Technical Report Documentation Page

1 Barred No.	A			
	2. Gevernment Acces	sien No. 3.	Kecipient's Catalog I	No.
4. Title and Subtitle	·····	5	Report Date	
HSRI Version of the Improv	ed Three Dim	uensional	March 8 100	2
Computer Simulation of Veh	icle Crach N	lictime 6	Perfermine Oramication	Cada
Volume II. User's Guide.	ITUTE UTASIT		· ••••••••••••••••••••••••••••••••••••	
7 Author(s)			Performing Organizati	on Report No.
R. O. Bennett and D. H. Ro	bbins		UM-HSRI-82-8	-2
9. Performing Organization Name and Address Highway Safaty Desearch Tr	stituto	10	Work Unit No.	
Institute of Science and T		-	010000	
The University of Michigan	echnorogy		DOT US 7 01	
ine University of Michigar	1		DOI-H2-1-01	200
Ann Arbor, Michigan 48109		13	Type of Report and f	Period Covered
12. Spansoring Agency Name and Address			Final	
U. S. Department of Transp	portation		October 1977	- March 1982
National Highway Traffic S	afety Admin	istration 📙		
Washington, D.C. 20590	-	14	Sponsoring Agency (lade
15. Supplementery Notes		L		
16. Abserver The purpose of this p tion software, originally l. review the capability of contact algorithm in the (validation studies; and, 4 This report is organi existing CVS documentation features (moveable contact soids and contact surfaces characteristics in deflect intended for the analyst w corporated in this model. the entire CVS model which for the ordinary user of the cerning the CVS model as a programmers who need to start the start of the start of the start corporated to start of the start of the start of the start corporated to start of the	project has l developed a of advanced CVS; 3. deve ized in three ized in three to The firs to The firs to a swell to a swell vho wishes to Volume II the model. a computer p tudy or make	been to expand t Calspan Corp. features of the lop software to pr e volumes which t volume descri sharing of defl iate representa as deflection b understand th presents an upd d to serve as s Volume III pres rogram and is i changes in the	the Crash Vic The objecti software; 2. r use in corr oblems in sic are suppleme bes the analy ections betwe tion of force rate). This e basic assum ated User's N ufficient doc ents informat ntended for p program.	tim Simula- ves were to: improve the relation and le impact. entary to vsis of new een ellip- e-deflection volume is nptions in- fanual for cumentation cion con- professional
17 Key Weyde		18	-	
W. Ney Words Chach Victim Cimulation		18. Distribution Statemen	•	
Crash Victim Simulation				
urasn uynamics		11		
Uccupant Dynamics		Unlimited		
Side Impact Dynamics				
19. Security Clessif. (of this report)	20. Security Cless	if. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclass	ified	99	

,

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

TABLE OF CONTENTS

1.0	INTE	RODUCTION	1
	1.1	General	1
	1.2	Organization of Report	1
	1.3	Scope of Changes	1
	1.4	References	2
2.0	INPU	UT TO CVS	4
	2,1	General Remarks	4
	2.2	Input Description for CVS	5
3.0	OUTF	PUT FROM CVS (GENERAL DESCRIPTION)	64
	3.1	Normal Output	64
	3.2	Supplementary Normal Output	64
	3.3	Auxiliary (Debugging) Output	65
	3.4	Output for Postprocessors	66
4.0	EXAM	1PLE RUN	66
	4.1	Run Description	67
	4.2	Input Data Deck with Comments	67
	4.3	Program Output with Comments	71

Page

LIST OF TABLES

1.	Normal Output Categories	64
2.	NPRT Output Categories	65
3.	Debugging Printout Categories	66
4.	Example Input Data	69
5.	Example Output of Input	72
6.	Example Auxiliary Printout	80
7.	Example Normal Printout	89

LIST OF FIGURES

1. Two Vehicle Collision

<u>Page</u> 67

Page

1.0 INTRODUCTION

1.1 General

The purpose of this project has been to expand the Crash Victim Simulation software, originally developed at Calspan Corp. The objectives were to: 1. review the capability of advanced features of the software; 2. improve the contact algorithm in the CVS; 3. develop software for use in correlation and validation studies; and, 4. apply the software to problems in side impact. This three volume report considers the first two of the objectives.

1.2 Organization of Report

This report is organized in three volumes. The first volume deals with the analysis of the new features and is supplementary to the initial CVS writeups (1) and updates (2). This volume is intended for the analyst who wishes to understand the basic assumptions incorporated in this model. The second volume presents an updated user's manual for the entire CVS model as now constituted and is expected to serve as sufficient documentation for the ordinary user of the model. The third volume presents information concerning the CVS model as a computer program and is intended for professional programmers who need to make changes in the program.

Volume One contains sections dealing with the new ellipsoid-plane contact algorithms, the material properties now available, and shared deflection.

Volume Two contains sections dealing with the updated, machineproduced input writeup, a general description of output options and an example run.

Volume Three contains sections describing the layout of packing tables for variable information, the structure of the program and a detailed layout of possible output from the program.

1.3 Scope of Changes

The HSRI Version of the CALSPAN CVS Model is based on Version 18A of that model augmented by some of the corrections of Version 19 con-

1

cerning Euler joints. HSRI refined the contact algorithms for ellipsoidpanel interactions. Three important basic problems in the contact algorithms were addressed. The first problem is accurate computation of deflections even for the case of complete penetration of an ellipsoid into a contact surface. The second problem is the computation of contact forces based on mutual deformation of the interacting elements. The third problem is handling of permanent deformation by contact surfaces.

The contact section of the old CVS was largely replaced with an algorithm based on the approach taken in earlier HSRI models (3,4,5) incorporating some of the ideas of British Leyland (6). In our early dealings with the old CVS, we modified the input section to read and check the ID field of the input cards. In addition, we modified the output section to use only one logical device and to print optionally in equal increments of simulated time. These changes were made to partially facilitate the use of the model. A more general specification of vehicle initial conditions and more flexibility in reporting of kinematics were later incorporated for the same reason. In general, we have followed the policy of making changes only where such changes were defendable by their utility to Occupant Side Impact Simulations.

1.4 References

- Fleck, J. T., Butler, F. E., Vogel, S. L., "An Improved Three-Dimensional Computer Simulation of Vehicle Crash Victims", Calspan Corp., Buffalo, 4 vols., NTIS Nos. PB241692-5.
- Butler, F. E., Addendices to reference 1., A-K, Calspan Corp., Buffalo, unpublished.
- Robbins, D. H., Bennett, R. O., and Roberts, V. L., "HSRI Three-Dimensional Crash Victim Simulation: Analysis, Verifications; Users' Manual, and Pictorial Section," HSRI, The University of Michigan, Ann Arbor, NTIS No. PB208242, June, 1971.
- 4. Robbins, D. H., Bennett, R. O., and Bowman, B. M., "HSRI Six-Mass, Three-Dimensional Crash Victim Simulation," HSRI, The University of Michigan, Ann Arbor, NTIS No. PB239476, Feb. 1973, 302 p.
- Bowman, B. M., Bennett, R. O., and Robbins, D. H., "MVMA Two-Dimensional Crash Victim Simulation, Version 3," HSRI, The University of Michigan, Ann Arbor, 3 vols., NTIS Nos. PB235753/1, 236907/2, 236908/0, 684 p., 1974.

 Butterfield, K. R., "The Computation of the Maximum Penetration of an Ellipsoid Through a Panel," Report No. NA2, British Leyland, unpublished, July 1976, 5 pg.

2.0 INPUT TO CVS

This section consists of two subsections. The first subsection contains a general introduction to the HSRI Version of the CALSPAN CVS. The second subsection consists of an updated version of the computer-produced input description produced by CALSPAN.

