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Abstract--Results are presented from an experimental investigation comparing geometric scaling 
properties created by the mixing of dynamically passive tracers in chaotic flows with those resulting 
at the small scales of fully developed turbulent flows, The low Reynolds number, two-dimensional, 
time-periodic, closed flow between eccentric rotating cylinders is taken as the archetypal chaotic 
flow. The turbulent flow for comparison is the high Reynolds number, three-dimensional, unsteady, 
open flow in the self-similar far field of a steady axisymmetric jet. For each flow, the concentration 
field ~(x, t) resulting from the mixing of a conserved scalar quantity is used to measure scaling 
properties of the support seL on which the corresponding scalar energy dissipation rate field 
( R e S c ) - I V ~  • V~(x, t) is concentrated. The distributions of dissipation layer separations obtained for 
both flows are found to be identical. Contrary to central limit arguments for multiplicative quantities, 
the ensemble-averaged distributions in both flows have a - 3  power law scaling for all but the 
smallest separations; classical log-normal scaling for multiplicative processes is found only in regions 
having undergone extensive stretching and folding. A statistical assessment of the fractal scaling 
properties based on one-dimensional intersections with the dissipation support set demonstrates that 
the chaotic flow at this stage of development approaches a global fractal dimension only in these 
same regions. Unlike previous studies of the fractal scaling of scalar isosurfaces in turbulent flows, 
the results for the turbulent flow presented here show no strong evidence for global fractal scaling in 
the dissipation support set. 

1. I N T R O D U C T I O N  

Mixing in turbulent flows represents one of the most widely encountered and technically 
important classes of problems in the fluid sciences. Yet no broadly applicable theory for 
treating practical problems involving turbulent mixing currently exists. It is known that the 
quasi-deterministic large scale structures in a turbulent flow control the entrainment 
properties of the flow, and that these large structures differ from one flow to another. It is 
believed that the structure and dynamics of the small scales in fully-developed turbulent 
flows are quasi-universal, satisfying Reynolds number asymptotics and displaying certain 
universal statistical scaling properties. However, it is only recently that the fully three- 
dimensional, time-varying, small scale structure of mixing in turbulent flows has been 
accessible to direct experimental study [1]. An example of such a measurement is shown in 
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Fig. 1, where the concentration field ¢(x, t) of a dynamically passive, conserved scalar 
quantity being mixed by the underlying turbulent flow is shown in a small volume element 
of the flow. The mixing of such a scalar can be usefully quantified in terms of the scalar 
energy dissipation rate field ( R e S c ) - I V ~  • V~(x, t), also shown for the same volume element 
in Fig. 1. Of primary interest for the present purposes are the highly folded sheet-like 
structures into which the scalar dissipation field is formed by the underlying three- 
dimensional time-varying turbulent flow field. It has recently become possible to extract 
the underlying time-varying vector velocity field u(x, t) from such four-dimensional scalar 
mixing measurements in turbulent flows [2, 3]. This may allow detailed studies of the 
mixing process at the small scales of turbulent flows; however,  at present the geometric 
methods and mathematical tools for describing the structure and dynamics of this mixing 
process in turbulent flows are still at a relatively early stage of development.  

By comparison, considerable progress has been made over the past ten years in the 
development of experiments and analytical methods for understanding, describing, and 
even predicting certain features of fluid mixing in closed, two-dimensional, time-periodic 
chaotic flows and three-dimensional, spatially-periodic, steady flows [4]. Some notable 
examples of the former class of flows include the blinking vortex flow [5, 6], the cavity flow 
[4, 7, 8], and the journal bearing flow [4, 7, 9] shown in Fig. 2. Examples of the latter 
include the ABC flow [10] and the E H A M  flow [11]. Each of these flows, while outwardly 
simple, produces a periodic stretching and folding of material elements that rapidly 
manifests itself as an exponential growth in the total amount  of intermaterial area available 
for molecular diffusion. This repeated stretching and folding leads to the formation of 
highly layered regions of material striations having a wide distribution of separations. With 
increasing time, these layered regions are further stretched and folded, forming yet smaller 
striations from initially larger ones via an apparently self-similar multiplicative process. 

¸ 

Fig. 2. The scalar field ~(x, t) produced by mixing in the chaotic, two-dimensional, time-periodic eccentric cylinder 
flow of Swanson and Ottino [12], shown for f2 = -3 and 0= 4~r at a relatively early period. Note the lamellar 
structure of the scalar field and compare this with Fig. 1. Shown also are the window boundaries into which the 
negative is divided for imaging analysis. For reference the boxes are numbered from left to right and top to 

bottom. 
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Fig. 1. Experimental data detailing the fluid mixing process at each of over 16 million points in a small 
three-dimensional spatial data volume taken from a four-dimensional spat io- temporal  data space consisting of 
over 3 billion individual data points obtained in the self-similar far field of an axisymmetric turbulent jet. The 
volume dimensions are given in terms of the finest velocity gradient length scale ),v, proportional to the classical 
Kolmogorov scale. Shown are: (a) the conserved scalar concentration field ~(x, t), and (b) the associated scalar 
energy dissipation rate ( R e S c ) - l V ¢  • V~(x, t). Note the highly convoluted layers in the dissipation field, created by 
the continual stretching and folding action of the three-dimensional time-varying flow field. For the case shown, 

Re  ,.~ 3700 and ( R e S c )  ~ 8 × 106. 
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Fig. 3. Examples of the three-dimensional scalar energy dissipation rate field ( R e S c ) - l V ~  . V~(x, t) displayed as 
two-dimensional cuts from different three-dimensional spatial data volumes of the type shown in Fig. 1. Notice the 

highly convoluted nature of the layers forming the dissipation field. 
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Fig. 4. The logarithm of the scalar energy dissipation rate field loge [V¢. V~(x, t)] for two different regions of the 
journal bearing flow of Fig. 2. (a) Example of a parallel region of the flow where the layers are essentially all 
aligned uniformly in the same direction. This is the resulting scalar dissipation field obtained from box 31 in Fig. i. 
(b) Two-dimensional scalar dissipation field loge [V~" V~(x, t)] calculated in box 7, an example of an intermediate 

region or one in which the layers show some deviation from a strictly parallel formation. 
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Fig. 18. The probability density plot of all of the local fractal dimension values from all 8000 test cases of digitized 
irregular cantor sets with dimension = 0.40. A cumulative probability density curve for all of the local fractal 
dimension values in the range 4 ~ log2 (l/b)~< 7 is shown beside it. These test cases serve as a 'yardstick' with 

which to measure the fractal behavior of the experimental data. 
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Fig. 22. The probability density plot of all of the local fractal dimension values from the chaotically advected data 
set. A cumulative probability density curve for all of the local fractal dimension values in the range 
4 <~ log2 (1/6) ~< 7 is shown beside it. From this plot it is obvious that the whole field is not described by one single 

fractal dimension. 
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Fig. 23. The probability density plot of all of the local fractal dimension values from a parallel region of the 
chaotically-advected data set. A cumulative probability density curve for all of the local fractal dimension values in 
the range 4 ~< log2 (1/6) ~ 7 is shown beside it. It shows nearly fractal behavior but the standard deviation in the 

local fractal dimension values is still approximately 2 times the value obtained from the test cases. 

Mixing in chaotic and turbulent flows 1063 

l 0.136 

0 

! 
i!i!!!!ii!!~i!i~i' 

0.069 

o o 

°,1 
O O 

O O O O 

O O o O O o O O O 

<~ = 0.1491 
<D> = 0.4710 

¢. 
O 

21 71 0 0.07 
Log 2 (1/5) Probability Density 

Fig. 24. The probability density plot of all of the local fractal dimension values from a non parallel region of the 
chaotically-advected data set. A cumulative probability density curve for all of the local fractal dimension values in 

the range 4 ~< log2 (1/6) ~< 7 is shown beside it. This region shows absolutely no fractal behavior. 
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Fig. 27. The  probability density of  the local fractal dimension values from a typical region of the turbulent  data 
set. Beside it is a cumulative probability density curve for all of  the local fractal dimension values in the range 
4~<1og2(1/6) ~<7. This region shows slight fractal behavior with a s tandard deviation in the local fractal 

dimensions that is approximately 3 t imes the value obtained from the test cases. 
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Given the obvious qualitative similarities in the highly convoluted layered structures seen in 
such chaotic flows and in turbulent flows like that in Fig. 1, one might hope that the 
analytical tools that have been fruitfully applied to chaotic mixillg might be applicable to 
turbulent mixing as well. 

