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Abstract--This paper studies deviations of open-loop 
properties in the presence of modeling uncertainties. Our 
aim is to gain insights into how open-loop properties and 
thus potentially closed-loop properties may vary in the face 
of a diagonally structured uncertainty. We give several 
estimates for the worst case deviations of the open-loop 
transfer function in terms of certain structured singular 
values and their bounds, and also in terms of certain scaled 
plant condition numbers, the relative gain array, and the 
block relative gains. Our analysis shows that the estimates in 
terms of the structured singular values and bounds are tight 
in general, so are those in terms of the condition numbers for 
certain cases studied previously in the literature. We show 
that the worst case deviation will be large when the estimates 
stated in terms of the structured singular values, or under 
certain circumstances in terms of the condition numbers, are 
large. On the other hand, an example is constructed to show 
that the relative gain array and block relative gains may be 
optimistic measures in assessing these deviations. The 
developments here support and reinforce previous conjec- 
tures and results which assert that plants with large condition 
numbers and/or relative gains are potentially difficult to 
control. 

1. Introduction 
TilE RELATIVE Gain Array (RGA) (Bristol, 1966) is widely 
used in the process control industry to analyze interactions in 
multivariable systems. A number of authors have recently 
studied robustness difficulties associated with plants whose 
RGA has large elements. For discussions of these results and 
lists of references, see, e.g. Nett and Manousiouthakis 
(1987), Skogestad and Morari (1987). In these studies, it has 
been typical to consider the control objective of maintaining 
a satisfactory level of sensitivity reduction at the plant output 
despite the presence of a multiplicative unstructured 
uncertainty at the plant input. Analysis of this problem has 
revealed important relations between the size of the plant 
condition number and the difficulty in achieving robust 
sensitivity reduction (Freudenberg, 1989a; Stein, 1985; 
Skogestad et al., 1988), leading to the conjecture that 
ill-conditioned plants are potentially difficult to control 
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(Freudenberg, 1989a; Stein, 1985, 1987; Nett and Mano- 
usiouthakis, 1987; Skogestad et al., 1988). These relations 
further provide a foundation for clarifying the role of the 
RGA from a robustness perspective. Several useful relations 
have been discovered in Nett and Manousiouthakis (1987), 
Chen (1991) between the RGA (and its extension, block 
relative gain) and the plant condition number, which, 
together with those concerning the plant condition number 
and control difficulty, support the long standing empirical 
results that plants with large relative gains are potentially 
difficult to control. 

It should be emphasized, however, that the tentative 
conclusion concerning the plant condition number and 
robustness difficulties depends critically upon the assumption 
that the modeling uncertainty at the plant input is 
unstructured and thus can introduce uncertainty in the 
coupling between different loops (Skodestad et al., 1988; 
Cben and Freudenberg, 1992). Also noteworthy is the fact 
that the size of the plant condition number depends upon the 
scalings of the plant input and output variables. Often, 
physical considerations require that the uncertainty model 
have the structure of an unknown diagonal or block-diagonal 
transfer function matrix (Skogestad et al., 1988; Enns, 1987) 
to reflect the fact that there is no uncertainty in the coupling 
between different loops or sets of loops. Skogestad and 
Morari (1987) demonstrated that the RGA is a useful 
measure in detecting the potential difficulty of achieving 
robust sensitivity reduction in the face of a diagonal 
multiplicative uncertainty at the plant input. More 
specifically, they show that the RGA is less conservative than 
the plant condition number for this purpose. Alternatively, 
the robustness indicator proposed in Chen and Freudenberg 
(1992) may be used to assess this difficulty. The issue of 
scaling has been studied in, e.g. Manousiouthakis et al. 
(1986), Nett and Manousiouthakis (1987), Freudenberg and 
Saglik (1990), Braatz and Morari (1991). 

The aforementioned two aspects of the problem motivate 
the present work. The purpose of this paper is, through an 
open-loop analysis, to gain insights into how open-loop 
properties may vary in the face of a structured uncertainty 
and thus lead to potential robustness difficulties, both 
dependently and independently of the plant scalings. Section 
2 introduces notation and preliminary results utilized 
throughout the paper. Section 3 presents our main results. 
We consider relative deviations of the open-loop transfer 
function in the presence of diagonally structured plant 
uncertainities. Several estimates for the worst case deviations 
are given in terms of certain structured singular values and 
their bounds, and also in terms of certain scaled plant 
condition numbers and the relative gain array. Section 4 
presents further estimates expressed in terms of block 
relative gains. We discuss the tightness of the estimates of 
the worst case open-loop deviation. We conclude that 
uncertainty can cause a large deviation exactly when the 
estimates stated in terms of the structured singular values 
and bounds, and in some more specialized cases the 
estimates stated in terms of the condition numbers, are large. 
On the other hand, the estimates stated in terms of the RGA 
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and block relative gains can sometimes be misleadingly 
optimistic. An example is given in which these estimates are 
small, indicating that the worst case deviation is small, even 
though it is in fact large. Our results support and reinforce 
previous conjectures and results to the effect that plants with 
large condition numbers and/or relative gains are potentially 
difficult to control. 