2.1 General Remarks

While it was not within the scope of our project to completely revise the input section of the program, we did add one important new feature to aid the user in debugging his/her data sets. In the original CVS, ID fields were optional and for the user's information. Card order and completeness was critical to proper functioning the program but the error would turn up as a division by zero or negative square root or some other apparently unrelated error.

We modified the input section so that every card has an identification and that identification is read and checked against the next expected card. The result is that errors in order and completeness are now flagged in an identifiable manner before the simulation is started.

The input is in terms of 80 column cards. The body of the card contains information and consists of card columns one through seventy two. Many different formats are employed in the body of the card depending on the type of information present on that card. These formats are described in detail in the next subsection. Card columns seventy-three through eighty are always used for unique identification of the card. The identification field is read and checked by the program to enforce the data requirements of the model. Data card order is also enforced as described in the next subsection.

4

2.2 Input Description for CVS

INPUT DESCRIPTION FOR THE CALSPAN 3-D CRASH VICTIM SIMULATION PROGRAM (HSRI VERSION) 4/10/81

"<>" IS USED TO INDICATE "NOT EQUAL".
"<" IS USED TO INDICATE "LESS THAN".
">" IS USED TO INDICATE "GREATER THAN".
"|" IS USED TO INDICATE "ABSOLUTE VALUE".

OUTPUT OF INPUT TO THE PROGRAM:

- CARDS A DATE AND RUN DESCRIPTION, UNITS OF INPUT AND OUTPUT, CONTROL OF RESTART, INTEGRATOR AND OPTIONAL OUTPUT.
- CARDS B PHYSICAL CHARACTERISTICS OF THE SEGMENTS AND JOINTS.
- CARDS C DESCRIPTION OF THE VEHICLE MOTION.
- CARDS D CONTACT PLANES, BELTS, AIR BAGS, CONTACT ELLIPSOIDS, CONSTRAINTS AND SYMMETRY OPTIONS.
- CARDS E FUNCTIONS DEFINING FORCE-DEFLECTIONS, INERTIAL SPIKE, ENERGY ABSORPTION FACTOR AND FRICTION COEFFICIENTS.
- CARDS F ALLOWED CONTACTS AMONG SEGMENTS, PLANES, BELTS, AIR BAGS AND CONTACT ELLIPSOIDS.
- CARDS G INITIAL ORIENTATIONS AND VELOCITIES OF THE SEGMENTS.
- CARDS H CONTROL OF OUTPUT OF TIME HISTORY OF SELECTED SEGMENT MOTIONS AND JOINT PARAMETERS.

NOTE: THE FORMATS HAVE BEEN CHANGED SO THAT EVERY CARD USES COLUMNS 76-80 FOR CARD TYPE IDENTIFICATION OF FORM "L.N.L" WHERE "L" STANDS FOR ALPHABETIC CHARACTER AND "N" STANDS FOR NUMERIC CHARACTER. IF THE CARD IN QUESTION IS UNIQUE, THE LAST CHARACTER AND DOT MUST BE SPECIFIED AS BLANKS. COLUMNS 73-74 ARE USED FOR ADDITIONAL RIGHT-ADJUSTED IDENTIFICATION FOR UNIQUENESS AS SPECIFIED IN EACH CARD TYPE DESCRIPTION IF MORE THAN ONE CARD OF THAT TYPE MAY BE PRESENT IN THE DATA DECK AND NO OTHER UNIQUE I.D. IS PRESENT ON CARD. THESE I.D. FIELDS ARE CHECKED DURING THE READING OF THE DATA. VIOLATION OF REQUIRED CARD ORDER OR PRESENCE CAUSES TERMINATION OF THE RUN.

- A. GENERAL MODEL CONTROL
 - CARD A.1.A COL RESTART CONTROL, RUN DATE, AND TIME-DEPENDENT DEBUG CONTROL

DATE(I), I=1,3 1-12 DATE OF THE RUN (12 CHARACTERS).

- IRSIN 13-16 RESTART INPUT UNIT NO. IF BLANK OR ZERO, ALL INPUT TO BE SUPPLIED ON CARDS A.3 TO CARDS H.7. IF NONZERO (SUGGESTED VALUE=4) INPUT WILL BE SUPPLIED FROM A PREVIOUS RESTART TAPE AND CARDS A.1.B,C AND A.2.
- IRSOUT 17-20 RESTART OUTPUT UNIT NO. IF NONZERO (SUGGESTED VALUE=3) RECORDS WILL BE WRITTEN ON THIS OUTPUT UNIT FOR FUTURE RESTART RUNS. AN INITIAL RECORD CONTAINING ALL INPUT AND INITIALIZATION DATA WILL BE WRITTEN PLUS A TIME POINT RECORD AT EVERY TIME INTERVAL AS SPECIFIED BY DT ON CARD A.4.
- RSTIME 21-28 RESTART TIME (SEC.) REQUIRED IF IRSIN<>0. SHOULD BE NONZERO AND AN INTEGER MULTIPLE OF DT ON CARD A.4. PROGRAM WILL READ RECORDS FROM THE PREVOUS RESTART TAPE UP TO AND INCLUDING THIS TIME, MAKE CHANGES PER CARD A.2 AND CONTINUE OPERATION FROM THERE.
- AN ARRAY OF INDICATORS THAT NPRT(I), I = 1, 11VARIOUS CONTROL OPTIONAL DIAGNOSTIC OUTPUT FOR THE PROGRAM. A VALUE OF ZERO OR BLANK INDICATES NO OUTPUT FOR THAT PARTICULAR ITEM. IN GENERAL, A VALUE OF 1 MEANS THAT THE OUTPUT WILL BE PRODUCED EVERY TIME A PARTICULAR ROUTINE IS EXECUTED. HOWEVER, FOR ITEMS 1,2,3,5 AND 6, THE VALUE INDICATES THE PRINT FREQUENCY, E.G., A VALUE OF 5 WILL PRODUCE OUTPUT EVERY 5TH EXECUTION OF THE SUBROUTINE.

A.1.A-A.1.C 3

		NPRT
29-32	1	TAPE 1 OUTPUT
33-36	2	ELTIME OUTPUT
37-40	3	ACCEL OUTPUT
41-44	4	HIC TAPE
45-48	5	Y-Z PRINTER PLOT
49-52	6	X-Z PRINTER PLOT
53-56	7	HA, HB FROM BINPUT
57-60	8	ACCEL FROM DAUX
61-64	9	PACKING DICTIONARY
65-68	10	OUTPUT FROM CMPUTE, DINT
69-72	11	ACCEL FROM EQUILB

CARDS A.1.B-A.1.C COL RUN DESCRIPTION

COMENT(I),	1-72	DESCRIPTION	OF	THE	RUN	(144
I=1,36	1-72	CHARACTERS C	ON !	TWO	CARDS)).

CARDS A.2 RESTART QUANTITY UPDATE CARDS (PLACE NUMBERING OF THESE CARDS IN COLUMNS 73-74.)

THESE CARDS REQUIRED ONLY IF IRSIN>0, IN WHICH CASE ALL OTHER INPUT AS SPECIFIED ON CARDS A.3 TO H.7 ARE BYPASSED. TWO SETS OF A.2 (EACH TERMINATED WITH A BLANK CARD) ARE REQUIRED. THE FIRST SET IS PROCESSED AFTER THE INITIAL INPUT RECORD IS READ FROM INPUT UNIT IRSIN AND, IF IRSOUT<>0, BEFORE THE INPUT RECORD IS WRITTEN ON OUTPUT UNIT IRSOUT. THE SECOND SET IS PROCESSED AFTER THE TIME POINT RECORD FOR TIME=RSTIME HAS BEEN READ AND, IF IRSOUT<>0, AFTER THE SAME RECORD IS WRITTEN ON OUTPUT UNIT IRSOUT, BUT BEFORE THE PROGRAM RESUMES OPERATION.

