwise. 
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Step 4. Extract the initial and terminal variables ~i 
and ~t: 

k 
^i T -1  
Zk E Z j_  1, ~- C~,_k+jR 1 <~ k <~ 7, 

j= l  
k 

e'k = ~ Wk- jZN- j+I ,  l ~ k <<. r. 
j= l  

Step 5. Compute 

[ e(G°) -1~' ] ~b ~0. 
~b=JLET(TO)_,~,j ,  ~= + 

Step 6. Solve the block circulant system of equa- 
tions 

H y  = ~. 

Step 7. Compute 

b = yet = q b - l j T y .  

Step 8. Compute the estimate x of u as 

x-= y + H - 1 J ~ b  

using circular deconvolution. 

Step 9. Compute the boundary value estimates (if 
desired) as 

.~i = ( G O ) - I ( G I  ~i + ~i),  

~, = (T o) l(Tl~t + ~i). 

3. New algorithm for linear smoothing and 
boundary value problems using NTT 

3.1. Initialization 

Our goal is to implement the algorithm of [4], 
summarized in the previous section, in a Galois 
field. The advantages of such an implementation 
include achieving higher computational efficiency 
and avoiding roundoff error. If the transform 
length and moduli are properly chosen, NTTs can 
be much more efficient than FFTs; e.g., the Fermat 
and Mersenne NTTs [2] are actually multiplica- 
tion free. In the algorithm of [4], circular convolu- 
tions (or deconvolutions), which are computed in 
[4] using the FFT, are one of the major computa- 

tional burdens. Hence, replacing FFTs by NTTs in 
the algorithm of [4] should reduce computational 
cost, avoid roundofferror, and gain the advantages 
discussed in the introduction. 

Although NTTs have these advantages over 
FFTs, and map convolutions to multiplications as 
FFTs do, replacing the FFTs in the algorithm of 
Section 2 with NTTs entails several problems. First 
of all, NTTs can only be used in a Galois field, 
which is a field with a finite number of integers. 
A naive solution to this problem is to scale all 
numbers in the algorithm (including model coeffic- 
ients and observation data) into integers and then 
run the algorithm. However, this will not work, due 
to the nonlinearity of the algorithm. 

To solve this problem, we decompose the algo- 
rithm into two parts. The first part, which includes 
Step 1 to Step 5 of the algorithm in Section 2, 
includes all the nonlinear initializations and data 
processing. Most procedures in this part are small 
summations of products of model coefficients or 
small FIR filtering operations on observation data. 
Since no large circular convolutions are required in 
this part, running it in the real field is almost as 
efficient as running it in a Galois field. 

3.2. Solution o f  the perturbed-circulant system 
o f  equations 

The second part of the algorithm amounts to 
solving the perturbed-circulant system of equations 

[H  - J ~ j T ] x  = ~, (5) 

where H is a circulant matrix. All entries of the 
system matrix and the right-hand side are com- 
puted during the first part of the algorithm. Since 
we are dealing with a linear system of equations, 
scaling both sides of the system of equations by the 
same factor will not change the final solution. 

Using the matrix inversion formula, the solution 
to (5) can be written as 

x = H -  1~ + H 1 j ~ ( I  -- J T H -  I j  Ip)- 1 j T  H -  1 ~. 

(6) 

Note that the first term H-  ~ is a circular decon- 
volution which can be computed quickly using an 
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NTT. The second term requires only the inversion 
of the 2n x2n matrix ( I -  JrH-1J~g) and two 
other circular deconvolutions. Recall that 
n = mT<<N, since m is the size of the vector Uk in (1) 
(not (3)), 7 is the AR model order, and N is the 
length of the series of data. Since (6) is the major 
computation burden of the algorithm of Section 2, 
replacing FFTs with NTTs should gain some com- 
putational saving. 

Solving a system of equations in a Galois field 
GF(p) requires implementation of divisions in the 
Galois field. Computing the division b/a in GF(p) 
is equivalent to solving the equation ax - b mod p. 
An efficient implementation of division reported in 
[3] will be restated here. Since a and p are relatively 
prime, solving the problem ax =- b mod p is equiva- 
lent to solving ax + pk = 1 for x and k; the latter 
equation can be solved using the Euclidean algo- 
rithm. The number of integer divisions (computa- 
tion of quotient and remainder) required by the 
Euclidean algorithm is bounded by 2 log2 p. 

3.3. Computation of the determinant 

The third problem of solving (5) in GF(p) is to 
meaningfully relate the solution in GF(p) to the 
solution in the original real field. One possible 
solution of this problem is to compute the determi- 
nant of the system matrix; if this is known, the 
solution in the Galois field can be used to find the 
solution in the real field, since the determinant is 
the common denominator of the solution elements 
in the real field. Residue number systems can be 
used to ensure no overflow occurs in either the 
numerator or the determinant. 

