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ABSTRACT

An improved ferrite material has been ordered from Motorola-
Phoenix.

Further work on the ferrite-loaded biconical antenna has been
initiated, with the object of evaluating the impedance, beam pattern,
and efficiency,

The problem of a ferrite-loaded, rectangular-cavity slot an-
tenna has been formulated, and the variational procedure is being
carried out to evaluate the impedance, radiation pattern, and the
efficiency.

The radiation patterns of the ferrite-loaded, rectangular-cavity
slot antenna have been measured and compared with the theoretical
predictions of simple-aperture diffraction theory.

Agreement with theory is good for the H-plane patterns and

poor for the E-plane patterns. The effect of a flange is greater than
expected.
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1. REPORTS, TRAVEL, AND VISITORS

During this period no reports were issued, project personnel made no trips,

and no one visited the project.

2. FACTUAL DATA

2.1 Ferrite Material

Three experimental ferrite compositions have been prepared and evaluated by
Motorola-Phoenix for Cooley Electronics Laboratory. One of these compositions has been
selected, and ferrite material in solid and powdered forms has been ordered from Motorola
in sufficient quantity to meet the projected needs of the contract. The characteristics of this

material at 200 Mc have been guaranteed within + 10%. Characteristics are as shown in

Table I.
u' - ju" = 6.62 - j.063
at 100 Mc tan 6m = 0.00953
- Qm = 105
Complex Permeability
u' - ju” = 6.80-j.18
at 200 Mc tan om = 0.0265
Qm = 37.8
Curie Temperature Tc = 447°C
Bulk Density [ = 3.89 grams/ cm3
o = 39.96 emu
Saturation Magnetization s
4nMS = 47 - pb - oy = 1950 gauss
e' - je" = 11.77 - j. 0223
Complex Permittivity at 20 Mc tan Oe = 0.0019
Qe = 527

Table I. Ferrite material characteristics.



2.2 Biconical Antenna

The work of this project on spherical geometry has shown that in the biconical
antenna and the infinitesimal dipole that resonances in radiation resistance occur which are
associated with the resonances of the spherical dielectric medium. It is possible that these
resonances may bring about improved efficiency in small antennas at the expense of some
bandwidth. A program is now in progress which will calculate the efficiency, radiation re-
sistance, and beam pattern for the dielectric-loaded, thin, biconial antenna, having as para-
meters permeability, permittivity, radius, and frequency.

The efficiency will be calculated for an aluminum radiator, although it will be
quite simple to extend this to any good conductor. The losses over the surface of the con-
ductor will be calculated by a perturbation method, which assumes that the fields exterior to
the conductor are not changed significantly from those of a conductor with infinite conductivity,
if the conductivity is still quite high. The surface currents induced at the boundary will then
provide a heat loss in the conductor as they flow. The total loss will then be compared with
the power fed into the antenna terminals to obtain the resulting efficiency. The assumption
will also be made that the skin depth is small compared to the radius of curvature of the cone.
This will be valid except at the vertex of the cones. However, the efficiency will be related
to that of the same size antenna in air, and a small region at the vertex will be avoided in
both cases.

The beam pattern will be calculated by finding the coefficients of the various
associated Legendre functions and adding them together. An inspection of the equations

shows that patterns will be obtained which are normally associated with antennas physically
much larger.
The radiation resistance calculation will be a repetition of Polk's work (Ref. 1)

for other choices of permittivity and permeability than his.
Previous results regarding the increased energy density around a dielectric
sphere will be correlated with these results, and general conclusions concerning loaded an-

tennas will be delineated.

2.3 Rectangular-Cavity Slot Radiator

This problem has been formulated. A stationary expression for the input im-
pedance has been derived and shown to be stationary. The approximation procedure is being

carried out. The formulation and the results will be presented in the next quarterly report.