- AVAR 1-8 ALPHANUMERIC NAME (LEFT ADJUSTED IN FIELD) OF VARIABLE TO BE REDEFINED FOR RESTART. PROGRAM IS CAPABLE OF CHANGING ANY VARIABLE IN THE LABELED COMMON BLOCKS AS USED AFTER ALL INITIALIZATION HAS BEEN PERFORMED. THE USER SHOULD ASCERTAIN THAT CHANGING THIS VARIABLE IS VALID FOR THE PROGRAM.
- INDEX(I), 9-12 THE ARRAY INDICES, IF ANY, OF THE
- I=1,3 13-16 VARIABLE. MUST AGREE IN NUMBER 17-20 AND THE VALUES MUST BE LESS THAN OR EQUAL TO THE DIMENSIONS OF THE VARIABLE. BLANK OR ZERO FOR NO DIMENSION.
- ITYPE 21-24 SUPPLY 1, 2 OR 3 TO INDICATE THAT THE NEW VALUE IS TO BE REAL (RR), INTEGER (II) OR ALPHANUMERIC (AA). MUST AGREE WITH THE TYPE OF THE VARIABLE WITHIN THE PROGRAM.

RR II AA	25-32 33-40 41-48	NEW VALUE OF THE VARIABLE AVAR TO BE SUPPLIED IN THE APPROPRIATE FIELD DETERMINED BY THE VALUE OF ITYPE.
	10-56	

RROLD	49-56	THE PREVIOUS VALUE OF THE
IIOLD	57-64	VARIABLE AVAR IN THE APPROPRIATE
AAOLD	65-72	FIELD ACCORDING TO THE ITYPE
		VALUE. INTEGER OR ALPHANUMERIC

DATA WILL BE TESTED EXACTLY, REAL DATA TO 5 SIGNIFICANT DIGITS. IF THE CURRENT VALUE IS DIFFERENT, THE PROGRAM WILL TERMINATE WITH AN ERROR MESSAGE. IF ZERO OR BLANK IS SUPPLIED, NO CHECK IS PERFORMED.

THESE A.2 CARDS WILL BE PROCESSED UNTIL A BLANK VALUE FOR AVAR IS ENCOUNTERED. NO FURTHER INPUT IS REQUIRED.

CARD A.3 SPECIFICATION OF INPUT UNITS

1-4 UNIT OF LENGTH (4 CHARACTERS). UNITL UNITF 5-8 UNIT OF FORCE (4 CHARACTERS). 9-12 UNIT OF TIME (4 CHARACTERS). UNITT 13-22 UNIT OF LENGTH IN TERMS OF INCHES. CONVL CONVF 23-32 UNIT OF FORCE IN TERMS OF LBS. 33-42 UNIT OF TIME IN TERMS OF SECS. CONVT NOTE: UNITL, UNITF AND UNITT SHOULD CORRESPOND TO THE USER'S INPUTS. THROUGHOUT THIS DESCRIPTION, INCHES, POUNDS AND SECONDS (IN, LBS, SEC) ARE USED AS SAMPLE UNITS. 43-52 THE X, Y AND Z COMPONENTS GRAVTY(I), 53-62 OF GRAVITY (IN PER SEC**2). I=1,3

.

63-72

A.3

A.4 7

CARD A.4 INTEGRATOR CONTROLS

- NDINT 1-4 NUMBER OF ITERATIONS FOR FINAL CONVERGENCE TEST OF THE INTEGRATOR SUBROUTINE DINT (MINIMUM VALUE=2, SUGGESTED VALUE=4).
- NSTEPS 5-8 NUMBER OF INTEGRATION STEPS (OR OUTPUT TIME POINTS) FOR THE INTEGRATOR ROUTINE. MAY BE ZERO TO OBTAIN INITIAL CONDITIONS.
- DT 9-16 MAIN PROGRAM TIME INTERVAL FOR INTEGRATOR ROUTINE OUTPUT (SEC). TOTAL TIME OF RUN WILL BE NSTEPS*DT SECONDS WITH MAIN PROGRAM TAPE 1, PRINTER PLOT AND OPTIONAL OUTPUT PRODUCED EVERY DT SECONDS.
- HO 17-24 INITIAL INTEGRATOR STEP SIZE (SEC).
- HMAX 25-32 MAXIMUM INTEGRATOR STEP SIZE (SEC). FOR BEST EFFICIENCY DT SHOULD BE AN INTEGRAL MULTIPLE OF HMAX AND HMAX A POWER OF TWO MULTIPLE OF H0. (SUGGESTED VALUE = 0.001 SEC.)
- HMIN 33-40 MINIMUM INTEGRATOR STEP SIZE (SEC). IF A FIXED STEP SIZE IS DESIRED, SET HMIN GREATER THAN HMAX, AND STEP SIZE WILL DOUBLE FROM H0 UNTIL HMAX IS ACHIEVED.
- KNTLPR 41-44 SWITCH=0 PRINT EVERY INTEGRATION. SWITCH<>0 PRINT IN INCREMENTS OF DT.
- MAXLIN 45-48 MAX NUMBER OF TIME POINTS, EFFECTIVE. ONLY NEEDED IF KNTLPR=0.

CARD A.5 MISC. ITERATION CONTROLS

- EPSLN 1-12 TOLERANCE FOR ZERO TESTS OF PANEL SYSTEM CORNER POINTS (IN).
- EPSLON 13-24 RELATIVE TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE IN BIVARIATE TABLE INTERPOLATION.
- CEPLSN 25-36 FORCE TOLERANCE FOR CONVERGENCE TEST IN SHARED DEFLECTION (LBS).
- DELFSP 37-48 RAMP LENGTH FOR FULL USE OF FORCE RATE TERMS (IN).
- HARDCF 49-60 LINEAR SPRING COEFFICIENT FOR RIGID-RIGID INTERACTION (LBS/IN).
- HARDLM 61-72 MAXIMUM FORCE FOR RIGID-RIGID INTERACTION (LBS).

CARDS A.6.A-A.6.B TIME-DEPENDENT DEBUG CONTROL

CARD A.6.A

TIMHEX(1) 1-8 EFFECTIVE TIME FOR FIRST HEXIDECIMAL CONTROL WORD. HEX(1)9-16 SIXTEEN DEBUG SWITCH SETTINGS (TWO BITS EACH) REPRESENTED AS EIGHT DIGIT HEXIDECIMAL WORD. TIMHEX(2)17-24SIMILARFOR
CONTROLOTHER
WORDS.EFFECTIVE
TIMES HEX(2)25-32 TIMHEX(3) 33-40 HEX(3) 41-48 TIMHEX(4) 49-56 HEX(4) 57-64

CARD A.6.B

INPUT ELEMENTS FIVE THROUGH EIGHT OF THESE TWO ARRAYS WITH THE SAME CARD LAYOUT. THE TABLE PRESENTED BELOW GIVES THE CORRESPONDENCE BETWEEN IBUG INDEX AND THE RESULTING DEBUG PRINTOUT.