Computing determinants is difficult in general. 
Here we propose an efficient method to compute 
the determinant of the system matrix in (5), using 
the computation involved in the main algorithm. 
The determinant of the system matrix in (5) can be 
represented as 

det(H -- j ~ j T )  = det Hdet ( I  - H -  1j ~vjT) 

= det Hdet ( I  - JTH- IJ~) .  (7) 

Although det(l - JTH-1jr/y) may not be an inte- 
ger, we know in advance that det(H - j tpjT)  is an 

integer, so that it can serve as a common denomin- 
ator of the final solution. Note that both det H and 
det(I - JTH-1J~)  in (7) can be obtained as by- 
products of the main algorithm. Specifically, det H 
can be computed as the product of the NTTs of 
the first row of H, and det(I - jTH-1J~')  is ob- 
tained when the inverse of the 2nx2n  matrix 
( I  - J T H - i j ~ )  (see (6)) is computed using Gaus- 
sian elimination (multiply the diagonal elements of 
the triangular factor). 

The last problem of solving (5) in GF(p) is to 
avoid overflow in either the numerator or denom- 
inator of the final result. This can be done using 
residue number systems as follows I-2]. First, 
choose as moduli mi some primes, all of which 
permit number-theoretic transforms having the 
same transform length. For example, if the desired 
transform length is a power of 2, Fermat NTTs can 
be used. In general, if the desirable transform length 
is L, the rni should be chosen so that L is a common 
divisor of the (mi - i). Then solve (5) in the GF(mi); 
note that computations in different GF(ml) can be 
performed in parallel. Finally, the final solution is 
computed using the Chinese remainder theorem. 

To prevent overflow, enough moduli mi 
should be used to ensure that the integer 
Idet(H--J~'JT)l<lqm~. A crude but simple 
bound on matrix determinants that is often em- 
ployed [2] when residue number systems are used 
to solve systems of equations is the Hadamard 
inequality ]detAI2 ~< Y . ~ j a  2.,,J, where the a~,j are 
the elements of the matrix A. Once the matrix H is 
computed in the initialization Step 1 above (which 
becomes Part 1 below), the Hadamard inequality 
can be used to ensure I1 m~ is large enough. This 
inequality is loose enough so that the numerators 
of the elements of x, as well as their denominators 
d e t ( H -  j ~ jT ) ,  will be smaller in magnitude 
than 1-I ml. 

3.4. The new algorithm 

The new algorithm for solving the smoothing 
problem for the scalar ARMA system (3), and the 
associated two-point boundary value problem (4), 
is as follows: 
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P a r t  1 (floating-point operations). This par t  in- 
cludes all the nonlinear  initializations. 
K = variance of the driving noise ek; 
E [ e k  eT'] = Kt~k, l .  

R = variance of observat ion noise t/k; 
E[r lkr l  T] = R 6 k , l .  

Qo = covariance matrix of Uo; E[uouXo] = Qo, 

S=Oo 1. 
Zk = observat ion data  for k = 0, . . . ,  N. 
Ai = AR coefficients for i = 1, . . . ,7 .  
Ci = observat ion matrix coefficients for i = 
1 . . . . .  7- 

Initialization: 

Di4 = A~K-~Aj  + CTR-~C~, 

7 
A t = ~ D i , i _ l  for / ~> 0, 

i=l 

At -- A'r_t for / < 0. 

H = a block circulant matrix of  order  N - 7 whose 
first row is 

(~'~0, ~Z~l . . . . .  Z),, 0 . . . . .  O, a_~,  . . . . .  ~T 1)" 

Compute  the following sums: 

E Dl+j-i,J + Si,l if 1 ~< l ~< i, 
GiOt = j= 1-1+), 

i - l+) ,  

~., D~+j-i,j+S~.t if 7 > / 1 > i ;  
j = l - / + ~ ,  

Gi[l = 

i - l  
-- ~ Dt+j-i+r,j if l ~ < l ~ < i ,  

j=0  

0 if l > i ;  

Define Vo = [0 . . . .  ,0, K] ,  Vi+l = [V/AT], where 
the Vi are m x n matrices: 

W i = V/CTR -1, i =  0, ... , 7 -  1; 

Ti°+ l , j  = 

l,J 

' j+i  

~., Wi+j-lC~-t+lA~ i-j  
l=j  

if l <~j<~ y - i ,  

~ Wi+j-lC~-t+l 
l=j  

if 7 - -  i <j-..< y, 0~< i < ) , ;  

0 i f j < 7 - - i +  1, 

A~ i f j = 7 - i +  1, 
j - 7 + i - 1  

A j - i + l -  E Wi- ,+j  ),-IC~-t+I 
l : l  

i f j > y - i +  1; 

!Pli = E(G°) - IG  1, IPt 2 = - E, 

~P21 = - - E T ,  ~ 2 2 = E T ( T ° )  - iT1 .  