The widely held view is that turbulent flows are far more complex than these 
lower-dimensional and periodic chaotic flows, and that insights drawn from chaotic mixing 
might therefore have limited applicability to turbulent mixing. Indeed, when viewed on 
relatively large scales, the hydrodynamics of turbulent flows are undeniably more complex. 
However, at the small scales it becomes more difficult to argue for fundamental differences 
between these two types of flows. In particular, when turbulent mixing is viewed in a 
Lagrangian frame, the underlying hydrodynamics at the smallest velocity gradient length 
scales reduce to a locally uniform strain flow with time-varying principal axes, which leads 
to a continual stretching and reorientation of material elements in the flow. On slightly 
larger length scales, differential rotation rates resulting from vorticity gradients fold the 
drawn-out material elements back onto themselves in a manner reminiscent of the Smale 
horseshoe in the chaotic flow examples. The picture that results is one of turbulent mixing 
as a repeated stretching and folding of material elements by time-varying strain-rate and 
vorticity fields, much as in the chaotic flows, albeit in three dimensions rather than two, 
and without the simplicity of time-periodicity in the strain-rate eigenvector orientations. 
Moreover, unlike the closed chaotic mixing systems referred to above, a key feature of 
many turbulent flows is the continual entrainment of fluid into the mixing region-- 
increasingly more fluid participates in the Lagrangian mixing process as the flow evolves in 
time. In fact, it is precisely the large fluid entrainment rates that make turbulent flows 
attractive for most practical applications involving fluid mixing. Keeping in mind these 
differences, it is tempting to imagine that the underlying similarities in the mixing dynamics 
at the small scales in a turbulent flow and in a chaotic flow may lead to similar mixing 
patterns. The tools developed for describing and predicting the mixing properties of chaotic 
flows might then be productively applicable to turbulent flows as well. Such flows would be 
relatively simple at the smallest scales, and demonstrate the complexity traditionally 
associated with turbulence only in the aggregate. This view of turbulent mixing built up 
from the small scales naturally suggests certain universal scalings and Reynolds number 
asymptotics traditionally associated with fluid turbulence. 

1.1. Present work 

Within the context of the above discussion, the objective here is to compare various 
scaling properties of the mixing process at the small scales of high Reynolds number, 
three-dimensional, unsteady, open turbulent flows with those in low Reynolds number, 
two-dimensional, time-periodic, closed chaotic flows. To this end the experimental analyses 
are focused on two flows. We take the creeping flow between eccentric cylinders executing 
a discontinuous periodic rotation schedule as a canonical representation of the fundamental 
mixing patterns produced by the closed chaotic flow systems referred to above. The open 
turbulent flow in the self-similar far field of an axisymmetric jet at high Reynolds number is 
taken to represent the quasi-universal mixing properties at the small scales of turbulent 
flows. In each of these flows, measurements of the mixing of a dynamically passive, 
conserved scalar field ~(x, t) by the underlying flow field are used to analyze geometric 
scaling properties of the support set on which the associated scalar energy dissipation rate 
field V~. V¢(x, t) is concentrated. 

For both flows we examine two measures of the dissipation support set geometry. The 
first closely resembles the 'striation thickness distribution' of Ottino [4]. In practice, the 
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STD is difficult to measure accurately, especially in a system with significant diffusion. For 
this reason we instead work with the set of points forming the convoluted surface on which 
the local centers of the scalar dissipation layers reside. From this surface we determine the 
local one-sided surface-normal distance to the next adjacent dissipation layer. Repeating 
this over the entire surface produces the distribution of dissipation layer separation 
distances, which can be readily determined in practice even in highly diffusive systems. We 
then compare the distributions obtained in the chaotic and turbulent flows as a relatively 
sensitive measure of the geometry of the dissipation field at the small scales. 

Second, we characterize the dissipation support geometry by examining the possible 
fractal scaling properties of the set of points within which the scalar dissipation rate exceeds 
a threshold level. Prior attempts at assessing the fractal properties of turbulent mixing have 
focused largely on the geometry of isoscalar surfaces, and have found that the results 
depend strongly on the chosen isoscalar value. In contrast, owing to the highly localized 
layer-like sheets on which the scalar dissipation field is concentrated (see Fig. 1), the 
geometric scaling properties of the dissipation field are comparatively insensitive to the 
choice of dissipation threshold. We assess the applicability of a fractal description of the 
dissipation support for the mixing process in both the chaotic and turbulent flows. 

2. EXPERIMENTS 

2.1. Turbulent  f l o w  scalar fields 

Conserved scalar fields ~(x, t) as shown in Fig. 1 were measured in the self-similar far 
field of an axisymmetric turbulent jet at outer scale Reynolds numbers Re~ =-- (u6/v) as high 
as 6000, and with resolution finer than the local strain-limited molecular diffusion scale A o. 
Since the imaged volume is small in comparison with the local outer flow scale 6, and 
comparable to the inner scale '~v of the turbulence, the resulting small scale structure of the 
scalar field will be essentially independent of both the Reynolds number and the particular 
turbulent shear flow, and should be generic to large Schmidt number Sc =- ( v / D )  mixing in 
high Reynolds number turbulent flows. Details of the measurement technique can be found 
in ref. [1]. Briefly, we measure the aqueous concentration of a laser fluorescent dye carried 
by one of the fluids in a small three-dimensional spatial volume located 235 jet momentum 
diameters (1.15 m) downstream of the jet source and 13 cm off the jet centerline, well into 
the self-similar far field of the flow. The dye mixture fraction is a conserved scalar with 
Sc ~ 2075. This is measured in time throughout the volume by stimulating laser-induced 
fluorescence from dye-containing fluid from a collimated laser beam and imaging this onto 
a high-speed, planar, photodetector array. The beam is swept in a raster fashion through 
the desired volume in the flow, and the resulting laser-induced fluorescence intensity is 
collected onto the 256 × 256 pixel imaging array, which can be driven at continuous rates in 
excess of 140 data planes per second. The fluorescence data from the array is serially 
acquired at 8-bits true digital depth, and continuously written in real time to a 3.1 GB 
high-speed parallel transfer disk rank capable of accommodating more than 50000 such 
2562 spatial data planes. The spatial separation between adjacent points within each data 
plane, and between adjacent data planes within each data volume, is smaller than the local 
strain-limited molecular diffusion length scale AD of the scalar field, where 
()~/6) ~ 11.2. Re6 -3/4 and A o = ).~" Sc -1/2. The scales ~.~ and Ao are respectively propor- 
tional to the classical Kolmogorov and Batchelor scales (which are defined solely on 
dimensional grounds) but are roughly a factor of 6 larger. Similarly, the temporal 
separation between adjacent data planes within each data volume and, depending on the 
number of spatial planes, between the same data plane in successive data volumes, is 
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shorter than the local molecular diffusion scale advection time ZD/U. This resolution, 
together with the high signal quality attained, allows accurate differentiation of the 
measured conserved scalar data in all three space dimensions and in time to determine the 
components of the true local instantaneous scalar gradient vector field V~(x, t) at every 
point in the data space. 

Figure 3 shows the scalar dissipation rate data in two typical spatial data planes. Note all 
quantities are normalized by the inner scales Ao and (~) of the underlying turbulent flow. 
Each ~7~. V~(x, t) plane is obtained by direct linear central differencing of the scalar field 
data in the three adjacent scalar planes; no explicit smoothing or filtering is used in 
evaluating the three components of the scalar gradient vector field V~(x, t). Owing to the 
wide range of dissipation rates (see Fig. l(b)), we show loge V~. V~(x, t) in Fig. 3 to allow 
the structure at low dissipation rates to be readily seen. Notice that essentially all of the 
molecular mixing occurs in thin sheet-like scalar dissipation layers. 