I BUG DEBUG PRODUCED

- 1 AIR BAG QUANTITIES
- 2 BELT QUANTITIES
- 3 LEVEL 1: JOINT POSITIONS
- LEVEL 2: BODY SEGMENT POSITIONS & VELOCITIES
- 4 SYSTEM EQUATION MATRIX AND RIGHT HAND SIDE
- 5 TIME STEP CONVERGENCE QUANTITIES
- 6 ELLIPSOID-ELLIPSOID PENETRATION QUANTITIES
- 7 IMPULSE FUNCTION QUANTITIES
- 8 TORQUE AND JOINT CONSTRAINT QUANTITIES
- 9 ROLL-SLIDE CONSTRAINT QUANTITIES
- 10 JOINT QUANTITIES
- 11 BODY CONTACT QUANTITIES
- 12 ELLIPSOID-PLANE DEFLECTION QUANTITIES
- 13 LOAD-DEFLECTION QUANTITIES
- 14 SHARED DEFLECTION AND TABULAR FITTING QUANTITIES
- 15 FORCE EVALUATION QUANTITIES
- 16 LEVEL 1: STORAGE ALLOCATION QUANTITIES LEVEL 3: ABORT AND DUMP

.

B. PHYSICAL CHARACTERISTICS OF SEGMENTS AND JOINTS

CARD B.1 CRASH VICTIM GENERAL DESCRIPTION

NSEG 1-6 NUMBER OF SEGMENTS (MAXIMUM NSEG+NBAG = 20). NOTE: THE VEHICLE AND GROUND WILL BE ASSIGNED SEGMENT NUMBERS NSEG+1 AND NSEG+NBAG+2.

- NJNT 7-12 THE NUMBER OF JOINTS (MAXIMUM=21). NOTE: NORMALLY NJNT = NSEG-1, BUT JOINT NUMBERS NVEH-1 AND NGRND-1 MAY BE USED TO CONNECT THE VEHICLE AND THE GROUND TO A LOWER NUMBERED SEGMENT.
- BDYTTL(I), 21-40 DESCRIPTION OF THE CRASH VICTIM I=1,5 (20 CHARACTERS).
- CARDS B.2 BODY SEGMENT SPECIFICATIONS (NSEG CARDS, PLACE "I" IN COLS 73-74)

EACH CARD (I) FOR I=1,NSEG WILL CONTAIN INPUT DATA FOR THE ITH SEGMENT. THE SEGMENT IDENTIFYING NUMBERS (I) WILL BE REFERRED TO ON LATER INPUT CARDS.

- SEG(I) 1-4 AN ABBREVIATION OF THE NAME OF THE ITH SEGMENT (4 CHARACTERS).
- CGS(I) 6 THE PLOT SYMBOL OF THE SEGMENT C.G. (1 CHARACTER).
- W(I) 7-18 THE MASS OF THE SEGMENT (LBS*SEC**2/IN).
- PHI(J,I),19-30 THE PRINCIPAL MOMENTS OF INERTIAJ=1,331-42 OF THE SEGMENTS ABOUT THE X, Y AND43-54 Z AXES OF THE SEGMENT (LBS-SEC**2-
 - IN). THERE ARE NO RESTRICTIONS ON THE VALUES OF W(I) OR PHI(J,I), THEY MAY BE NEGATIVE OR ZERO. IF ANY COMPONENT IS ZERO, IT IS ASSUMED THAT THE SYSTEM IS SUITABLY CONSTRAINED SO THAT THE SYSTEM MATRIX IS NONSINGULAR.

CARDS B.3.A-B.3.B JOINT SPECIFICATIONS (2*NJNT CARDS - 2 CONTIGUOUS CARDS FOR EACH JOINT, PLACE "J" IN COL 73-74) EACH CARD (J) FOR J=1,NJNT WILL CONTAIN INPUT DATA FOR THE JTH JOINT. THE JOINT IDENTIFYING NUMBERS (J) WILL BE REFERRED TO ON LATER INPUT CARDS.

FOLLOWING DATA IS ON FIRST CARD (B.3.A) FOR EACH JOINT.

- JOINT(J) 1-4 AN ABBREVIATION OF THE NAME OF THE JTH JOINT (4 CHARACTERS).
- JS(J) 6 PLOT SYMBOL OF THE JOINT LOCATION (1 CHARACTER).
- JNT(J) 7-10 MAGNITUDE IS NUMBER OF SEGMENT CONNECTED TO SEGMENT J+1 BY JOINT J. IF ZERO, SEGMENT J+1 IS THE REFERENCE SEGMENT OF ANOTHER BODY. IF NEGATIVE, JOINT J IS ASSOCIATED WITH A FLEXIBLE ELEMENT. (IT IS REQUIRED THAT |JNT(J)|<J+1).
- IPIN(J) 11-14 0 - JOINT J HAS NO CONSTRAINTS. 1 - JOINT J IS PINNED (HINGE). 2 - JOINT J IS BALL AND SOCKET. 3 - JOINT J IS GLOBALGRAPHIC (BALL AND SOCKET).

JOINT IS INITIALLY UNLOCKED IF IPIN>0 AND LOCKED IF IPIN<0.

4 - JOINT J IS AN EULER JOINT.

AN EULER JOINT MAY USE THE GLOBALGRAPHIC OPTION (SPECIFY IGLOB = 1 ON CARD F.4.A). ITS INITIAL STATE IS SET BY IPIN AS BELOW, WITH PRECESSION ABOUT Z, NUTATION ABOUT RESULTANT X AND SPIN ABOUT RESULTANT Z. IF IPIN<-3, PROGRAM WILL SET IEULER AS BELOW AND THEN RESET IPIN=-4.

IPIN	IEULER	STATE
4	8	FREE
- 4	7	ALL AXES LOCKED
- 5	6	SPIN FREE, OTHERS LOCKED
- 6	5	NUTATION FREE, OTHERS LOCKED
- 7	4	PRECESSION FREE, OTHERS LOCKED
- 8	3	SPIN LOCKED, OTHERS FREE
- 9	2	NUTATION LOCKED, OTHERS FREE
-10	1	PRECESSION LOCKED, OTHERS FREE

16

SR(I,2*J-1), I=1.3	15-20 COORDINATES OF LOCATION OF JOINT 21-26 (IN.) IN THE LOCAL REFERENCE	J
- ,,,	27-32 SYSTEM OF PROXIMAL SEGMENT JNT(J).
SR(I,2*J), I=1,3	33-38 COORDINATES OF LOCATION OF JOINT 39-44 (IN.) IN THE LOCAL REFERENCE 45-50 SYSTEM OF DISTAL SEGMENT J+1.	J

FOLLOWING DATA IS ON SECOND CARD (B.3.B) FOR EACH JOINT.

- YPR1(I,J), I=1,3 15-20 THE YAW, PITCH AND ROLL ANGLES 21-26 (DEGREES) SPECIFYING THE PRINCIPAL 27-32 AXES OF JOINT J IN THE LOCAL REFERENCE SYSTEM OF PROXIMAL SEGMENT JNT(J). YAW ABOUT Z AXIS, PITCH ABOUT RESULTANT Y AXIS, ROLL ABOUT RESULTANT X AXIS.
- YPR2(I,J), 33-38 THE YAW, PITCH AND ROLL ANGLES
- I=1,3 39-44 (DEGREES) SPECIFYING THE PRINCIPAL 45-50 AXES OF JOINT J IN THE LOCAL REFERENCE SYSTEM OF DISTAL SEGMENT J+1. THE ANGLE BETWEEN PROXIMAL AND DISTAL JOINT SYSTEM Z AXES DEFINES FLEXURE. FLEXURE FOR A HINGE JOINT IS ABOUT THE Y (PIN) AXIS. THE XY PLANE IS USED FOR GLOBALGRAPHIC JOINTS WITH X AS THE REFERENCE AXIS.
- YPR3(I,J), I=1,3 51-56 THE CENTER OF SYMMETRY (DEGREES) 57-62 FOR EULER JOINTS ONLY. SUPPLIED IN 63-68 THE ORDER PRECESSION, NUTATION AND SPIN WITH RESPECT TO DISTAL LINK JOINT AXES WHEN PROXIMAL AND DISTAL LINK JOINT AXES ARE "IN-LINE". JOINT TORQUES FOR EULER JOINTS ARE A FUNCTION OF THE DEVIATION OF THE EULER ANGLES FROM THESE.