Data processing: 
), 

~0 = E cT R-Izk+J -1' 1 <~ k <<. N - 7, 
Jk 1 

^i T - Zk E 1Zj_  : C ~ - R + j R  1, 1 ~ k ~ 7, 
j = l  

k 
~tk= ~ WR jZ~-j+I, 1<~ k <~ 7. 

j = l  

r ] ~=JLET(TO) ,e,j, 
: ~b ..~ ~0. 

Note  that  ~o is the sum of only 7 terms, and ~ and 
~, are each computed  for only 7 values of  k. Hence, 
there would be little advantage  in using N T T s  here 
anyway.  

Output: The output  of  Par t  1 includes the first row 
of  H, ~ and ~. 

f - -  

• ( O  if  i> l ;  
if i<~l, Par t  2 (integer operations). The goal of this part  is 

to solve the perturbed-circulant  system of equa- 
tions 

G' = E r. [H - J ~ J T ] x  = ~, 
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where H, ~ and ~ are obtained from Part  1 and are 
represented in fixed-point notation. The first step is 
to scale all elements of H, ~ and ~ to integers. The 
solution is obtained by decomposing the inverse of 
the system matrix using the matrix inversion formula 

x = H - I ~  + H-1JTJ(I - JTH-XJTJ) - IJTH-I~  

and computing circular deconvolutions via NTT. 
Addition and multiplication operations are per- 
formed modulo p. A division b/a is implemented by 
solving the equation a x -  b m o d p  using the 
Euclidean algorithm. 

Step 1. Compute  N T T  of H I ,  the first row of H, 
and compute the determinant of H by 

d e t n  = 1--I N T T { H I  }(i) modp.  
i 

Step 2. Solve the circulant system of equations 
Hy = ~ mod p. 

Step 3. Solve the circulant systems of equations 
H ~  = d ~  mod  p (compute each column of 
matrix ~ separately from each column of 
matrix JTt). Compute  • = I - j T ~ .  

Step 4. Solve the 2n x 2n system of equations 
• b = j T y m o d  p using Gaussian elimina- 
tion in GF(p) ,  as in [2] (recall 
2n = 2mv<<N). Compute  d e t ~  by multi- 
plying the diagonal elements of the tri- 
angular factor of ¢. 

Step 5. Compute  the integer solution x using x = 
Y + H-XJ~Pbmodp. 

Step 6. Compute  the actual solution x using x = 
x det • det H mod p 

det ¢~ det H mod p 

If residue number  systems are used, replace 
p with mi above. Note that computat ions in differ- 
ent GF(mi) are completely independent. 

and observation data z = {1.6592, 1.5951, 3.5445, 
- 0.2941, - 2.5365, - 3.7380, - 3.3166, 
- 3.1045, - 1.5057}. Our goal is to compute the 

linear least-squares estimate Xk of Uk, given all of 
the observations {Zk, k = 0, . . . ,  8}. 

Part  1. The output o f th i s  part  includes the first 
row of H, ~ and ~:  

H 1 = [ 4 . 8 9  - 2 . 7  0.8 0 0.8 - 2 . 7 ] ,  

= [4.5917 - 0.9458 - 2.5365 - 3.7380 

--4.5212 - 0.8459], 

1.5847 - 0.4819 0.8 - 2.7 ] 

] - -  0.4819 0.1836 0 0.8 

0.8 0 -- 0.64 1.2 " 

-- 2.7 0.8 1.2 2.89 

Par t  2. Scaling the output of Part  1 by a factor of 
100 and rounding the results to the nearest integers, 
we obtain the following: 

H I = [ 4 8 9  - 2 7 0  80 0 80 - 2 7 0 ] ,  

= [ 4 5 9  - 9 5  - 2 5 4  - 3 7 4  - 4 5 2  - 8 5 ] ,  

q, = 

158 - 48 80 - 270] 
/ 

- 48 18 0 80/. 

/ 80 0 - 64 120 

- 270 80 120 289] 

In practice, a much larger scaling factor would be 
used, so that more significant figures can be kept. 
We deliberately use a small factor, to keep the 
numbers in this illustrative example small. Choos- 
ing the modulus as 2593, and performing the algo- 
rithm in GF(2593), yields the following. 

4 .  E x a m p l e s  

Consider the state space model (3) of a scalar 
ARMA process with model coefficients 

[AI A2] = [1.5 - 0 . 8 ] ,  [C,  C2] = [0 1], 

[ 9 . 0 9 7 . 5 8 ]  
K = R =  1, Q o =  7.58 9.09 ' 

Step 1. 