2. Preliminaries 
Given a matrix G =[gii]eC ~×~, we denote by [G],, 

C '~×0' the submatrix of G corresponding to the first m rows 
and columns, and by IGI the majorant matrix whose 
elements are the moduli of the corresponding elements of 
G:  IGI = [Ig~/I]. The notation IlGlb will denote the H~lder 
/p-induced matrix norm, and p (G)  the spectral radius of G. 
In particular, the induced I z norm IIGII2 of G is often termed 
the largest singular value, and denoted by O(G). Suppose 
that G is nonsingualr. Then, the condition number of G, 
denoted by x(G), is defined as x ( G ) : =  O(G)O(G l), and G 
is said to be ill-conditioned if x(G) >> 1. 

A block structure (Doyle, 1982; Fan and Tits, 1986) Y( 
consists of a k-tuple of positive integers 

k 

Y/': = (n I . . . . .  nk), n = ~ n l .  

A matrix M r C  "×" may be partitioned compatibly with 
- " " -  "~×'J h ~:M-[Mq] ,  t , l - I  . . . . .  k, MqeC . T e  block norm 

matrix (Hyland and Collins, 1989) of M e C ~ ~" with respect 
to  Y/" is defined to be the k x k  non-negative matrix 
I~=[moIER k×k, where mo:=O[Mis], i , j=  i ,2  . . . . .  k. 
Also compatibly with 9/', we define the set 

~k = {diag (d~ ! , , , . . .  d,l,,k): dr > 0}. 

For any D~,/)2 • ~k, we say that D~ GD 2 is a scaled version 
of the matrix G under the scaling matrices D~ and D z. Note 
that both the scaling operation and scaling matrices are 
d e f i n e d  with respect to the block structure ~ .  Though in 
g e n e r a l  scaling a matrix G may correspond to pre- and/or 
post-multiplying G by arbitrary scaling matrices, in this paper 
we consider only such scalings with a structure compatible to 
~ .  The minimally scaled condition number of G with respect 
to Y/', denoted by r*(G), is defined as 

x*(G):=inf{ic(DiGDz):Di,D2~_~k}. (1) 

In other words, x*(G) is the condition number of the scaled 
G under the "optimal" scalings that minimize the condition 
number. Clearly, r*(G) is invariant under scalings of G 
w h e n e v e r  such scalings are compatible to the block structure 
~. Similarly, we define the left and right minimally scaled 
condition numbers of G by r~(G):=in f{r (DG):D ~ if)k} 
and xTc(G):= inf {x(GD) : D e ~ , ) ,  respectively. 

Associated with the block structure ~,  we consider a set of 
block diagonal n x n matrices given by 

Ak(~):= {diag (Ai • • - Ak): O(A) <-- y, A i E C . . . . .  }. (2) 

Following standard usage (Doyle, 1982), we shall call 
A e Ak(Y) unstructured if k = 1, and otherwise structured. 
The structured singular value (Doyle, 1982; Safonov, 1982) 
#,~k(G) of a matrix G ¢ C "×" with respect to ~ is defined to 
be zero if there is no A ~ Ak(~) such that det ( / +  GA) = 0 
and otherwise 

It follows from Doyle (1982) that 

max p(GA)=#A~(G) <- inf O(DGD-I). (3) 
A ~ k ( I )  DeC~k 

Numerical results in (Doyle, 1982; Fan and Tits, 1986) 
indicate that the upper bound in (3) is often within 15% of 
the true value of t~,,k(G ). Moreover, it is equal to /~t~(G) 
when k -< 3. 

Finally, we briefly review the concepts of relative gain and 
block relative gain. The block relative gain was first 
introduced by Mauousiouthakis et al. (1986). We use here a 

general definition suggested in Nett and Manousiouthakis 
(1987). 