2.4 Experimental Results on the Rectangular-Cavity Slot Antenna

2. 4.1 Theoretical Data. This antenna has previously been analyzed, using an

approximate analysis assuming dominant-mode aperture fields and neglecting the effect of
surface currents. Results were reported in Quarterly Progress Report No. 5 (pp. 26-34).
The data in QPR No. 5 were plotted for /X c= 0. 80. In order to provide a more thorough
comparison with experimental data, the computer program was rerun for three sets of values
of material constants (ur =€ = 1, B, =€ = 3, B, =€ = 10), expanding the program to cal-
culate patterns for six values of A/AC running from 0. 60 to 0. 85. These data are shown in

Figs. 3, 4, and 5. Tables II, III, and IV summarize the half-power beam width and gain data

o
1

(Ref. 2, p. 25). This formula is not very accurate for our large beam widths, but it provides

from the computer results. The gain was calculated using the formula G = 41,253/¢1°9

a basis for comparison. The theoretical data predict that, using a material wither == 3,
both the E-plane and H-plane patterns will be broadened, the E-plane by 14%, the H-plane by
40%, and that the average gain will be reduced from 4. 04 to 2. 52, or by a factor of 0. 625.

2.4.2 Experimental Data.

2.4.2.1 General Discussion. Experimental beam pattern data on the

rectangular cavity slot antenna are shown in Figs. 3 and 4. Tables II and.IIl summarize
the data on beamwidths and gain. The beam patterns were taken on the outdoor range on the
roof of the Automotive Laboratory. Patterns were taken with and without ferrite loading.

The loaded patterns were taken with (Fig. 2) and without (Fig. 1) a flange.

The flange is three-feet square, or approximately one wavelength square at
center frequency with ferrite loading. Cutoff data on the loaded rectangular-cavity slot an-
tenna indicate that M€ is approximately 2.5 instead of 3.0 as measured. Accordingly,
2.5 has been used as the basis for comparison for the rectangular-cavity slot antenna.
Certain asymmetries were noted in the patterns. These could be caused by (1) slight asym-
metries in the rotator mounting structure and (2) asymmetry in the feed structure. In order
to partially eliminate this additional variable, the average of the ordinates at +6 and -9 was
plotted. This does not affect the gain and gives us a better comparison of theoretical and ex-
perimental data. In general, these asymmetries were slight, with the exception of the E-
plane, unflanged, loaded patterns. With the addition of the flange, these asymmetries were

eliminated.



2.4.2.2 Unloaded Case. The beam patterns for the unloaded case are

shown in Fig. 3. There is not detailed agreement between the theoretical and experimental
patterns, but there is general agreement for average characteristics. Beam widths decrease
with increasing frequency in both cases. Side-lobe levels are higher on the experimental
curves. The average gain figures agree within 5%, and the higher side lobes of the experi-
mental curves would tend to make the agreement even better.

The effect of the flange is as predicted by Butson and Thompson (Ref. 3), with
relatively small effect on the H-plane patterns and double and triple major lobes on the E-

plane patterns.

Silver (Ref. 4, p. 345) has plotted experimental and theoretical data for a single
case. He also shows higher side lobes anda slightly narrower H-plane beam on the experimental

patterns than on the theoretical patterns. He shows approximately the same beam width on

the E-plane experimental and theoretical patterns, whereas we show, on an average, slightly
greater beam width on the experimental patterns.

2.4.2.3 Loaded Case. The theoretical and experimental patterns for

the loaded case are plotted in Fig. 4.

Several interesting effects may be noted here. The unflanged H-plane patterns
bear approximately the same relationship to the theoretical patterns as they did in the un-
loaded case. The average experimental beam width is slightly narrower than the theoretical
one, as in the unloaded case, but the side lobe level has increased considerably. The un-
flanged E-plane patterns are practically omnidirectional. The gain of the unflanged case is
considerably lower than that predicted by theory. However, with the addition of the flange,
the patterns change radically. The change in the patterns is considerably greater than that
which would be expected by a flange of similar size, in terms of wavelength, on an air-filled
guide, judging by the data of Thompson and Butson. In fact, Thompson and Butson's data
would indicate almost no change for a flange of this size. With the addition of the flange, the
gain increases to 5. 05, approximately twice the theoretical value. In addition, all side lobes
drop down, and the asymmetries in the patterns are eliminated. It is possible that this same
effect could be obtained with a much smaller flange. This possibility will be investigated.

The data suggest that the assumptions of the simple analysis undertaken are not
entirely justified for small antennas. Evidently, the surface currents are more importaht

for this type of antenna, giving rise to an increased sensitivity to physical irregularities and



asymmetries. The unloaded E-plane patterns exhibit small irregularities and asymmetries,
probably due to the feed apparatus. These irregularities and asymmetries are greatly in-
creased in the loaded case.