NOTE: PROXIMAL MEANS NEARER TO AND DISTAL MEANS FURTHER FROM THE BODY REFERENCE SEGMENT. CARDS B.4.A-B.4.B JOINT SPRING CHARACTERISTICS (NJNT SETS OF CARDS, ONE FOR EACH JOINT J. IF IPIN(J)< 4, EACH SET READS VALUES FOR 3*J-2 AND 3*J-1 ON ONE CARD ONLY (B.4.A). IF |IPIN(J)|=4, JOINT J IS AN EULER JOINT AND A SECOND CARD (B.4.B) IS NECESSARY TO READ VALUES FOR 3*J. PLACE "J" IN COL 73-74.)

SPRING(I,	1-6	FLEXURAL SPRING CHARACTERISTICS
3*J-2),I=1,5	7-12	(BENDING), IF HINGE OR BALL AND
	13-18	SOCKET. IF EULER JOINT, SPRING
	19-24	CHARACTERISTICS ABOUT PRECESSION
	25-36	AXIS. (SEE NOTE BELOW FOR LAYOUT)

SPRING(I, 3*J-1),I=1,5 3*J-1),I=1,5 3*J-2 TORSIONAL SPRING CHARACTERISTICS 43-48 (TWIST), IF BALL AND SOCKET. IF 49-54 HINGE, OMITTED. IF EULER JOINT, 55-60 SPRING CHARACTERISTICS ABOUT THE 61-72 NUTATION AXIS. (SEE NOTE BELOW)

SPRING(1,	1-6	SECOND CARD OF EACH SET IS
3*J),I=1,5	7-12	REQUIRED ONLY IF J IS AN EULER
	13-18	JOINT, THE SPRING CHARACTERISTICS
	19-24	ABOUT THE SPIN AXIS. (SEE NOTE
	25-36	BELOW FOR LAYOUT OF FIVE FIELDS)

NOTE: LAYOUT OF JOINT SPRING CHARACTERISTICS

- I=1 LINEAR SPRING COEFFICIENT (IN-LBS/DEG).
- I=2 QUADRATIC SPRING COEFFICIENT (IN-LBS/DEG**2).
- I=3 CUBIC SPRING COEFFICIENT (IN-LBS/DEG**3).
- I=4 ENERGY DISSIPATION COEFFICIENT (DIMENSIONLESS). A VALUE OF 1. SPECIFIES NO LOSS
 - A VALUE OF 0. SPECIFIES MAXIMUM LOSS
- I=5 JOINT STOP LOCATION (DEG): FOR EULER JOINT, SYMMETRIC ABOUT CENTER OF SYMMETRY AXES WHEN JOINT AXIS SYSTEMS ARE IN-LINE; FOR HINGE OR BALL AND SOCKET, SYMMETRIC ABOUT DISTEL LINK BODY AXES WHEN JOINT AXIS SYSTEMS ARE IN-LINE. FOR A VALUE OF ZERO THE ROUTINE WILL USE ONLY THE LINEAR SPRING COEFFICIENT AND WILL APPLY THE ENERGY DISSIPATION FACTOR.
- ANG(I,J), I=1,3 37-42 THE INITIAL ROTATION ANGLES IN 43-48 THE ORDER PRECESSION, NUTATION AND 49-54 SPIN (DEGREES) FOR AN EULER JOINT. THESE ARE USED AS INITIAL ANGLES FOR THE MEMORY MODE IN SUBROUTINE EULRAD AND NEED NOT BE EXACT. THE VALUES ARE ABSOLUTE, NOT RELATIVE TO THE CENTER OF SYMMETRY.

- CARDS B.5.A-B.5.C JOINT VISCOUS CHARACTERISTICS (NJNT SETS, ONE FOR EACH JOINT J. IF |IPIN(J)|<4, VALUES FOR 3*J-2 ARE ON ONE CARD ONLY (B.5.A). IF |IPIN(J)|=4, J IS AN EULER JOINT AND VALUES FOR 3*J-1 ARE REQUIRED ON A SECOND (B.5.B) AND FOR 3*J ON A THIRD (B.5.C) CARD OF EACH SET. PLACE "J" IN COLS 73-74.)
 - VISC(I,3*J-2), I=1,7 THE VISCOUS CHARACTERISTICS (FLEXURAL AND TORSIONAL), IF HINGE OR BALL AND SOCKET. IF EULER JOINT, THE VISCOUS CHARACTERISTICS ABOUT THE PRECESSION AXIS. (SEE NOTE BELOW FOR FIELD LAYOUT)
 - VISC(I,3*J-1), I=1,7 THE SECOND CARD OF EACH SET IS REQUIRED ONLY IF J IS AN EULER JOINT AND CONTAINS THE VISCOUS CHARACTERISTICS ABOUT THE NUTATION AXIS. (SEE NOTE BELOW FOR LAYOUT)
 - VISC(I,3*J), I=1,7 THE THIRD CARD OF EACH SET IS REQUIRED ONLY IF J IS AN EULER JOINT AND CONTAINS THE VISCOUS CHARACTERISTICS ABOUT THE SPIN AXIS. (SEE NOTE BELOW FOR LAYOUT)

NOTE: LAYOUT OF JOINT VISCOUS CHARACTERISTICS CARDS

- I=1 1-6 VISCOUS COEFFICIENT (IN-LB-SEC/DEG).
- I=2 7-12 COULOMB FRICTION COEFFICIENT (IN-LB).
- I=3 13-18 RELATIVE ANGULAR VELOCITY OF JOINT AT WHICH FULL COULOMB FRICTION IS APPLIED (DEG/SEC). MUST BE GREATER THAN 0.
- I=4 19-24 T1: THE MAXIMUM TORQUE (IN-LBS) ALLOWED FOR A LOCKED JOINT (OR EULER AXIS). IF EXCEEDED, THE JOINT WILL UNLOCK. IF T1=0, THE TEST WILL NOT BE PERFORMED. NOTE: IF JOINT J IS LOCKED, IF T1=0, AND IF SUBROUTINE EQUILB IS CALLED, THEN VISC(4,3*J-2) WILL BE SET BY SUBROUTINE EQUILB. (SEE DESCRIPTION UNDER CARDS G.6)

B.5.A-B.5.C 16

- I=5 25-30 T2: THE MINIMUM TORQUE (IN-LBS) ALLOWED FOR JOINT J TO REMAIN UNLOCKED. IF T2=0, THE TEST WILL NOT BE PERFORMED.
- I=6 49-54 T3: THE MINIMUM ANGULAR VELOCITY (RAD/SEC) NECESSARY FOR JOINT J TO REMAIN UNLOCKED. IF T3=0, THE TEST WILL NOT BE PERFORMED.
- I=7 55-60 E=(1+U)/2 WHERE U IS THE CLASSICAL COEFFICIENT OF RESTITUTION TO BE USED FOR THE IMPULSE OPTION IF THE JOINT HITS THE JOINT STOP (0<E<1 OR -1<U<+1). A VALUE OF E=0 MEANS THAT THE IMPULSE OPTION WILL NOT BE EXERCISED FOR THIS JOINT.

CARD B.6 SEGMENT CONVERGENCE TEST PARAMETERS (NSEG CARDS, PLACE "I" IN COLS 73-74.)

SGTEST(1,1,1) 1-6 MAGNITUDE TEST FOR THE ANGULAR VELOCITY OF SEGMENT NO. I (RAD/SEC).