Definition 2.1. An m × m matrix O,, is a block relative gain 
of an n x n matrix G if m <-- n and there exist permutation 
matrices Pj and Pz such that either O m = 

[P, GP2I,,[(PIGP2)-'], . or O,,, = [(P, GP2)-'Im[P, GP2] m. 

As noted in Nett and Manousiouthakis (1987), a relative gain 
may be regarded as a scalar version of a block relative gain. 

Definition 2.2. A relative gain A of an n × n matrix G is 
defined to be a block relative gain for which m = 1. 

It follows from these definitions that the block relative gains 
and relative gains of G constitute sets which we denote by 
BRG(G) and RG(G),  respectively. Clearly, each element of 
RG(G) can be expressed as go[G t]ji for some i, j e  
{1, 2 . . . . .  n}, which gives the original definition of Bristol 
(1966). Let ) . 6 : = g i j [ G - t ] ] i  . 

Definitioin 2.3. The relative gain array A of an n x n matrix 
G is also an n x n matrix defined by A:=[Zol.  

Occasionally, we shall utilize the notations A(G) and O,,,(G) 
to emphasize the fact that both A and O,, are functions of G. 
It is easy to see that A(G) is invariant under scalings of G 
when such scalings are compatible with ~ ;  for any 
Dt, D z ~ k ,  A(DtGDz)=A(G ). In fact, it can be seen 
readily that this relation holds for arbitrary non-zero 
diagonal matrices Di and D2. However, O, ,(G) in general 
does depend upon the block structure of the scaling matrices 
[see, e.g. Chert (1991)]. 

3. Main results 
We shall be concerned with an uncertain system described 

as follows. Consider a linear time-invarint feedback system in 
which we denote by G ( s ) E C  "×n and F ( s ) e C  "×" the 
transfer functions of the plant model and compensator, 
respectively. We shall assume that the plant is uncertain and 
that the true plant is modelled by the transfer function 

Gt(s):= G(s)(I + W(s)At(s) ), (4) 

where (i) the transfer function Al(s) comprises the modeling 
uncertainty and is assumed to be stable and (ii) 
AI(s) EAk(1), Vs =#o,  w E [0, ~). The transfer function 
W(s)=dag(wl(s) l , t . . .wk(s) l , ,  ) denotes the uncertainty 
weighting which is assumed to ~0e both stable and to have a 
stable inverse. 

In analyzing robustness difficulties, it has been typical to 
examine the problem of keeping the sensitivity function small 
at the plant output despite the presence of a multiplicative 
uncertainty in the form of (4) (Freudenberg, 1989a; 
Skogestad et al., 1988; Stein, 1987). Alternatively, Skogestad 
and Morari (1987) studied the effect of the uncertainty upon 
the open-loop transfer function. Their analysis provides 
intuitively appealing insights into how the open-loop transfer 
function may deviate from its nominal value and thus lead to 
robustness ditficulties in the face of uncertainty. In this 
section we also consider the open-loop properties. More 
specifically, we shall study the relative deviation of the 
open-loop transfer function to be introduced below. Define 
the nominal output open-loop transfer functioia* by 
Lo:=GF. In the presence of the uncertainty described by 
(4), the true output open-loop transfer function becomes 
L~:=  (1 + Et)Lo, where Et is an error term: 

E / : = G W A I G  I. 

Alternatively, El may be rewritten as E t = (L' o -  Lo)Lo l, 
and thus it measures the relative deviation of the open-loop 
transfer function under the perturbation of the plant model. 
We shall consider the worst case magnitude of this deviation 
when the norm of the uncertainty is bounded above by one. 
The size of the worst case magnitude will be termed the 
worst case deviation and is defined as follows. 

* We will suppress dependence upon frequency hereafter. 
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Definition 3.1. The worst case deviation is defined as 

vt(G):= max O(Et). (5) 
Al~kk(I) 

Our objective is to obtain insight into the problem of how 
plant properties may cause this magnitude to be large and 
hence potentially contribute to robustness difficulties in the 
presence of uncertainties. Intuitively, a large value of vt(G ) 
at the frequency of interest indicates that the open-loop 
transfer function will deviate far from its nominal value and 
thus will potentially lead to undesirable closed-loop 
properties. Indeed, consider the perturbed output sensitivity 
function S~: = (1 + L~) -  ~. A simple manipulation yields that 
(S~ - So)So I = EtTo(I + EtTo)- I, where So:= (I + Lo)-i 
and To:=Lo(l+ Lo) -I are the nominal output sensitivity 
and complementary sensitivity functions. It is easy to show 
that 

o(ED 
O(S5 - S°)S°') >- O(Tol)(1 + O(Et)O(To))" 