2.2. Chaotic flow scalar fields 

Measurements of the scalar field ~(x, t) in chaotic mixing are obtained by digitizing 
photonegatives provided by J. M. Ottino of his experiments on the flow between eccentric 
rotating cylinders--the 'journal bearing flow'. Details of the experimental apparatus and 
flow can be found in ref. [12]. Briefly, two cylinders of radii RI and R2, with centers 
displaced by e, are respectively rotated in a discontinuous time-periodic fashion through 
angular displacements 01 and 02 during each period. At Reynolds numbers sufficiently low 
for the creeping flow approximation, the annular flow field is determined by the two 
geometric parameters (R1/R2) and (e/R2), held fixed at 1/3 and 3/10 respectively, and the 
two displacement angles, which can be expressed as if2 =- (01/02) and 0-= Oz. For the case 
considered here, if2 = - 3 ,  and 0 = 4rr. The fluid in the annulus is glycerine, a region of 
which is initially marked with fluorescent dye. Owing to the low diffusivity of the dye in 
glycerine, the Peclrt number (ReSc) is large even though Re--> O. The flow is allowed to 
mix this tracer for a given number of rotation periods, after which the dye pattern in the 
annulus is photographed. The scalar field in the resulting 3 in. x 5 in. photonegatives is 
digitized on a light table using the same imaging array described above. The negative is 
divided into individual windows, as indicated in Fig. 2, and each window digitized to 2562 
resolution and 8-bits signal depth. The repeated stretching and folding of the dyed fluid by 
strain and differential rotation can be seen to lead to a highly layered (lamellar) structure 
in the scalar field ~(x, t). The basic features of this field are established after just a few 
periods; further iterations principally increase the fine structure in an apparently self- 
similar fashion. Within each measurement window, the inherently two-dimensional scalar 
energy-dissipation rate field V~. V~(x, t) is computed using linear central differences on 
this discretized field. Two typical examples of the resulting scalar dissipation fields are 
shown in Fig. 4. 

There are difficulties inherent in this approach that may influence the results. These 
include errors in the photonegatives themselves, as discussed in ref. [12], among which 
parallax effects and the nonlinear film response are likely to be the most prominent. Other 
nonidealities are introduced by our processing of these negatives, e.g. minor flaws in the 
negative quality occasionally produce spots in the dissipation field. These imperfections 
appear to be sufficiently infrequent as not to significantly affect the results obtained. A 
potentially more serious limitation stems from the restricted spatial resolution achievable 
by indirect imaging measurements from photonegatives. With increasing number of 
periods, the 'striations' become thinner and eventually cannot be accurately resolved, 
limiting the maximum period n for which accurate measurements can be obtained. Results 
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of Muzzio et al. [13] suggest that, for relatively low values of g2 and #, full self-similarity in 
the distribution of stretching values may not be achieved until n ~ 10. The extent of 
similarity, however, appears likely to depend on the total stretching that has occurred, 
while at the same time the striation thicknesses that need to be resolved decrease as the 
total stretching increases. The central issue, then, is whether or not the striations can still 
be adequately resolved at a stage in the development of the flow for which self-similarity is 
reached. Comparing Fig. l(b) of ref. [13] (n = 10 for f2 = 3 and 0 = 2Ir) with our Fig. 2 
suggests a roughly similar total stretching, while their Fig. 4 indicates that this stage of 
development is indeed marginally sufficient for self-similarity. 

3. DISSIPATION LAYER SEPARATIONS 

The detailed structure of the mixing patterns that result from the repeated stretching, 
reorientation, and folding of material elements in the chaotic journal-bearing flow have 
been discussed in terms of the striation thickness distribution (STD) by Ottino [8, 9]. The 
STD is, however, notoriously difficult to measure, in part for the reasons outlined above. 
Consequently, numerical simulations of mixing in chaotic flows (e.g. refs [13-15]) have 
focused instead on the distribution of stretching values (DSV), which is closely related to 
the STD and can be readily obtained if access to the underlying velocity field is available. 
For two-dimensional, time-periodic, creeping flows of the type classically used in studies of 
chaotic mixing, the velocity field is known, and the numerical studies referred to above 
have used this to demonstrate remarkable self-similarity and scaling properties of the DSV. 
In turbulent flows, however, access to the fully three-dimensional, time-varying velocity 
field is only recently beginning to become available [2], and thus routine access to the DSV 
is not yet possible. A comparison of the mixing patterns in chaotic and turbulent flows 
must, therefore, return to measures of the spatial structure of the scalar field. Owing to the 
inherently sheet-like structure of the scalar dissipation field, we will compare the distribu- 
tion of dissipation layer separations. Once the effects of initial conditions have become 
relatively unimportant,  this layer separation distribution will be closely related to both 
the STD and the DSV. Unlike the STD, however, the compact support of the scalar 
dissipation field allows layer separation distributions to be somewhat more easily measured 
and, unlike the DSV, this can be obtained in both the chaotic and turbulent flows. The 
procedure we use for determining these distributions is described in Section 3.1; results for 
the chaotic and turbulent flows follow in Sections 3.2 and 3.3. 

3.1. Algor i thms  

Determining the dissipation layer separation distribution first requires that the set of 
points containing the dissipation layer centers must be found within each two-dimensional 
scalar dissipation plane from the chaotic flow experiments, as shown in Fig. 4, and each 
three-dimensional scalar dissipation volume from the turbulent flow experiments as shown 
in Figs 1 and 3. We use an algorithm for automatically finding the dissipation layer centers; 
however, as is often the case in 'machine vision' applications, this is more difficult to do 
well than it might appear. Extensive tests conducted with various algorithms revealed 
features necessary for reliably identifying the layer centers in the algorithm that was finally 
used. This algorithm is based principally on the scalar gradient vector field V~(x, t). 
Briefly, it begins by thresholding the gradient magnitude field (dissipation rate field) at 
some chosen level. Next ,  it identifies the edges of the regions in which the dissipation rate 
is above the threshold value. To do this, for each point the local unit normal vector for the 
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Fig. 5. Fields representing the collection of points used to describe the location of the centers of the scalar energy 
dissipation layers in the chaotic flow of Fig. 2. Each point reflects a local maximum in the scalar energy dissipation 
rate fields of Fig. 4 where once again (a) represents an example of a parallel flow region and (b) represents an 
intermediate region. Note the cleanliness of the layer definitions resulting from the application of the center 
finding algorithm to this two-dimensional flow• Layer separation PDFs are obtained by measuring the distances 

between adjacent layers at each point defining the layers. 
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Fig. 6. Fields representing two-dimensional  cuts of  the collection of points used to describe the location of the 
centers of the scalar energy dissipation layers in the fully three-dimensional  turbulent  shear flow of which Fig. 1 is 
an example.  Each point reflects a local max i mum in the scalar energy dissipation rate fields of Fig. 3 (a) and (b). 
Note that the intersections of the three-dimensional  surface defining the center  of a layer with the two-dimensional 
cut plane allows adjacent pixels within the plane to be identified with the surface wherever  it passes through the 
plane at more of a grazing incidence. A thick layer will appear wherever  the sheet  normal  direction is pointing 

essentially perpendicular  to the cut plane. 
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layer is determined based on the local gradient vector information. The edges of the layer 
are then found by marching in both directions along this unit normal direction until one of 
two criteria are met: (i) the scalar dissipation at the candidate edge point drops below the 
chosen threshold level, or (ii) the dot product between the scalar gradient unit vector at the 
original point and that at the candidate edge point changes sign. The resulting edge 
locations for the dissipation layers are then used to identify candidate midpoints represent- 
ing the dissipation layer centers. A further check is made among these candidate 
dissipation layer center points to insure single pixel thickness for the resulting surface 
before finally admitting a pixel to the set of layer center points. 