SGTEST(2,1,1) 7-12 ABSOLUTE ERROR TEST FOR ANGULAR VELOCITY OF SEGMENT NO.I (RAD/SEC).

SGTEST(3,1,1) 13-18 RELATIVE ERROR TEST FOR THE ANGULAR VELOCITY OF SEGMENT NO. I (DIMENSIONLESS).

SGTEST(1,2,1) 19-24 SAME AS ABOVE, BUT FOR THE LINEAR SGTEST(2,2,1) 25-30 VELOCITY OF SEGMENT NO. I SGTEST(3,2,1) 31-36 (IN/SEC).

SGTEST(1,3,1) 37-42 SAME AS ABOVE, BUT FOR THE ANGULAR SGTEST(2,3,1) 43-48 ACCELERATION OF SEGMENT NO. I SGTEST(3,3,1) 49-54 (RAD/SEC**2).

SGTEST(1,4,I) 55-60 SAME AS ABOVE BUT FOR THE LINEAR SGTEST(2,4,I) 61-66 ACCELERATION OF SEGMENT NO. I SGTEST(3,4,I) 67-72 (IN/SEC**2).

NOTE: THESE CONVERGENCE TESTS ARE PERFORMED IN SUBROUTINE DINT ON THE RESULTANT OF THE DERIVATIVE VECTORS. THE LINEAR VELOCITIES AND ACCELERATIONS ARE COMPUTED ONLY FOR REFERENCE SEGMENTS (I.E. SEGMENT NO. 1 AND THOSE SEGMENTS I WHERE JNT(I-1)=0), THEREFORE ANY TEST NUMBERS SUPPLIED FOR LINEAR VELOCITIES AND ACCELERATIONS OF OTHER SEGMENTS WILL BE IGNORED. THE TESTS FOR CONVERGENCE ARE PERFORMED IN THE FOLLWING ORDER:

1) IF THE MAGNITUDE TEST IS ZERO, NO TESTING IS DONE FOR THAT VARIABLE.

2) IF THE MAGNITUDE OF THE RESULTANT VECTOR IS LESS THAN THE MAGNITUDE TEST, THE ROUTINE HAS PASSED THE CONVERGENCE TEST FOR THAT VARIABLE.

3) IF THE ABSOLUTE ERROR TEST IS GREATER THAN ZERO, AND THE MAGNITUDE OF THE ABSOLUTE ERROR (DIFFERENCE BETWEEN THE PREDICTED AND COMPUTED VECTOR) IS LESS THAN THE ABSOLUTE ERROR TEST, THE ROUTINE HAS PASSED THE CONVERGENCE TEST FOR THAT VARIABLE.

.

4) IF THE RELATIVE ERROR OF THE MAGITUDE OF THE ABSOLUTE ERROR COMPARED TO THE MAGNITUDE OF THE COMPUTED VECTOR IS GREATER THAN THE RELATIVE ERROR TEST, THE CONVERGENCE TEST HAS FAILED.

.

.

IF ANY JNT(J)<0, CARDS B.7 ARE REQUIRED. EACH FLEXIBLE ELEMENT AS DEFINED ON CARDS B.3 CONTAINS AT LEAST THREE CONNECTED SEGMENTS CONSISTING OF A REFERENCE SEGMENT, ONE OR MORE INTERIOR SEGMENTS AND A TERMINATING SEGMENT. EACH JOINT IN THE ELEMENT SHOULD HAVE A NEGATIVE VALUE FOR JNT, AND THE NUMBER OF INTERIOR SEGMENTS WILL BE ONE LESS THAN THE NUMBER OF NEGATIVE VALUES OF JNT FOR EACH ELEMENT. NFLX IS THE TOTAL NUMBER OF INTERIOR SEGMENTS OF ALL FLEXIBLE ELEMENTS AND HAS A MAXIMUM OF 17.

CARD B.7.A INTERIOR SEGMENT SPECIFICATION

NFX 1-4 THE NUMBER OF INTERIOR SEGMENTS FOR WHICH HF ARRAYS ARE TO BE SUPPLIED.

KNT(K), K=1,NFX 5-8 THE INTERIOR SEGMENT 9-12 IDENTIFICATION NUMBERS IN THE ETC. ORDER OF THE HF ARRAYS TO BE 69-72 SUPPLIED. IF THE VALUES OF NFX AND KNT ARE NOT CONSISTENT WITH THE NEGATIVE VALUES OF JNT ON CARDS B.3, THE PROGRAM WILL TERMINATE WITH AN APPROPRIATE ERROR MESSAGE.

CARDS B.7.B-B.7.E INTERIOR SEGMENT ORIENTATION (4*NFX CARDS, 4 CARDS FOR EACH SEGMENT B.7.B TO B.7.E CORRESPONDING TO I=1 TO 4 RESPECTIVELY AS THEY ARE DEFINED IN THE KNT VECTOR. PLACE "K" IN COLS 73-74.)

(HF(I,J,K),	1-6	THE COEFFICIENTS OF THE QUADRATIC
J=1, 12), I=1, 4	7-12	FORM FUNCTION USED TO DEFINE
	13-18	THE ORIENTATION OF INTERIOR
	ETC.	SEGMENT KNT(K) WITH RESPECT TO
	67-72	REFERENCE SEGMENT OF THE ELEMENT.

NOTE:

FORM THE COLUMN VECTOR V WITH FOUR COMPONTENTS Y, P, R AND 1, WHERE Y, P, R ARE THE YAW, PITCH AND ROLL OF THE TERMINATING SEGMENT RELATIVE TO THE REFERENCE SEGMENT. LET H BE A SYMMETRIC 4X4 MATRIX SUCH THAT F(V)=1/2 V.HV REPRESENTS A QUADRATIC SCALAR FUNCTION OF THE VARIABLES Y, P AND R IN RADIANS. THUS

YAW OF SEGMENT KNT(K) = 1/2 V.HF(I,J,K)V PITCH OF SEGMENT KNT(K) = 1/2 V.HF(I,J+4,K)V ROLL OF SEGMENT KNT(K) = 1/2 V.HF(I,J+8,K)V (I,J=1,4)

C. VEHICLE DECELERATION SPECIFICATIONS

- CARD C.1 VEHICLE DECELERATION DESCRIPTION
 - VPSTTL(I), 1-72 DESCRIPTION OF THE CRASH VEHICLE I=1,18 DECELERATION (72 CHARACTERS).
- CARD C.2 VEHICLE DECELERATION TYPE CONTROLS
 - ANGLE(I), 1-6 FOR HALF SINE-WAVE DECELERATION 7-12 (NBTAB=0) OR FOR UNIDIRECTIONAL I=1,3 13-18 DECELERATION TABULAR INPUT (NATAB>0), ANGLE(1) AND ANGLE(2) REPRESENT THE AZIMUTH AND ELEVATION (OBLIQUE ANGLES) OF THE DIRECTION OF THE DECELERATION IMPULSE (DEG). ANGLE(3) IS NOT USED AND THE INITIAL YAW, PITCH AND ROLL OF THE VEHICLE ARE ASSUMED TO BE ZERO. FOR THE OMNIDIRECTIONAL TABULAR INPUT (NATAB<0), THEY REPRESENT THE INITIAL YAW, PITCH AND ROLL OF THE VEHICLE (DEG).
 - XIPS 19-24 THE INITIAL X-DIRECTION VELOCITY OF THE CRASH VEHICLE (IN/SEC). A NEGATIVE VALUE MAY BE SUPPLIED FOR NATAB=0 TO INDICATE THAT THE VEHICLE WILL ACCELERATE FROM A VELOCITY OF ZERO TO |XIPS|. FOR NATAB>0 AND NATAB=0, XIPS IS INERTIAL. FOR NATAB=0, XIPS IS IN THE REFERENCE SYSTEM DEFINED BY THE VALUE OF NATAB.
 - YIPS OR VTIME 25-30 FOR NATAB=0, THE TIME DURATION OF THE DECELERATION IMPULSE (SEC). A VALUE OF ZERO IS NOT PERMITTED. FOR NATAB<0, THE INITIAL Y-DIRECTION VELOCITY OF THE CRASH VEHICLE (IN/SEC) IN THE REFERENCE SYSTEM DEFINED BY THE VALUE OF NATAB. NOT USED FOR NATAB>0.