H1 = [489 2323 80 0 80 2323], 

NTT{H1} = [109 139 679 1189 679 139], 

d e t H  = 109 × 139 × 679 x 1189 × 679 

× 139mod2593 = 484. 
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Step 2. 

336 

1336 
= 

1011 

1900 

Step 3. 

790 2428 18081 

223 1027 967 / 

2455 2112 2046]" 

1691 449 2383J 

y = [941 903 1778 1438 43 1051] T. 

Step 4. 

b =  [1943 1194 2560 176], detq~= 1073. 

Step 5. 

x = [1943 1194 1179 1076 2560 176] T. 

Step 6. 

x = [1312 167 2152 1953 1774 1775]T/732. 

We now use residue number systems to avoid 
overflows. We choose as moduli mi some primes 
which admit six-point number-theoretic transforms 
in GF(mi), i.e., 6 is a factor of m i -  1. The least 
primitive root (LPR) for each m~ is also listed (see 
Table 1); (LPR) tm'-l~/6 is a sixth root of unity in 
GF(m~), and is used as the base for the six-point 
NTT in GF(m~). Note that if the LPR is two, the 

Table 1 

i m~ m ~ -  1 LPR 

1 2593 2 s ' 3 4  7 
2 2917 22"36 5 
3 4093 22"3"11"31 2 
4 16381 22"3z '5"7"13  2 
5 1048 573 22"33"7"19"73 2 

NTT can be implemented without any multiplica- 
tions (multiplication by a power of two can be 
performed using bit shifting). 

Running the algorithm in each of the Galois 
fields GF(2593), GF(2917), GF(4093), GF(16381), 
and GF(1048573) yields Table 2. The final solution 
is recovered from its residues using the Chinese 
remainder theorem. 

3 969 970019 572 186 
x(1) = ~ 1.9466, 

2 039 392 752 946 238 

33 631 873 639 622 
x(2) = ~ 0.0165, 

2 039 392 752 946 238 

- 4 631 406 586 600 928 
x(3) = ~ -  2.2710, 

2 039 392 752 946 238 

- 7 234 116 975 642 248 
x(4) = ~ - 3.5472, 

2 039 392 752 946 238 

- 6437 206468 837 182 
x(5) = ~ - 3.1564, 

2 039 392 752 946 238 

- 2705 822042 153 665 
x(6) = ~ -  1.3268. 

2 039 392 752 946 238 

For comparison, the floating-point solution com- 
puted using the algorithm of Section 2 is 

x = [1.9519 0.0204 -2 .2682 -3 .5457 

-3.1558 - 1.3261]. 

Note the small discrepancies between these two 
answers. This is due to the rounding to integers 
after the results of Part 1 were scaled by 100; from 
that point the problem is solved exactly. This 
rounding error may be made arbitrarily small by 
using more moduli mi, which permits representa- 
tion of larger integers. Computations for each 
modulus involve relatively small integers, so they 

Table 2 

m x(l) x(2) x(3) x(4) x(5) 

2593 1312 167 2152 1953 1774 
2917 384 727 2791 2078 2673 
4093 281 3457 3311 245 854 

16381 4736 14 546 2984 3195 5161 
1048 573 629038 909 137 909137 232652 419457 

x(6) det 

1775 732 
92 1848 

432 3923 
8839 6643 

858345 17 296 
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may be performed quickly, with small word lengths 
and bandwidths for inter-chip communications. 

The purpose of this illustrative example was to 
demonstrate  the algorithm and its operation. A 
larger example would demonstrate  its advantages 
over a floating-point implementation of the algo- 
rithm of I-4], but could not be presented here due to 
lack of space. 

5. Conclusions 

This paper  has presented an NTT-based fast 
algorithm for linear least-squares smoothing prob- 
lems and associated two-point boundary value 
problems. The algorithm adapts the algorithm of 
[4] to computat ion in Galois fields. This allows the 
usual advantages of residue number  systems and 
integer computat ions to apply to the linear least- 
squares smoothing problem. 

Problems that were solved in adapting the algo- 
rithm of [4] included: recognizing the necessity of 
performing nonlinear computat ions first (Part 1); 
applying the matrix inversion to (5) to transform 
the solution of a large perturbed-circulant system 
of equations into the solution of a circulant system 
(which can be performed using NTTs) and the 
solution of a much smaller system; and computa-  
tion of det(H - J T t J  T) to obtain the common de- 
nominator  of the solution to the large perturbed 
circulant system. These were in addition to the 
usual problems of performing divisions in a Galois 
field and using residue number  systems to avoid 
overflows. 

A simple example illustrated the operation of the 
algorithm. However, this example (which was 

small, due to lack of space) did not demonstrate the 
advantages of this algorithm over the algorithm of 
[4]. These advantages were listed at the end of the 
introduction, and will not be repeated here. 
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