Figure 5 shows the resulting dissipation layer centers identified by this algorithm for the 
two data planes in Fig. 4. Note that most of the layer centers are accurately determined, 
though there are instances where very weak dissipation layers (the color scale in Fig. 4 is 
logarithmic) produce either 'holes' or 'erroneous layers'. Generally speaking, algorithms 
capable of reliably detecting very weak layers produce many erroneous layers. Conversely, 
attempts to reduce the number of erroneous layers tend to miss the weaker dissipation 
layers. The final algorithm used is a compromise between these two competing interests, 
representing roughly an 'optimum' among the various identification strategies attempted. 
Obvious means for further reducing the number of small spurious layers in the chaotic flow 
in Fig. 5 tend to remove valid layers in the turbulent flow, owing to the more convoluted 
nature of the dissipation field in Fig. 3. Examples of the dissipation layer centers for these 
two planes are shown in Fig. 6, which show that most of the layer centers are accurately 
identified. The more highly folded character of the dissipation layers in the turbulent flow, 
together with the three-dimensional nature of the data, make identification of individual 
layers even conceptually more difficult than for the nearly parallel layers in the two- 
dimensional chaotic flow data. Notice also that, unlike the inherently two-dimensional 
surface of layer centers in the chaotic flow, intersections of the three-dimensional surface 
resulting from the turbulent flow data with any two-dimensional plane, as in Fig. 6, allows 
adjacent pixels within the plane to be identified with the surface wherever it passes through 
the plane at a relatively shallow angle. 

The influence of imperfections that survive the layer center detection algorithm is 
considerably reduced by the algorithm used to determine the layer separation distances. 
This layer separation algorithm begins with the surface of dissipation layer centers, and 
aims to compute the surface-normal distance in either two or three dimensions from any 
point on the surface to the next neighboring part of the surface, in a manner that is 
relatively insensitive to small holes or spurious layers. At each point on the surface, the 
local surface-normal axis is determined from the scalar gradient vector orientation at 
neighboring points. The algorithm marches along this axis, staying on one side of the 
surface (to avoid double-counting), until the next intersection with the surface. The search 
direction along this axis is accordingly determined by which of the four quadrants (2D) or 
eight octants (3D) V~(x, t) points in. To reduce the effects of imperfections in the surface, 
the search for the next intersection is conducted within a 15 ° half-angle wedge (2D) or cone 
(3D) centered on the local surface-normal axis. 

Tests conducted with synthetically generated surfaces having varying levels of imperfec- 
tion verify that the resulting distribution of layer separations can be accurately obtained. 
An example is shown in Fig. 7(a). In this case, a synthetic scalar field was specified as 
~(x) = sin(x 2) over 0 < x < 3rr. From the associated scalar dissipation field, the resulting 
ideal cumulative distribution of layer separations can be obtained analytically. This agrees 
well with the distribution obtained from the procedure described above, as shown in Fig. 8. 
(Since the probability density for this discrete test case is not continuous, we instead 
compare the cumulative distributions. For the continuous separation distances in the 
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Fig. 7. Layer center  definition fields for a test case that was formulated in terms of a conserved scalar field ~(x, t) 
that varied as sin (x2). The scalar energy dissipation field in this case varies as V~. V~(x, t ) =  4x 2 cos (x  2) so that 
the magni tude as well as the frequency of the layers vary with the coordinate x. Shown in (a) is the clean version 
of this field resulting from our  layer max i mum finding algorithm and in (b) is the field in (a) made noisy by the 
addition of intentional holes and extraneous layers in a random manner .  Both were subjected to a comparison 
measurement  of  their individual layer separation distance cumulative distribution functions which can be seen 

in Fig. 8. 



Mixing in chaotic and turbulent flows 1073 

chaotic and turbulent flow cases, we will compare the derivative of the cumulative 
distributions, namely the probability densities.) In Fig. 7(b), a random pattern of holes and 
extraneous layers, of various sizes and locations, were added to mimic similar effects 
anticipated in the measured data. The imperfections in this case are meant to qualitatively 
match those present in the layer centers in Figs. 5 and 6. The layer separation distribution 
resulting from this imperfect layer center field is also shown in Fig. 8. Except for very small 
separations, the resulting distribution still follows the ideal distribution reasonably well, 
and continuous derivatives (probability densities) of both sets of data are similar for all but 
the smallest layer separations. 

3.2. Chaotic flow results 

The probability density of dissipation layer separations is computed separately for each 
of the 31 windows identified in Fig. 2 via the above procedure.  The layer separation 
distribution resulting from ensemble statistics over the entire set of windows covering the 
flow is shown in Fig. 9. This result is roughly analogous to the distribution of stretching 
values Fn()0 given in Fig. 3 of ref. [13], where a power law scaling can also be identified in 
the logarithmic axes, and where evidence of self-similarity can be seen. However ,  large 
stretching values in their case correspond to small layer separations in our results and, for a 
given range of layer separations, the corresponding range of stretching values is much 
wider. While Fig. 9 gives the statistics for the entire ensemble of windows in Fig. 2, the 
distributions of layer separations in individual windows turn out to be very different. For  
this reason, it proves useful to broadly classify the dissipation field structure in various 
regions of Fig. 2 into three different types. The first of these are termed 'parallel' regions, 
referring to windows in which the dissipation layers are all essentially straight and very 
nearly parallel to one another.  The second are termed 'nonparallel '  regions, where the 
layers are not straight or generally not parallel to each other.  Finally, windows whose 
overall dissipation layer structure contains features of both are termed ' intermediate ' .  

In Fig. 10 we show the distribution of layer separations for all the parallel regions only. 

~ ~ ^ ^ 

i ~ - ^ + ^ ^ ' ~ r  * v ~ oo  i I 

0.8 + + ~  - 
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0.6 exact  - 
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Fig. 8. Layer separation distance cumulative distribution functions for the test cases in Fig. 7. Shown as a solid 
line is the exact result for the cumulative distribution function for layers defined by V~-V~(x, t)= 4x 2 cos(x 2) 
over the range from 0 to 37r obtained analytically. Overlaid with good agreement are the results obtained from our 

nearest-neighbor distance-finding algorithm for both the clean and noisy fields of Fig. 7. 
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Fig. 9. Composite layer separation PDF for the chaotic flow between two eccentric cylinders as shown in Fig. 2. 
Result is formulated from the nearest neighbor calculation performed on the scalar energy dissipation rate field for 

all regions mapped out by the boxes in Fig. 2 regardless of the predominant layer arrangement within the box. 
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Fig. 10. Layer separation PDF for the parallel layer regions of the chaotic flow displayed in Fig. 2. Here the 
nearest-neighbor calculation was restricted to those regions of the flow, divided by the boxes in Fig. 2, comprising 
predominantly parallel arrangements to the scalar dissipation layers. Shown for comparison is a lognormal curve 

fitted with the same first and second moments of the resulting PDF. 

The result can be seen to be distinctly different from that obtained over the entire flow 
field in Fig. 9, especially for large layer separations. Also shown in this figure is a 
lognormal distribution having the same first two moments,  which can be seen to provide a 
good fit for all except the very largest layer separations. Such a lognormal form is expected 
from classical central limit arguments for multiplicative processes (e.g. [13, 14, 16]) pro- 
vided that the number of independent multiplicative steps producing the layer separations 
is sufficiently large. One way to meet this provision is to require the flow to have 
undergone a large number of periods. Muzzio et al. [13, 14] show that, when collecting 
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unconditional statistics over the entire flow, the highest stretching values (smallest layer 
separations) show lognormal scaling even after just a few repetitions (see their Fig. 3(a)). 
In a flow that has nonchaotic 'islands', however,  departures from complete lognormality 
remain apparent  in their DSVs at the lowest stretching values (largest layer separations), 
regardless of how many repetitions the flow has undergone.  These departures from 
lognormal scaling can be attributed to locally low stretching values that lead to the 
persistence of large voids in the dissipation support. By collecting unconditional statistics, 
the continuing influence of these voids will be seen in both distributions of stretching values 
and layer separations. Following this reasoning, we might expect the lognormal scaling to 
hold at the smallest layer separations even after just a few periods. Indeed,  by collecting 
conditional statistics as in Fig. 10, and thereby presumably avoiding areas of the flow 
strongly influenced by the voids, lognormal scaling can be seen over essentially the entire 
range of layer separations. The 'nonparallel '  regions of the scalar field would then 
presumably be those most strongly influenced by the low strain rates in the vicinity of the 
voids, where the low stretching values lead to a slower reduction of the dissipation layer 
separations and a slower reorientation of the dissipation layers by the principal strain axes. 