Furthermore, since the lower bound is monotonically 
increasing with O(Et), it follows that 

max (S~-So)So~)> max - _~,,, O(Et) 
",.,~*0) A,~,~O) O(To ~t ~ + O(Et)O(To)) 

vt(G) 
O(Tol)(1 + vt(G)O(To) )" 

This indicates that a large value of vt(G ) will lead potentially 
to a large relative deviation between the nominal and 
perturbed sensitivity functions, and that this relative 
deviation increases monotonically with the value of vt(G). 
Analogously, under the condition vt(G)6(To)< 1, it can be 
shown readily that 

vt(G)~(To) 
max 0((S~ - So)So I) _< 1 - vt(G)O(To) " AI¢Ak(I) 

Hence, under this assumption, the worst case deviation 
between the sensitivity functions will decrease monotonically 
with the value of v~(G). 

We now show that vt(G ) may be calculated using the 
structured singular value, and derive bounds upon its size in 
terms of the relative gains and the condition numbers. To 
proceed, we shall also need to introduce two additional sets 

and 

O ] : A~ e A~,(Y), A2 e At2(y)l,  (6) 

O2] :DI ~ e ~ k t ,  D2 ~k2}, (7) 

where kl and k 2 a r e  two integers which satisfy 1 ~ k I - n  and 
1 ~ k 2 ~ n. For each of these integers, we may define a block 
structure similar to ~ and accordingly, the sets similar to 
those in (1) and (2), denoted by A~(y), A,2(y), and ~k~, 
~ , ,  respectively. These integers and sets are introduced to 
form the augmented sets A(y) and ~.  The latter two sets are 
useful in quantifying the worst case deviation v~(G) and 
other quantitities of interest. The values of kt and k 2 will 
depend upon the block structure of At. Our first result gives 
an exact expression for v~(G) and provides such an example. 

Proposition 3.1. 
(i) 

vt(G)= ~([ GOW Co-']) 
) -< inf D D -I D¢~0 (8) 

where A(y) and ~ are given by (6) and (7) with k I = k, the 
number of blocks in the input uncertainty A t and k 2 --  1. 

(ii) 
IIAWIl®~max ~ Iw~./, I .~ 

t,t k~l,gjl,~O 

--< v~(G) 

- ~c~(G) m.ax Iw~l. (9) 

We shall need the following lemmas in order to establish 
Proposition 3.1. 

Lemma 3.1. Let A, B e C  ~×". Then, for any l<--kl<n and 
l < k2<-n, 

2 0 
max #A, (AA|B)= #A([ A B]). 

AteAkt(i ) 2 

Proof. The result follows from (3) and the following: 

max # a , ( A A I B ) =  max max p(AAIBA2) 
AleAkkl(i ) 2 ZXIGAkI(I) A2~2(|) 

= m a x  max pe([  0 B~2])  
AIeAkI(I) A2~kk2(l) ~LAAI 

= m a x  p 2 ( [  0 B ] A )  
Ae,,(|) \LA 

2 0 

Lemma 3.2. Let A, B e C  "×'.  Then, for any l < k l ' ~ n  and 
l ~ke<-n, 

= inf #(D~BD~I)~(D2ADin). 
DI G f~Ok i , D2E f~Ok 2 

Proof. See Theorem 5.1 in Chen et al. (1991). 

Proof of Proposition 3.1. The equality in (8) follows directly 
from using Definition 3.1 and Lemma 3.1, while the upper 
bound follows as a consequence of this equality and (3). The 
upper bound in (9) follows from using Lemma 3.2, noticing 
that when kl = k, k z = 1, 

= inf O(DG-nd-I)#(dGWD -I) 
D¢~k ,d>l l  

< a ( W )  inf O(DG-I)O(GD-I). 
D ~ f~O k 

To establish the lower bounds, we first note that 
rAG) >- max #(Et). Let E i / ~  an element of Et. Then for ateA,,O) 
any A t e A,(1), we have E 0 = i~f gilwlAl[G-']i;" It is easy to 

n 
recognize that max E#l = ~ Ig, • I[G-~]01 • Iwll. Since 

AleAn( ) I= 

~_, tg,,t, tla-'lljt-IWlt-> ~ re,,1-ilG-'lljt, tw, t 
I=  I I= 1 ,gjl~H) 

I =  I,R,~,.~. g/t 

and O(EI)-> max IE#, the first lower bound in (9) follows. 
c,l 

The second lower bound follows by setting i = j  in the first 
bound. This completes the proof. • 