ZIPS 31-36 FOR NATAB<0, THE INITIAL Z-

C.1-C.2

DIRECTION VELOCITY OF THE CRASH VEHICLE (IN/SEC) IN THE REFERENCE SYSTEM DEFINED BY THE VALUE OF NATAB. NOT USED FOR NATAB>0 OR NATAB=0.

X0(I),I=1,3 37-42 THE INITIAL X, Y AND Z COORDINATES 43-48 OF THE VEHICLE REFERENCE ORIGIN IN 49-54 INERTIAL REFERENCE (IN).

> 55-60 INTEGER NUMBER OF TIME POINTS FOR WHICH VEHICLE DECELERATION DATA IS TO BE SUPPLIED. THE ALGEBRAIC SIGN OF NATAB DETERMINES THE TYPE OF VEHICLE MOTION AS FOLLOWS;

> > IF NATAB=0, THE DIRECTION IMPULSE IS AN ANALYTICAL HALF-SINE WAVE FUNCTION THAT DECELERATES THE VEHICLE FROM AN INITIAL SPEED OF VMPH TO ZERO IN VTIME SECONDS.

> > IF NATAB>0, THE VEHICLE MOTION IS UNIDIRECTIONAL AND ONLY THE RESULTANT LINEAR DECELERATION IS INPUTTED IN TABULAR FORM ON CARDS C.3. (NATAB SHOULD BE ODD AND MAXIMUM VALUE IS 99.)

> > IF NATAB<0, THE VEHICLE MOTION IS FULL THREE DIMENSIONAL AND SIX DEGREES OF FREEDOM IN ACCELERATION ARE INPUTTED IN TABULAR FORM ON CARDS C.4. (MAXIMUM NUMBER OF TABLE POINTS IS 100.) IF THE ABSOLUTE VALUE OF NATAB IS BETWEEN 1 AND 100, THEN THE INITIAL VELOCITIES XIPS, YIPS AND ZIPS ARE PARALLEL TO THE INERTIAL AXES. IF IT IS BETWEEN 101 AND 200, THEN THEY ARE PARALLEL TO THE VEHICLE AXES.

61-66 THE BEGINNING TIME POINT FOR THE DECELERATION TABLE INPUT (SEC).

67-72 FIXED TIME INTERVAL FOR THE DECELERATION TABLE INPUT (SEC).

AT0 ADT

NATAB

C.2

CARDS C.3 UNIDIRECTIONAL DECELERATION VALUES THESE CARDS ARE REQUIRED ONLY IF NATAB>0

- ATAB(1,I),1-6 THE NATAB VALUES OF DECELERATION 7-12 (G'S) FOR THE CRASH VEHICLE I = 1, NATAB13-18 FOR FIXED TIME INTERVALS: 19-24 T(I) = ATO + (I-1) * ADT FOR I = 1, NATAB.25-30 INPUT 12 NUMBERS PER CARD, USE AS 31-36 MANY CARDS AS NECESSARY. SINCE 37-42 A SIMPSON'S INTEGRATION IS USED 43-48 TO COMPUTE VELOCITY AND POSITION, 49-54 THE VALUE OF NATAB SHOULD BE ODD 55-60 AND THE LAST VALUE IN THE TABLE 61-66 SHOULD BE ZERO, HOWEVER, THE 67-72 PROGRAM WILL EXTEND THE TABLE IF TO NECESSARY FULFILL THESE REQUIREMENTS. PLACE "I" FOR FIRST VALUE OF CARD IN COLS 73-74. ONLY THE LAST CARD MAY HAVE LESS THAN 12 VALUES.
- CARDS C.4 OMNIDIRECTIONAL DECELERATION VALUES MATAB CARDS ARE REQUIRED ONLY IF NATAB<0 (MATAB=-NATAB OR -NATAB-100). EACH CARD (I) WILL CONTAIN THE LINEAR AND ANGULAR ACCELERATIONS FOR TIME T(I)=AT0+(I-1)*ADT FOR I=1,MATAB. PLACE "I" IN COLS. 73-74.

ATAB(J,I),11-20 THE VALUES OF THE X, Y AND ZJ=1,321-30 COMPONENTS OF LINEAR DECELERATION31-40 (G'S) FOR TIME POINT T(I).ATAB(J,I),41-50 THE VALUES OF THE COMPONENTS OFJ=4,651-60 ANGULAR ACCELERATION (DEG/SEC**)61-70 FOR TIME POINT T(I).

D. CONTACT SPECIFICATIONS

- CARD D.1 CONTACT CONTROLS
 - NPL 1-6 NUMBER OF CONTACT PLANAR PANELS USED.
 - NBLT 7-12 NUMBER OF BELTS USED TO RESTRAIN THE CRASH VICTIM (8 MAXIMUM).
 - NBAG 13-18 NUMBER OF AIRBAGS USED TO RESTRAIN THE CRASH VICTIM (MAX=5, MAX NSEG+NBAG=20).
 - NELP 19-24 NUMBER OF CONTACT ELLIPSOIDS USED.
 - NQ 25-30 THE NUMBER OF CONSTRAINTS TO BE SUPPLIED ON CARDS D.6. EACH CONSTRAINT OF TYPE 5 WILL BE CONSIDERED AS TWO CONSTRAINTS REQUIRING TWO SETS OF CARDS. THE FINAL MAXIMUM ON NQ IS 12.
 - NSD 31-36 THE NUMBER OF SPRING DAMPERS TO BE SUPPLIED ON CARDS D.8 (20 MAXIMUM)
 - NUMATL 37-42 NUMBER OF MATERIALS SPECIFIED FOR ELLIPSOIDS AND CONTACT PANELS.
 - NUTANG 43-48 NUMBER OF TANGENTIAL FORCES SPECIFIED FOR CONTACTS.
 - TPC 49-54 FRACTION OF MOVING CONTACT STEP FOR RAMPING VELOCITY.
 - TMX 55-60 MAXIMUM RAMP DURATION (SEC).

NUMGR 61-66 NUMBER OF G-R TABLES SPECIFIED FOR MATERIALS. IF NPL<>0, NPL SETS OF D.2 ARE REQUIRED.

CARD D.2.A CONTACT PLANE CONTROLS

- J 1-4 THE NUMBER IDENTIFYING THE PLANE.
- NUMTIM 5-8 NUMBER OF TIME POINTS SPECIFIED FOR PANEL. MUST BE POSITIVE.
- NMATRL 9-12 NUMBER OF MATERIAL SPECIFICATION, ZERO IF RIGID.
- LEDGSW 13-16 EDGE SCALING SWITCH: 0 IS NORMAL SCALING, 1 IS NO OFF SIDE SCALING, 2 IS NO DEPTH SCALING AND 3 IS NO SCALING AT ALL.
- NINTRL 17-20 SYSTEM IN WHICH POSITIONS ARE SPECIFIED: 0=INERTIAL, OTHERWISE SEGMENT NO. (NSEG+1 FOR VEHICLE).
- ISOLAT 21-24 0=ISOLATED, 1=FACE OF SOLID.
- PLTTL(I,J), 25-40 A 16 CHARACTER TITLE OF THE JTHI=1,4 PANEL.
NUMTIM SETS OF D.2.B-D.2.D ARE REQUIRED IMMEDIATELY FOLLOWING THE CORRESPONDING D.2.A CARD. EACH SET MUST BE EITHER ONE POINT OR MORE IN ASCENDING ORDER OF TIME WHICH SPANS SIMULATION DURATION. PLACE THE ALPHABETIC CHARACTER CORRESPONDING TO "J" IN COL. 73. PLACE "N" IN COL. 74, WHERE N IS THE INDEX OF THE TIME POINT; IE N=1 TO NUMTIM.