To test this, the individual distributions resulting for the parallel (no voids), nonparallel 
(voids), and intermediate regions are shown in Fig. 11. These reveal two distinct trends. 
First, in all three cases, the smallest separations follow a nearly lognormal distribution. For  
the parallel regions, this lognormality is preserved for all but the largest separations (up to 
)~/)-o ~ 6). For  the intermediate regions, departures from the lognormal distribution begin 
at "~/~D ~" 4, while in the nonparallel regions the lognormal form holds only up to ;~/~o "~ 3. 
Second, as would be expected, large layer separations are rare in the parallel regions, and 
relatively prominent  in the nonparallel regions. The closed nature of this flow suggests 
precisely these features. Since the total area of the surface of dissipation layer centers 
initially increases with time as the fluid is stretched and folded, the finite volume occupied 
by the flow requires a continual reduction in the average layer separation distance. With 
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Fig. 11. Layer separation PDFs for the three distinct regions of the chaotic, two-dimensional, time-periodic, 
eccentric cylinder flow of Fig. 2 defined as parallel, nonparallel, and intermediate. Shown for comparison is a 
lognormal curve fitted with the same first and second moments of the PDF of layer separations for the parallel 
regions. Note that the deviation from this lognormal curve occurs at decreasing values of the distance separating 
neighboring layers as we move from the PDF for the parallel regions through the PDF for the intermediate regions 

to the PDF for the nonparallel regions. 
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increasing time, large separations must become increasingly rare (though only at a slow 
rate set by processes near the voids) and smaller separations must become increasingly 
dominant. In each type of region, the smallest layer separations presumably result from 
areas in the flow that have experienced the largest cumulative stretching, while the largest 
layer separations correspond to the lowest total strain. As the number of periods increases 
(n ~ oo), the distribution will tend toward lognormality. These distinctly different features 
near and away from voids are evident in our relatively early time results. Here, the parallel 
regions show strong evidence of lognormality, and are reminiscent of a later time when the 
space-filling tendency of the stretching and folding process require the existence of many 
more parallel layers than nonparallel ones. The fraction of the volume occupied by regions 
containing nearly parallel layers will then increase with the number of periods, due to this 
stretching and folding. The distribution for the whole flow field after a large number of 
periods will asymptotically approach that of just the parallel regions of the flow at the 
earlier times. 

The persistent (n ~ ~) influence of voids on mixing in chaotic flows with islands has 
been recognized previously for distributions of stretching values and Lyapunov exponents 
(e.g. [17, 18]). The influence of initial voids has a similar effect in the distribution of 
dissipation layer separations. However, stretching values and Lyapunov exponents associ- 
ated with the mixing process are not readily accessible in turbulent flows, while the 
dissipation layer separation distribution can be determined in a turbulent flow following 
precisely the same procedure as was done here for a chaotic flow. In the following section, 
we present results obtained from our turbulent flow measurements, and compare these 
with the results in Figs 9-1 l .  

3.3. Turbulent flow results 

Probability densities of dissipation layer separations were computed for each of 29 
individual three-dimensional 2563 spatial data volumes of the type shown in Fig. 1 from our 
turbulent flow measurements at Re~ ~-3700. These volumes were equally spaced in time, 
and spanned slightly more than 2.5 outer scale turnover times (O/u) of the flow. The size of 
each volume was roughly (2~.v) 3, where (Av/6)~ l l . 2 .  Re6 -3/4 is the local strain limited 
velocity gradient length scale in the turbulent flow, and Re6 ==-(ur/v) is the local outer 
scale Reynolds number based on the length and velocity scales 6 and u characterizing the 
local mean shear in the flow. The scalar field within any volume thus represents the 
signature of the mixing process at the small scales of the flow. The dissipation layer 
separation distribution resulting from ensemble statistics over the entire set of spatial data 
volumes is shown in Fig. 12. A roughly - 3  power law scaling can be seen in the 
distribution of layer seParations over this range of length scales, reminiscent of the power 
law scale similarities typically found in high Reynolds number turbulent flows. 

Although the ensemble-averaged distribution exhibits this -3  power law scaling, the 
individual dissipation layer separation distributions vary considerably from one data volume 
to the next, as shown in Fig. 13. The - 3  scaling appears to result only from averaging over 
many such individual uncorrelated volumes, but is not evident in any single volume. 
However, while the distribution varies significantly at large layer separations, for small 
separations the results for all volumes are nearly the same. Though perhaps only 
coincidentally, there are interesting similarities evident when Fig. 13 is compared with 
Fig. 11 from the chaotic flow results. In both cases, the distributions for small separations 
are essentially invariant and show a roughly lognormal scaling, while for large separations 
the distributions are very different. In the chaotic flow, the multiplicative processes that 
lead to rapid generation of small separations with lognormal scaling in regions of high 
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Fig. 12. Composite layer separation PDF for the fully three-dimensional turbulent shear flow data with R e  ~ 3700. 
The probability density function is calculated from 29 temporally spaced volumes of which Fig. 1 is an example 
using the three-dimensional algorithm for finding scalar energy dissipation layer separation distances. Notice the 

prevalent -3 slope covering nearly all range of separations in this log-log plot. 
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Fig. 13. Layer separation PDFs for three different volumes of the three-dimensional turbulent shear flow data of 
which Fig. 1 is an example. Notice how the PDFs match fairly well at small separations and can vary quite 
radically at large separations. This is simply consistent with the shape of the PDF which indicates that the statistics 
of the more prevalent smaller separation distances will settle down much faster than those of the more infrequent 

larger separations which will require a longer time average to obtain accurate results. 

strain (large stretching values) are fairly well understood.  Moreover ,  in the chaotic flow the 
presence of low stretching values leads to locally strong departures  f rom lognormal scaling 
for large separations.  In view of the apparent  similarities in Figs 11 and 13, it might be 
tempting to speculate that similar dynamical processes may control the scaling character- 
istics of the mixing process at these scales in turbulent  flows. However ,  there are important  
differences between the closed chaotic flow and the open turbulent flows. In particular, the 
closed chaotic flow initially requires that repeated  iterations must lead to reductions in the 
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dissipation layer separations. In the open turbulent flow, however, ambient fluid is 
continually entrained into the mixing region, creating voids in the dissipation field which 
are subsequently broken down by the stretching and folding process. The large separations 
in the turbulent flow result principally from this entrainment process, and the - 3  scaling in 
the ensemble-averaged distribution is merely the result of the distribution of large voids 
created by the entrainment and their subsequent breakdown ('cascade') process. In the 
chaotic flow, the breakdown of the initial voids might be expected to occur by a different 
process, leading to a different scaling of the dissipation layer separations. 