Proposition 3.1 provides an alternative characterization of 
the worst case deviation vt(G) and also relates this deviation 
to the condition number x?~(G) and the relative gain array. It 
follows from (8) that vs(G) can be found exactly by solving a 
structured singular value problem. The upper bound in (8) 
can be easily computed, and as the numerical experiments in 
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Doyle (1982), Fan and Tits (1986) suggest, it will often be 
accurate to within 15% of vt(G ). When k - 2, it is actually 
equal to vt(G ). Additionally, if the weighting matrix W is 
chosen to be spatially uniform, i.e. w~=w for all 
i = 1 . . . .  , k, then it follows from the above proof that 

= Iwl = inf O(DG-~)O(GD -') = Iwl r~(G). 
D~f:O k 

As a result, the upper bound in (9) coincides with that in (8). 
In this situation, the upper bound is within 15% of vl(G ) and 
hence may potentially serve as an accurate "indicator" of the 
effects that the uncertainty has on the open-loop transfer 
function. The assumption of a spatially uniform uncertainty 
weighting is often appropriate when the input uncertainty is 
unstructured (Freudenberg, 1989a, b; Stein, 1987; Skogestad 
et al., 1988), and has also been adopted in the previous 
analyses for cases where the uncertainty is structured 
(Skogestad and Morari, 1987; Skogestad et al., 1988; Chen 
and Freudenberg, 1992). Proposition 3.1 shows that the 
upper bound in (8) is useful for a general weighting matrix, 
while the upper bound in (9) may provide an tight estimate 
only when the weighting matrix is spatially uniform. 

The above discussion has a potentially important 
implication toward the role of the condition number x~(G) 
in robustness analysis. To further illustrate, it is instructive to 
consider the special case W = L From (9), this yields 

IIAII®-< vt(G) -< x,~(G). (10) 

Hence under this circumstance, the condition number u,~(G) 
provides an estimate of vt(G ) accurately to within 15%. In 
particular, from the discussions following (3), we have 
vt(G ) = x~(G) when k -< 2, and vt(G ) = x(G) when k = 1. 
The latter corresponds to the case where A t is unstructured, 
for which the plant condition number x(G) has been 
conjectured as a measure of robustness difficulties (Freuden- 
berg, 1989a, b; Stein, 1987; Skogestad et al., 1988). Clearly, 
x~(G) plays a similar role and may be considered to be a 
suitable measure of robustness difficulties for the case when 
A t is diagonally structured. 

On the other hand, the relative gain array may be an 
overly optimistic measure. Indeed, it was noted in Skogestad 
and Morari (1987) that the RGA can cometimes fail to detect 
the difficulty when the plant has large off-diagonal elements 
at frequencies of interest. This can also be observed from the 
lower bounds in (9). It is clear from the first bound that 
vt(G) will be large when IIAII® is large. However, the second 
lower bound implies that vt(G) need not be small even if 
IIAII® is small, particularly when the off-diagonal elements of 
G are large. The following simple example further illustrates 
this observation. 

Example 3.1. Let t re  C and consider 

Suppose that W = I ,  and k = 2 .  Then, 
discussions, we have 

vt(G)= r~(G)= inf 0 2 D 
D6~ 

from the above 

0 0 
o: 0 D- I  ' 

1 0 

where ~ is defined by (7) with kl = k  =2 ,  k2= 1. Utilizing 
the lower bound in Chen and Freudenberg l~Q_.~_~see also 
Chen and Nett (1992)], we have x~(G)>-V1 + lad z. Hence 
vt(G)--', oo as loci--, 0o. However, [IA(G)}I®~ 1. 

The similarity and difference between the roles of the two 
condition numbers x(G) and x~(G) also supports the results 
in Nett and Manousiouthakis (1987), Chen and Freudenberg 
(1992), Skogestad et HI. (1988), from an analysis of open-loop 

properties, that the robustness difficulty depends upon the 
uncertainty structure. It further suggests that in the presence 
of a structured modeling uncertainty in the plant model, a 
proper choice of scaling may reduce the pessimism in 
estimating the robustness difficulty using the plant condition 
number. This is evidenced by the above discussion that in the 
presence of a structured uncertainty, x~(G) may provide a 
more accurate assessment of the robustness difficulty than 
x(G) and also by the fact that x~c(G) -< x(G). Note that both 
x~c(G) and vt(G ) are invariant of scalings of G at the plant 
input when they are compatible to the block structure of A t . 
Indeed, it is easy to see that x~c(GD)=x~c(G) and 
vt(GD ) = vt(G ) for any D 6 ~k- However, both quantities 
depend upon scaling at the plant output. A useful measure is 
the worst case deviation independent of the plant scalings. 