The data obtained to date suggest a significant effect of the size of ground plane
on a ferrite-loaded slot radiator. This effect may have significant effect upon the ultimate
applications of these antennas. In future work, this effect will be investigated and analyzed
further.

It has been shown that, as predicted, the effect of ferrite loading is to broaden
the beam patterns somewhat. The broadening effect on an unflanged radiator is greater than
that predicted, while the effect on a flanged radiator is less. Theoretical results predict only

slightly further broadening for po=€. = 10 (Fig. 5).

3. ACTIVITIES FOR THE NEXT PERIOD

During the next period beam pattern data will be taken for the other ferrite-
loaded models, including the ridged-cavity slot antenna and the spiral. Efficiency measure-
ments will be made on one of the loaded models and compared with the unloaded efficiency.
Preparations will be made for the arrival of the improved ferrite material, including rede-
sign and construction of models.

Theoretical work for the next period on the ferrite-loaded biconical antenna
will include completion of the formulation and preparation of a computer program to evaluate
efficiency. Further work will also be done on the variational solution of the ferrite-loaded,

rectangular-cavity slot antenna.



4. SUMMARY

An improved ferrite material has been ordered from Motorola-Phoenix.

Further work on the ferrite-loaded biconical antenna has been initiated, with the object of
evaluating the impedance, beam pattern, and efficiency. The impedance and beam pattern
will be evaluated using classical analysis, and the efficiency will be evaluated using a pertur-
bation technique. The variational solution of the ferrite-loaded, rectangular-slot antenna has
been formulated, and the approximation technique is being carried out.

The radiation patterns of the ferrite-loaded, rectangular-cavity slot antenna
have been measured and compared with theoretical predictions of simple-aperture diffraction
theory.

This theory neglects the effect of surface currents, and this approximation
appears to be considerably less valid for the loaded antenna than it was for the unloaded an-
tenna. Agreement with theory is good for the H-plane patterns but poor for the E-plane
patterns. The effect of the flange is considerably greater than expected and produces a
pattern with gain twice as large as that predicted theoretically for this particular antenna
and three or four times as large as that of the unflanged antenna. In future tests this effect

will be analyzed more thoroughly.
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Fig. 1. Rectangular-cavity

slot antenna without flance.

Fig. 2. Rectangular-cavity

slot antenna with flange.
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Fig. 3(a). Unloaded rectangular-cavity slot antenna;
theoretical and experimental results.
E-plane patterns.
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Half Power Beam Width

Theoretical Experimental
No Flange Flange
Frequency E E E

(Mc) V2N E, E, E, " 9 "

592 .85 144° 86° 155° 72° 134° 66°

629 . 80 136° 84° 174° 76° 120° 68°

871 .5 130° 82° 174° 80° 126° 67°

719 .70 124° 78° 120° 84° 164° 64°

774 . 65 120° 76° 120° 68° 138° 56°

839 . 60 116° 72° 104° 45° 116° 53°
Average BW 128° 80° 141° 69° 133° 62°
Average Gain 4.03 4.24 5. 00
E-Plane - E 6
H-Pl - E

ane ¢
Table II. Unloaded rectangular cavity antenna - theoretical

and experimental results.
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Half Power Beam Width

Theoretical Experimental
No Flange Flange
Frequency
(Mc) A Ey Ey Eq E Eq E
237 .85 160° 108° 154° 102° 84°
251 . 80 152° 110° 92° 92° 78°
269 .15 146° 112° 96° 94° 84°
287 .10 146° 114° 90° 120° 102°
310 . 65 138° 114° 78° 82° 78°
335 .60 136° 114° 68° 90° 78°
Average BW 146° 112° 96° 97° 84°
Average Gain 2. 52 < 2 5.05
E-Plane - Ef)
H-PI - E
ane ¢

Table III. Loaded rectangular cavity antenna theoretical
(ur =€, = 3) and experimental (ur =€ = 2. 5) results.
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Fig. 5. Loaded rectangular-cavity slot antenna -
theoretical results, (ur =€, = 10).

Half Power Beam Width

AA E, E,
.85 162° 112°
. 80 154° 114°
.75 148° 116°
.70 144° 118°
.65 142° 120°
. 60 138° 122°
Average BW 148° 117°
Average Gain 2.38

Table IV. Loaded rectangular cavity antenna
theoretical results (ur =€, = 10).
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