Despite these arguments, the similarities in Figs 11 and 13 are sufficiently striking to 
motivate a comparison of the ensemble-averaged distributions in Figs 9 and 12. The result 
is shown in Fig. 14, and reveals that the scaling of the layer separation distributions in the 
chaotic flow and the turbulent flow agree remarkably well. Following the reasoning given 
above, the apparently common lognormal scaling for small ,~ is not surprising. Moreover,  
any similarity in the value of )~ at which the crossover from lognormal scaling to the - 3  
power law scaling might appear to occur is likely only coincidental, since in the chaotic 
flow this crossover location will depend on the iteration number n (see Fig. 3(b) of 
ref. [13]). Nevertheless, based on the above arguments there is no apparently obvious 
reason why the two flows should have the same scaling at large /~ values. In the chaotic 
flow the scaling of the layer separation distribution in this range of length scales appears to 
be dominated by the persistence of slow processes near the voids. In the turbulent flow, if 
these large separations are in fact dominated by the entrainment process, then there would 
seem to be little prospect of any dynamical similarity at these scales between these two 
types of flows. On the other hand, given the relatively small size of cubes like those in 
Fig. 1 relative to the local outer scale 6, it seems likely that initially large voids created by 
the entrainment process have already undergone many periods of a repeated breakdown 
process, and thus might be more reflective of the dynamics of the small scales of turbulence 
than of the entrainment process itself. If that is the case, then the similar scaling in Fig. 14 
for large values of ~ leaves open the possibility of some dynamical similarity between the 
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Fig. 14. Overlay of composite PDFs of layer separations for both the chaotic flow of Fig. 2. and the turbulent flow 
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common shape between the PDFs of the two-dimensional chaotic flow and the three-dimensional turbulent flow. 

Notice again the -3 slope prevalent throughout nearly the entire range of scales. 
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mixing produced by the small scales of turbulent flows and by the chaotic flow. This 
possibility cannot be argued for strongly on the basis of the results presented here. For the 
present time we simply note that the similarities evident in Fig. 14 in the mixing signatures 
of these chaotic and turbulent flows are interesting, and may only be coincidental, but are 
certainly unexpected. 

4. FRACTAL SCALING PROPERTIES 

The suggestion of potential fractal scaling in various geometric features of high Reynolds 
number turbulent flows can be traced back to the oldest descriptions of turbulence. Some 
of the earliest direct experimental evidence for fractal scaling of mixing in turbulent flows 
was reported by Sreenivasan and Meneveau [19] from single-point measurements of a 
conserved scalar field (temperature) in the turbulent wake of a slightly heated body. These 
findings eventually led to further evidence of fractal geometric scaling in isosurfaces of a 
conserved scalar quantity from two-dimensional imaging measurements in the self-similar 
far field of an axisymmetric turbulent jet [20, 21]. Subsequently, Miller and Dimotakis [22] 
conducted highly-resolved single-point measurements of conserved scalar mixing in a 
turbulent jet, and reported finding fractal scaling for only a very narrow range of isoscalar 
values, with distinctly non-fractal scaling for other threshold values. More recently, 
Lane-Serif [23] has reported two-dimensional imaging measurements of scalar mixing in 
turbulent jets that appear to support the suggestion that geometric scaling properties of 
isosurfaces in turbulent mixing can depend significantly on the chosen isoscalar value. 
Though it is possible that the geometry that results from mixing in turbulent flows might 
actually differ fundamentally for differing isoscalar surfaces, this runs counter both to 
intuition and classical scaling concepts for turbulent flows. Instead, it could be argued that 
the apparent differences in geometric properties of various isoscalar surfaces might be more 
directly an artifact of the experiments than of the flow, since a small change in the isoscalar 
value typically produces a rather significant change in the geometry of the isoscalar 
contour. 

By contrast, owing to its compact nature, the geometry of the support of the scalar 
dissipation field in Fig. 1 should be relatively insensitive to the choice of dissipation 
threshold level. This suggests an assessment of the potential fractal scaling properties of 
mixing in turbulent flows from the perspective of the scalar dissipation field rather than the 
scalar field. In this section, we present a comparison of the applicability of fractal scaling 
concepts for the geometry of the scalar dissipation field in chaotic and turbulent flows. 
Although data of the type in Figs 1 and 2 offer access to the fully three-dimensional scalar 
dissipation rate field, this comes at the expense of a limited spatial dynamic range in the 
data. Unlike long time-series data, spatial data of this type offers only a limited number of 
pixels in any given direction from which to assess a potential fractal scaling. This in turn 
requires novel methods for assessing the geometric scaling properties on which to base a 
judgement of the applicability of fractal scaling concepts. Accordingly, in Section 4.1 we 
describe the statistical box counting scheme used here to calculate the local scaling 
dimension of linear intersections through the three-dimensional dissipation fields. Following 
this, Sections 4.2 and 4.3, respectively, present results obtained for the geometric scaling 
properties of the scalar dissipation support in the chaotic and turbulent flows. 

4.1. Fractal measurement  method 

In both the chaotic and turbulent flows, we compute the local scaling dimensions of 
one-dimensional intersections with the support set on which the three-dimensional scalar 
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dissipation field lies above some chosen threshold value. Owing to the inherently short 
record lengths available for tiling, a statistical assessment of the geometric  scaling 
propert ies  was used. Briefly, for any given one-dimensional intersection, the tiling method 
used for computing the local scaling propert ies  is a variation of the conventional box 
counting scheme. The tile size 6 at different tiling levels was varied by factors of two. The 
tiling procedure  used several different initial tile locations (offsets) to remove bias that 
results f rom a fixed starting point. The two partial tiles created at both ends of the domain 
as a result of  the offsets were counted together as one tile. This tiling algorithm for 
one-dimensional  intersections was tested on a wide range of both regular and irregular 
Cantor  sets of various known fractal dimensions to assess its suitability for accurately 
dealing with short record lengths. In each case, the true fractal dimension D was computed 
via 

n 

= 1 

i 1 

where ci is the length ratio of the ith segment in the generator  to the total length of the 
initiator, and n is the total number  of segments in the generator.  The total number  of tiles 
required to cover the set at any scale 6 is N(6). Typical results obtained for dense Cantor  
sets with true fractal dimensions of 0.8, 0.6, 0.4, and 0.2 are given in Fig. 15. In each case, 
the figure shows the local fractal dimension (LFD) obtained at any tile size 6, defined as 
- d l o g 2  N(6)/dlog2 6, giving a sensitive measure of the local scaling properties.  The LFD 
curves in Fig. 15 were computed  via linear central differences of log2 N(6)/loge 6 curves of  
the type shown in Fig. 16. Note that simply least squares fitting a straight line through data 
such as in Fig. 16 assumes that fractal scaling holds for the given set, while LFD curves like 
those in Fig. 15 provide a means for independently assessing the validity of a fractal scaling 
for the set. 

The LFD curves in Fig. 15 demonstra te  a number  of features essential for this study. 
First, it should be noted that, for both regular and irregular Cantor  sets, for D > 0.4 the 
box-counting algorithm accurately converges to the true dimension for any one realization 
of the fractal as the tile size 6--+ 0. In other words, if a sufficiently large number  of data 
points are contained in any one-dimensional  intersection, then the present algorithm is 
capable of accurately determining the fractal dimension of that intersection. However ,  for 
low fractal dimensions, this convergence can be seen to become very slow. For D = 0.2, 
for example,  2 iv points are evidently not sufficient to obtain convergence to a confident 
assessment of  the true dimension. For  such low values of D, the fractat set is so sparce that 
the number  of tiles N(6)  remains relatively small even when the tile size 6 is made very 
small. As a consequence,  the +1 tile ambiguity inherent in any tiling scheme leads to a 
non-trivial fractional change in N(6), and thus upon differentiation to a large change in the 
LFD (see Fig. 16). This will remain the case until 6--+ 0 as D--+ 0. This limit is generally 
more forgiving for irregular Cantor  sets than for regular sets, but for any minimum tile size 
6 there is still a limit to the minimum fractal dimension D that can be reliably determined.  
A further phenomenon  that makes  determining low values of D less accurate is the fact 
that, since low-dimensional sets occupy so little space, the same number  of tiles N(6) may 
suffice to cover them for more  than one tile size 6. This would produce an LFD value of 0 
for that value of 6. If  infinitely many  offsets were used, this effect could be removed,  but 
any finite number  of offsets will cause such imperfections to appear  in the LFD curves of 
low-dimensional fractals. 