Definition 3.2. The scaling-independent worst case deviation 
is defined as 

vT(G) := inf vt(D, GD2). (11) 
DI , D2 e ~Ok 

Stated in words, v~(G) is the worst possible deviation 
corresponding to the best scaling. 

Proposition 3.2. 
(i) 

G-I I 
/*2([GOw 0 ] )  -< v~'(G) -< D~inf O2(D[GOw G-O ] D - I )  ' 

(12) 

where A(y) and • are given by (6) and (7) with k~ = k 2 = k, 
the number of blocks in the input uncertainty A t . 

(ii) 

IIAWII® -< vT(G) -< u*(G) m/ax Iwil. (13) 

Proof. We first note that vl(D I GD2) = vt(Dt G). Hence, 

v~'(G)= inf vI(DG)= inf max b(DEtD-J) .  
OEedak D ~  k A/GAk(I) 

However, 

inf max O(DEID-~) >- max inf Û(DEiD -~) 
DEg~ k AIEAk(I ) Ai~Ak(I) D¢~& 

-> max tJAk(EI). 
A/~Ak(|) 

The lower bound in (12) then follows from using Lemma 3,1. 
Let ~ be the set defined by (7) with k~ = k, kz = 1. Then, 
from (8), we have 

v~'(G) -< inf inf. 0 2 
DI,D2¢~ k D ~  

x D 0 

This gives the upper bound in (12). Further weakening this 
inequality yields the upper bound in (13), and the lower 
bound in (3.10) follows from the fact that A(D, GD2)= 
A(G). • 

Again, according to the numerical experiments in Doyle 
(1982), Fan and Tits (1986), the lower and upper bounds in 
(12) may provide an estimate of v r (G)  accurate to within a 
factor of 15%. In particular, it follows from Chen et al. 
(1991) that when k-<2, these two bounds are equal and 
hence v~(G) can be determined exactly. As in Proposition 
3.1, the upper bound in (13) will be within 15% of v~'(G) 
when the weighting matrix is spatially uniform. In this 
situation, the condition number x*(G) may provide an 
indication, accurate to within a factor of 15%, of how the 
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uncertainty may affect the open-loop properties independ- 
ently of scalings of the plant. Similarly, the upper bound in 
(12) is useful for a general weighting matrix, and the upper 
bound in (13) may provide an tight estimate only when the 
weighting matrix is spatially uniform. The role of x*(G) may 
also be illustrated by considering the special case W = !. 
Under this circumstance, it follows that 

IIAII®- < v;*(G) -< x*(G), (14) 

where from the above discussion, x*(G) may often be within 
15% of v~'(G). Hence, irrespective of plant scalings, the 
minimally scaled condition number x*(G) plays a role 
similar to x~(G). It is interesting to note that an upper 
bound of x*(G) was conjectured in Nett and Manousioutha- 

n 

kis [1987, Theorem (21)], stating that I¢*(G)<-i.~l [~.ijl + 6., 

where 6. is a constant independent of G. If this conjecture is 
true, then x*(G)<-nllAll®+6~. As a consequence, 
IIAll®<-v~'(G)<--(n IIAll=+ 6.). The implication of this 
result is that if the conjecture in Nett and Manousiouthakis 
(1987) holds, then the RGA may not be an overly optimistic 
indicator of the effect that the uncertainty has on the 
open-loop properties independently of scalings of the plant. 

Thus far we have analyzed the effect of input uncertainty 
upon the output open-loop transfer function. In studying the 
problem of keeping the output sensitivity function small, it is 
often useful to introduce an additional fictitious uncertainty 
at the plant output and to reformulate the problem as one of 
attaining robust stability (Doyle et al., 1982; Freudenberg, 
1989a; Skogestad et al., 1988). Typically, this uncertainty is 
taken to be unstructured and in the form of 

Go : = (1 + AoR)- IG, (15) 

where the transfer function A o is stable and at each 
frequence, it lies in A~(1). Also, R is a weighting function 
used to model the level of sensitivity reduction (Stein, 1985; 
Skogestad et al., 1988; Chen and Freudenberg, 1992). 
Typically, R is chosen to be spatially uniform. 