The results in Fig. 15 also show that, whereas determining the fractal dimension via a 
tiling scheme is relatively straightforward for arbitrarily long records, for the comparat ively 
short 2V-point scalar dissipation records available from our imaging measurements  of the 
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Fig. 15. Local fractal dimension curves for regular and irregular cantor sets with varying fractal dimensions, 
measured with the box-counting algorithm. Notice that agreement decreases dramatically with decreasing fractal 
dimension. In the measurements done on the chaotically advected and turbulent data sets only values in the range 

2 ~< log2 (1/6) ~< 7 will be available. (a) Regular cantor sets; (b) irregular cantor sets. 

chao t i c  and  t u r b u l e n t  f lows,  f inding  the  f rac ta l  d i m e n s i o n  is any th ing  bu t  s t r a igh t fo rward .  
In  pa r t i cu l a r ,  any d i rec t  a s ses smen t  of  the  d i m e n s i o n  on  the  bas is  of  L F D  p lo t s  such as 
those  in Fig.  15 up  to  log2 6 ~ - 7  is ou t  of  the  ques t ion  for  all  bu t  the  h ighes t  va lues  of  D .  
F o r  log2 6 ~ < - 4 ,  it  is ev iden t  tha t  the  t i les  a re  t oo  coarse  to p r o v i d e  any useful  scal ing 
i n fo rma t ion .  F o r  o u r  shor t  r eco rds ,  this  l eaves  the  r ange  - 4  ~< log2 6 <~ - 7  for  assessing the  
po t en t i a l  f rac ta l  scal ing p r o p e r t i e s  o f  the  d i s s ipa t ion  suppo r t  set ,  and  for  d e t e r m i n i n g  its 
d i m e n s i o n  if it is f ractal .  

H o w e v e r ,  we can recogn ize  tha t  the  f luc tua t ions  in the  L F D  curves  in Fig.  15 for  any  
given va lue  of  D resu l t  f rom id iosynchrac ies  of  tha t  one  pa r t i cu l a r  r ea l i za t ion  of  the  C a n t o r  
set.  Since in gene ra l  each  r ea l i za t ion  of  the  f rac ta l  will be  s imi lar  on ly  in its scal ing 
p r o p e r t i e s  and  will di f fer  in its p rec i se  de ta i l s ,  we  can  an t i c ipa te  tha t  the  f luc tua t ions  will 
d i f fer  f rom one  r ea l i za t ion  to  ano the r .  This  m o t i v a t e s  a s ta t is t ica l  a p p r o a c h  as i nd i ca t ed  in 
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Fig. 16. A plot of the logarithm of the number of cells vs the logarithm of the cell size of an irregular cantor set 
with D = 0.40. Comparing this with the local fractal dimension curve in Fig. 15(b) shows that the local fractal 

dimension curves are visually more sensitive to non-fractal behavior. 

Figs 17 and  18. In  par t icular ,  for m a n y  real izat ions of any  one  fractal with given d imens ion  
D ,  we can collect statistics of the L F D  value over  the range  - 4  ~< log 2 6 ~< - 7  to construct  
the p robabi l i ty  densi ty  of L F D  values.  Note  that ,  if it were possible to take 6 - - .  0, the 
var iance  a of this d is t r ibut ion  would  also tend  to zero,  and a direct assessment  of D would  
be possible.  Cons t r a ined  to the range  of 6 achievable  with our  short  record lengths,  we can 
never the less  de t e rmine  < D )  and  a2(< D ) )  as indica ted  from a large n u m b e r  of i n d e p e n d e n t  
real izat ions  of k n o w n  ffactal sets over  this range  of 6. The  resul t ing a2(< D ) )  then  provides  
the measure  by which a given set can be d e t e r m i n e d  to be fractal or  non-fractal .  For  a 
given set, its < D )  and  a 2 can be d e t e r m i n e d  as in Figs 17 and  18, and then  compared  
against  the ideal  a ( ( D ) )  gene ra t ed  from perfect  fractals using i r regular  Can to r  sets. If the 
measu red  var iance  is comparab le  to the ideal var iance  for the measu red  value of < D ), then  
the set 'is as fractal as a t rue fractal is' over  this range  of tile sizes 6. 
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Fig. 17. Sample local fractal dimension curves from among the 8000 irregular cantor sets generated as test cases 
(dimension = 0.40) along with a cumulative probability density curve for all of the local fractal dimension values in 

the range 4 ~< log2 (1/6) ~< 7. 
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It thus becomes essential to accurately tabulate o 2 ( ( D ) )  for genuine fractal sets. To do 
this, the tiling algorithm described above was repeated for 8000 individual independent  
realizations of irregular Cantor sets each having the same fractal dimension D. This was 
repeated for each of nine different fractal dimensions between 0.1 and 0.9 (Table 1). 

Note that the slight increase in a2((D)) for D = 0.9 is probably due to the difficulty in 
applying the generator for high-dimensional Cantor  sets until the appropriate resolution is 
reached. In order  to make a set with high dimension and the appropriate resolution in a 
reasonable number  of generator applications, a limit had to be placed on the maximum ci. 
This restricted the details of these high-dimensional sets, which could affect the conver- 
gence of the LFD statistics. Note also that,  in addition to the variance a2((D)), local 
probability density plots of the type shown in Fig. 18 provide an additional and somewhat 
more detailed signature of a true fractal, against which analogous results for a given set can 
be compared to assess the applicability of fractal concepts to its scaling properties.  

An assessment of the possible effects of noise in the original scalar field measurements 
on the scaling properties of the resulting scalar dissipation support set was conducted via 
the following procedure.  First, an approximate value of the r.m.s, noise in the dissipation 
fields was obtained by measuring the r.m.s, noise found in uniform regions of the original 
scalar fields and applying classical noise estimation techniques. Next,  a Gaussian noise 
distribution with the same r.m.s, value was added to the scalar energy dissipation rate 
fields, which were then thresholded and compared with the original thresholded scalar 
energy dissipation rate fields. By comparing the original fields to the noisy fields, 
probability density functions were calculated giving the likelihood of a given pixel being 
turned on or off due to noise, depending on the distance from the nearest point on the 
original noise-free set. This procedure was used to add noise to an irregular Cantor set and 
LFD curves generated as described above. The results in Fig. 19 show that even noise 
levels much higher than those in either set of experimental data appear to have little effect 
on the measured LFD curves. 

4.2. Chaotic flow results 

In the chaotic flow, LFD curves were generated for each non-empty row and column in 
the 256 × 256 spatial data planes in the two-dimensional scalar dissipation field. Statistics 
were collected in each window shown in Fig. 2. There  were many individual rows and 
columns that exhibited fractal scaling properties,  i.e. for which a((D)) was within the 
values in Table 1 over the range - 4  ~< log2 (5 ~<-7  (see Fig. 20). However ,  many other 
one-dimensional intersections displayed a scaling that could not be remotely termed fractal 

Table 1. Statistics of  known fractal sets collected over the range 
- 4  ~< log2 (5 ~< - 7  for many  different realizations via the procedure 

outl ined in Figs 17 and 18. 

D ( D )  ~ 2 ( ( D ) )  

0.1 0.199 0.065 
0.2 0.233 0.064 
0.3 0.333 0.052 

0.4 0.446 0.036 
0.5 0.543 0.026 
0.6 0.638 0.023 

0.7 0.733 0.021 
0.8 0.830 0.020 
0.9 0.930 0.021 
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Fig. 19. The effect of  differing amounts  of  noise on the local fractal dimension curve of an irregular cantor  set that 
has been digitized to 256 pixels. Noise does not  appear  to be much of a factor in influencing the local fractal 

dimension,  even at levels much  higher  than those present  in the experimental  data. 

(see Fig. 20). Notice that the differences are not as strong in the log N(6) vs log 6 curves in 
Fig. 20(a), but show up clearly in the LFD curves in Fig. 20(b). However ,  none of the data 
within an entire window produced a2((D)) values that fell even within a factor of two of 
the values given in Table 1. Moreover ,  changing the dissipation threshold level over the 
range 1.0 ~< X/(X) <~ 2.5, as shown in Fig. 21, did not produce any change in this result - no 
window produced a geometric scaling that came within a factor of two of the criterion in 
Table 1 and Fig. 18 for declaring a set as being fractal. 

Figure 22 shows the local corresponding local probability density plot analogous to 
Fig. 18 for the ensemble-averaged statistics over all 31 windows in Fig. 2. As the figure 
indicates, these ensemble statistics can be confidently declared as being non-fractal. 
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Fig. 20(a). 
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advected data set. One  data sample appears  to be quite fractal while the other  shows no sign of being fractal. 
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Fig. 21. Threshold  level effects on a representat ive data sample from the chaotically advected data set are shown 
above. It appears that in general  the results are relatively threshold- independent  considering that the threshold 

value varies by a factor of 2.5. 

However ,  within 'parallel' regions of the flow, much tighter LFD probability distributions 
were found. An example is shown in Fig, 23, corresponding to a region in which essentially 
all the dissipation layers were parallel, and which produced an essentially lognormal layer 
separation distribution in Section 3. Even in this case, however,  the o2((D)) value lies 
well above that given in Table i for the same ( D ) .  This can be seen by comparing Figs 18 
and 23, and keeping in mind that the width of the LFD distributions in Table 1 decrease 
with increasing D. Lastly, Fig. 24 shows an LFD map for a window corresponding to a 
'non parallel' region of the flow. In this case, the variance is nearly five times that given in 
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Table 1, and the scaling can be confidently said to be non-fractal. Generally speaking, the 
most nearly fractal regions of the flow seemed to coincide with the areas in which the 
layers were parallel, while the clearly non-fractal regions coincided with intermediate and 
non parallel regions. However, at this stage of development of the flow, no regions led to a 
scaling sufficient to declare the dissipation support as being globally fractal. 

4.3. Turbulen t  f l o w  results 

For  the t u rbu l en t  flow, ana logous  L F D  curves were genera ted  for each n o n - e m p t y  row 
and  co lumn in the 2563 spatial data  vo lumes  in the th ree -d imens iona l  scalar dissipat ion 
field. As  was the case in the chaotic flow results,  m a n y  individual  one -d imens iona l  
in tersect ions  of the t u rbu l en t  flow data  exhibi ted near ly  ffactal scaling (e.g. see Fig. 25). 
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Fig. 25. Local fractal dimension curves and log (N) vs log 2 (b) plots for seven data samples from the turbulent data 
set. Some data samples once again appear to be quite fractal, while others show no sign of being fractal. 

(a) Log (N) vs log2 (6) plot; (b) local fractal dimension curves. 
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Fig, 26. Threshold level effects on a representative data sample from the turbulent data set are shown above. It 
appears that, in general, the results are relatively threshold-independent considering that the threshold value varies 

by a factor of 2.5. 

Moreover, the LFD curves for the turbulent flow were found to be largely independent of 
the )~/(X) threshold values over the range from 1.0-2.5, as shown for typical cases in 
Fig. 26. Nevertheless, when local probability density plots were constructed for typical 
regions in the turbulent flow data (e.g. Fig. 27), the resulting cr2((D)) values were all well 
above those in Table 1. Even for the most nearly fractal regions, the measured ~r2((D)) 
based on these one-dimensional intersections was still approximately three times higher 
than in Table 1. Generally speaking, in the turbulent flow data there was much less 
variation in the results among different regions. This was presumably due to the fact that 
there were no large regions in the data where all the scalar energy dissipation layers were 
all parallel to each other. Throughout most of the turbulent flow data, the dissipation 
layers were highly convoluted and tended to fold back on themselves many times in a 
single region. Collectively, the present results do not support a contention that the scalar 
dissipation rate field in turbulent flows display a global fractal scaling over the range of 
length scales accessible by our data. 

5. CONCLUSIONS 

The results presented here have compared two rather sensitive statistical geometric 
signatures of the mixing process at the small scales of high Reynolds number: three- 
dimensional, highly unsteady, open turbulent flows with those in low Reynolds number and 
two-dimensional, time-periodic, closed chaotic flows. In each of these flows, measurements 
of the mixing of a dynamically passive, conserved scalar field ~(x, t) by the underlying flow 
field were used to analyze geometric scaling properties of the support set on which the 
associated scalar energy dissipation rate field V~-V~(x, t) was concentrated. The results 
from the present one-dimensional intersections are not consistent with a global fractal 
description, having a single fractal dimension, for the geometric scaling properties of the 
scalar dissipation support set in this turbulent flow. In the chaotic flow, however, the 
present results are essentially consistent with a fractal description of the scaling in those 
regions of the flow that have undergone sufficient stretching and folding. Perhaps most 
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in te res t ing  is the  o b s e r v a t i o n  that  the  d i s t r ibu t ion  of  d i ss ipa t ion  l aye r  s epa ra t ions  in bo th  
the  chaot ic  and  t u rbu l en t  f lows fol low the same  scal ing ove r  a wide range  of  length  scales.  
This  suggests  the  poss ib i l i ty  tha t  s imi lar  dynamica l  f ea tu res  m a y  p lay  a role  in the  mixing  
p rocess  in b o t h  the  chao t ic  and  the  t u rbu l en t  flows. I t  m a y  even be  poss ib le  that  the  
classical  p o w e r  law scal ing charac te r i s t i cs  of  the  small  scales in t u rbu l en t  mix ing  m a y  be 
useful ly  a p p r o a c h e d  f rom this nove l  pe r spec t ive .  

D e s p i t e  the  a t t r ac t ion  of  work ing  in t e rms  of  the  full t h r e e - d i m e n s i o n a l  sca lar  d i ss ipa t ion  
ra te  f ield r a t h e r  than  the  scalar  f ie ld i tsel f  ( for  bo th  p rac t ica l  and  dynamica l  r easons ) ,  the  
resul ts  o b t a i n e d  he re  mus t  be  v i ewed  caut ious ly .  A t  a m i n i m u m ,  the R e y n o l d s  n u m b e r s  in 
the  t u r b u l e n t  f low da t a  are  large enough  for  a h ighly  u n s t e a d y  and  a p p a r e n t l y  ' t u rbu l en t '  
mix ing  p rocess  to resul t ,  bu t  a re  still well  be low the range  o f  values  t r ad i t iona l ly  c ons ide r e d  
safe for  s t a t emen t s  of  high R e y n o l d s  n u m b e r  a sympto t i c  behav io r .  H o w e v e r ,  ou r  a t t en t ion  
he re  has been  focused  on  the smal l  scales of  the  t u rbu l en t  mixing  process .  I f  these  are  
g o v e r n e d  la rge ly  by the local  dynamics  of  the  con t inua l  s t re tch ing  and  fo ld ing  of  m a t e r i a l  
e l e m e n t s  tha t  resul ts  f rom the  t ime-va ry ing  s t ra in  ra te  and  vor t ic i ty  in the  under ly ing  
ve loc i ty  f ie ld ,  then  t r ad i t i ona l  r e q u i r e m e n t s  for  R e y n o l d s  n u m b e r  asympto t i c s ,  such as an 
ex tens ive  iner t ia l  r ange ,  m a y  be re la t ive ly  u n i m p o r t a n t .  Whi l e  it wou ld  ce r ta in ly  be  
in te res t ing  to l ook  for  add i t i ona l  R e y n o l d s  n u m b e r  scal ing and a sympto t i c  l imits  in 
m e a s u r e s  of  the  mix ing  dynamics  such as those  c ons ide r e d  he re ,  such high R e y n o l d s  
n u m b e r  s tudies  a re  not  poss ib le  with p r e sen t l y  ava i lab le  e x p e r i m e n t a l  t echniques .  
M o r e o v e r ,  in view of  the  dynamica l  s imi lar i t ies  of  the  s t re tch ing  and  fo ld ing  p rocesses  at 
the  smal l  scales  of  t u rbu l en t  f lows and  in chaot ic  f lows,  it m a y  be  m o r e  i m p o r t a n t  to have  
access to fully t h r e e - d i m e n s i o n a l  d i ss ipa t ion  f ield da ta ,  as we have done  he re ,  than  to 
cons ide r  l o w e r - d i m e n s i o n a l  e s t ima te s  of  the  mix ing  process  at h igher  R e y n o l d s  n u m b e r  
values.  
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