In what follows we briefly analyze the effect of the output 
uncertainty upon the input open-loop transfer function. We 
shall assume that the uncertainty is described by (15), with 
Ao ~ Al,(l) and accordingly, R = diag (r , l . , . . .  r,l.,). Define 
the input open-loop transfer function by L~ : - F G .  Then, its 
perturbed form under the uncertainty Ao is given by 
L; := Lt(l + Eo)-'. The error 

Eo := G- IAoRG 

also serves as a measure of the relative deviation of the input 
open-loop transfer function. Similarly, we may define the 
worst case deviations by 

vo(G):= max ~(Eo) 

and 

v~(G)= inf vo(D, GD2). 
DI.D2~E ~) k 

The following corollary gives the counterparts of Proposi- 
tions 3.1 and 3.2, and it bears analogous interpretations. 

Corollary 3.1. 
(i) 

z 0 vo(G)=l~A([G_l R G]~<_O j /  n~inf 02(D[GO_,R 0G]D- ' ) ,  

(16) 

where A(y) and fl~ are given by (6) and (7) with k~ = k, the 
number of blocks in the output uncertainty A0 and k 2 -- 1. 

(ii) 

[[RA{h -< ma x ~ {r,A,,l" 
~,l iffi l,gli~-O 

-< vo(G) - x[(G) m/ax [r/I. (17) 

(iii) 

(18) 

where A(y) and ~ is given by (6) and (7) with k~ - k 2  = k, 
the number of blocks in the output uncertainty Ao. 

(iv) 

IIRAIh <- vb(G) <- x*(G) max Iril. (19) 
i 

Proof. These results can be established analogously as in the 
proofs for Propositions 3.1 and 3.2. Alternatively, the proof 
may proceed by replacing W by R. It follows that 
vo(G)=vI(G -I) and v~(G)=v~(G-I). These facts to- 
gether with (8) and (12) lead immediately to (16) and (18). 
Notice also that x~(G)= x~(G) and x*(G -I) = x*(G). This 
establishes the upper bounds in (17) and (19). Moreover, we 
note that ),#(G-')~- ),#(G)÷ A(G-') = At(G). It follows that 
IIA(G- )RII® = II(RA(G)) I1®= IIRA(G)Ih. Also, for any 
1 -< i, j-< n, it follows from the proof of Proposition 3.1 that 

v,(G-')-> ~ ,[G-'],,I" lglfl" [rfl ~ ~ lr:).nl " g#. 
1= I I ~  I ,gli'~(I g# 

These facts establish the Iowr bounds in (17) and (19). • 

4. Extensions 
In the preceding section we have discussed relations 

between the worst case deviations of the open-loop transfer 
function and the relative gains and scaled condition numbers 
associated with the plant transfer function. In this section we 
study relations concerning the worst case deviations and the 
block relative gains. We give extensions to the lower bounds 
in (9), (13), (17), and (19) using the block relative gains. 

We shall assume that the uncertainties under consideration 
are strictly diagonal. This corresponds to the case that 
AI, AoeA~(l) .  The proposition below shows that either 
vl(G ) or vo(G ) will be large if the largest singular value of 
any block relative gain is large, and that either v~(G) or 
v~(G) will be large if the structured singular value of any 
block relative gain is large. Extensions to the case of block 
diagonal uncertainties may also be obtained at the expense of 
more complicated notations. 

Proposition 4.1. 
(i) Suppose that A I in (4) is strictly diagonal; i.e. suppose 
that k = n. Then 

v,(G)~ max a(lG]mlW],~lG-']m). (207 
|~m~n 

Suppose that A o in (15) is strictly diagonal, i.e. suppose that 
k = n. Then 

vo(G) > - max a([G-'],~[R],~[G]m). (21) 
I ~ m  ~ n  

(ii) Suppose, further, that W = R = I. Then, 

max (vt(G), vo(G)) >- max O(O,.) (22) 
I ~ m ~ n  

max {vt(G ), v~(G)} 

--- max inf {a([D]mO,.([D],.)-l): D ~ ~.}. (23) 

Proof. First, for any m, I < m -< n, we have 8(Er) > 8 
([Eli.,). It follows that 

v , (G)~  max 8([E,],.) ~,eA,,(t) 
max {~'([(~]lm[W]m[t4L]nl[(~-|]nT).* A ~/~n(l)}. 

Setting [A],. = 1 yields (20), and similarly (21) is proven. 
Furthermore, setting W = 1 gives vt(G) :> O([G].,[G-']m), 
and further v:(PIGPe) >/)([Pi GP2],.[(Pt GPz)- i],.) for any 
permutation matrices Pi and Pa. It is easy to verify that 
vt(PiGP2) = vl(G). Therefore, for any Om ¢ BRG(G), 
vt(G ) > ~(O,.) if 0,,  = [PIGP2],.[(PIGPz)-'],., and other- 
wise, vo(G)~ O(Om). This proves (22). To see that (23) 
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holds, consider again that Om(G ) = [Pt GPz]m[(PI GP2)-l]m. 
From Chen (1991, see the proof for Theorem 3.2), we have 
O,.(D, GD2)=[D],.O.,(G)([D]m) -~ for any D e ~ . .  It 
follows that v~'(G) ~ inf {O([D]_O,,,(G)([D]m)-I):D ¢ ~.}. 
Similarly, if Ore(G) = [(PIGP2)"I]r~[PIGP2]m, then we have 
v~(G) -> inf {O([D]mOm(G)([D],,) -~ :D ~ ~,}. Hence, (23) 
follows. This completes the proof. • 

5. Discussion 
We now briefly discuss relations between the present 

results and those in Braatz and Morari (1991), Nett and 
Manousiouthakis (1987), and Chen (1991). It is instructive to 
restrict our discussion to the case W = R = I. First, from the 
discussion following Proposition 3.1, we have 

where ~ is defined by (7) with k i = k and k~ = 1. The same 
equality holds for x~(G) with kl = 1 and k2=k.  
Analogously, it follows as in the proof of Proposition 3.1 that 
x*(G) can also be expressed by this equality with ~ defined 
by (7) and k i = k2 = k. These results give characterizations of 
the minimally scaled condition numbers which can be readily 
computed (Doyle, 1982; Fan and Tits, 1986) and which 
constitute a slight extension to the formulae given in Braatz 
and Morari (1991, Lemma 2.2). The formulae given in 
Braatz and Morari (1991) for computing the optimally scaled 
condition numbers correspond to the case k = n. Secondly, 
let 

.:[o 
Then, from C.hen and Nett (1992), we have ( l / k ) o ( / t ) ~  
inf O(DHD-')<-p(H). It is easy to realize that p ( H ) =  

DE~ 
pl~(d • G-I). Hence, 

1 ~ p ( d . G - ' ) < x * ( G ) < p ( G . G - : - T ) .  (25) 

This result is an extension to Fact 8 of Nett and 
Manousiouthakis (1987). In particular, if k =n,  then the 
upper bound conicides with that in Nett and Manousioutha- 
kis (1987), and the lower bound can be further strengthened 
to (1/n)p(IGl'lG-I]). The latter assertion follows from 
Proposition 3 1 of C ~ n  and Nett (1992), yielding that 
inf O(DHD- ) >- (1/Vn)p(H). Hence, 

Thirdly, we notice from Proposition 3.2 and Corollary 3.1 
that 

max {IIAII®, IIAIh} -< max {vl*(G), v~(G)} ~ K*(G). 

This gives the inequality max {llAll®, IIA]l,} < K*(G), which 
was implicit in Nett and Manousiouthakis (1987). Finally, 
Propositions 3.1 and 4.1, and Corollary 3.1 together imply 
that 

O(Om) <- max {x~(G), r~(G)} -< x(G) (26) 

and 

inf O([D]mO.,([D],.)-') -< x*(G). (27) 
D ~ n  

Clearly, (26) provides a stronger result than Theorem 3.1 of 
Chert (1991), and (27) coincides with Theorem 3.2 of Chen 
(1991). 

6. Conclusions 
We have considered deviations of open-loop properties in 

the presence of diagonally structured plant uncertainties. The 
objective of this work has been to provide insights into how 
the open-loop transfer function may deviate from its nominal 
value and thus lead to potential robustness difficulties under 

the effect of uncertainties. Estimates were given for the worst 
case deviations of the open-loop transfer function in terms of 
certain structured singular values and their bounds, and also 
in terms of certain scaled plant condition numbers, the 
relative gain array, and the block relative gains. Our analysis 
shows that the estimates in terms of the structured singular 
values and bounds are tight in general, so are those in terms 
of the condition numbers for certain special cases studied 
previously in the literature. On the other hand, the estimates 
in terms of the relative gain array and block relative gains 
suggest only that the deviations will be large when the 
relative gain array or the block relative gains, measured in 
terms of matrix norms and the structured singular values, are 
large. A simple example was given to illustrate that the 
open-loop properties need not be insensitive to the 
uncertainty despite a small relative gain array. 
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