CARDS D.2.B-D.2.D PLANAR PANEL CORNER POSITIONS

CARD D.2.B TIMEFF 1-12 SIMULATED TIME EFFECTIVE (SEC) P1(I),I=1,3 13-24 THE X, Y AND Z COORDINATES OF 25-36 POINT P1 IN SYSTEM SPECIFIED 37-48 ON D.2.A (IN). CARD D.2.C P2(I), I=1, 313-24 THE X, Y AND Z COORDINATES OF 25-36 POINT P2 IN SYSTEM SPECIFIED 37-48 ON D.2.A (IN). CARD D.2.D P3(I), I=1, 313-24 THE X, Y AND Z COORDINATES OF 25-36 POINT P3 IN SYSTEM SPECIFIED

37-48 ON D.2.A (IN).

WHERE P1, P2 AND P3 ARE THREE OF THE CORNERS OF A PARALLELOGRAM SUCH THAT THE EDGE LINE P1P2 DEFINES THE X-AXIS IN THE PLANE SYSTEM. CORNER POINT P3 IS THEN CHOSEN TO DEFINE THE PLANE SUCH THAT THE RESULTANT Z-AXIS (THE NORMAL TO THE PLANE IN A RIGHT-HAND SYSTEM) POINTS TOWARD THE OUTSIDE. THE Y-AXIS IN THE PLANE MUST BE LESS THAN 90 DEGREES FROM LINE P1P3.

D.2.B-D.2.D

IF NBLT<>0, NBLT SETS OF D.3 ARE REQUIRED. PLACE "J" IN COLS 73-74.

CARD D.3.A BELT DESCRIPTION

BLTTTL(I,J), 1-20 A 20 CHARACTER DESCRIPTION OF THE I=1,5 JTH BELT.

CARD D.3.B BELT ANCHOR POSITION

BELT(I,J), I=1,3 1-12 X, Y AND Z COORDINATES, IN VEHICLE 13-24 (OR SEGMENT TO WHICH BELT IS 25-36 ANCHORED) REFERENCE, OF ANCHOR POINT A FOR THE JTH BELT (IN). DELT(I,J) 27-48 X, Y AND Z COORDINATES, IN VEHICLE

BELT(I,J), 37-48 X, Y AND Z COORDINATES, IN VEHICLE I=4,6 49-60 (OR SEGMENT TO WHICH BELT IS 61-72 ANCHORED) REFERENCE, OF ANCHOR POINT B FOR THE JTH BELT (IN).

NOTE: THE PROGRAM MUST PASS A PLANE THROUGH THE THREE POINTS, ANCHOR POINT A, ANCHOR POINT B AND A FIXED POINT ON THE CONTACTED BODY SEGMENT. IF ANCHOR POINTS A AND B COINCIDE, THEY MUST BE SEPARATED SLIGHTLY FOR INPUT SUCH THAT THE DESIRED BELT PLANE WILL BE DEFINED.

- CARD D.3.C BELT CONTACT POINT POSITION
 - BELT(I,J), I=7,9 1-12 X, Y AND Z COORDINATES, IN LOCAL 13-24 BODY SEGMENT REFERENCE (BUT WITH 25-36 RESPECT TO ELLIPSOID CENTER, NOT C.G.), OF THE FIXED CONTACT POINT ON THE BODY SEGMENT FOR THE JTH BELT (IN).
 - BELT(10,J) 37-48 CURRENTLY NOT USED BY THE PROGRAM.
 - BELT(11,J) 49-60 BELT SLACK (IN). THE SLACK, WHEN ADDED TO THE INITIAL GEOMETRIC LENGTH, RESULTS IN THE INITIAL BELT LENGTH (MAY BE INPUTTED AS A NEGATIVE NUMBER AND THE PROGRAM WILL COMPUTE THE SLACK).

D.3.A-D.3.C

IF NBAG<>0, NBAG SETS OF D.4 ARE REQUIRED BY SUBROUTINE AIRBAG1. PLACE "J" IN COLS 73-74.

- CARD D.4.A AIR BAG DESCRIPTION
 - BAGTTL(I,J), 1-20 A 20 CHARACTER DESCRIPTION OF THE I=I,5 JTH AIR BAG
 - NPANEL(J) 21-24 NUMBER OF VEHICLE CONTACT PANELS THAT ARE ALLOWED TO INTERACT WITH THE JTH AIR BAG (MAXIMUM=4).
- CARD D.4.B AIR BAG SIZE AND POSITION
 - AB(I,J), I=1,3 1-12 THE X, Y AND Z SEMIAXES OF THE JTH 13-24 AIR BAG WHEN FULLY INFLATED AND 25-36 UNDEFORMED (IN).
 - BFA(I,J), 37-48 THE X, Y AND Z COORDINATES OF THE I=1,3 49-60 CENTER OF THE AIR BAG CONTACT 61-72 ELLIPSOID WITH RESPECT TO THE AIR BAG CENTER OF GRAVITY (IN).

CARD D.4.C AIR BAG ORIENTATION

YB1-12THE INITIAL ORIENTATION (YAW,PB13-24PITCH AND ROLL) OF THE JTH AIR BAGRB25-36IN THE VEHICLE REFERENCE (DEG).

ZDEP(I,J), 37-48 THE X, Y AND Z COORDINATES OF THE I=1,3 49-60 DEPLOYMENT POINT OF THE JTH AIR 61-72 BAG IN THE LOCAL REFERENCE OF THE 1ST PANEL ON CARD D.4.G (IN).

D.4.A-D.4.C

CARD D.4.D AIR BAG PHYSICAL PROPERTIES NUMBER ONE

- W(NVEH+J) 1-12 MASS OF AIR BAG MEMBRANE AND CONTENTS (LBS-SEC-SEC/IN).
- CYTD(J) 13-24 GAS SUPPLY ACTUATOR FIRING TIME RELATIVE TO THE START OF VEHICLE DECELERATION (SEC).
- CYPA(J) 25-36 ATMOSPHERIC PRESSURE (PSIA).
- CYSP(J) 37-48 INITIAL GAS SUPPLY PRESSURE (PSIG).
- CYTO(J) 49-60 INITIAL GAS SUPPLY TEMPERATURE (DEG R).
- CYVO(J) 61-72 GAS SUPPLY RESERVOIR VOLUME (IN**3).
- CARD D.4.E AIR BAG PHYSICAL PROPERTIES NUMBER TWO

CYCD(J) 1-12 SONIC THROAT DISCHARGE COEFFICIENT (DIMENSIONLESS).

- CYK(J) 13-24 RATIO OF SPECIFIC HEATS OF SUPPLY GAS (DIMENSIONLESS).
- CYR(J) 25-36 SPECIFIC GAS CONSTANT (IN/DEG R).
- CYAT(J) 37-48 SONIC THROAT AREA (IN**2).
- CYPV(J) 49-60 VENT PRESSURE OF THE EXHAUST ORIFICE (PSIG).
- CYCD0(J) 61-72 EXHAUST ORIFICE DISCHARGE COEFFICIENT (DIMENSIONLESS).

CARD D.4.F AIR BAG PHYSICAL PROPERTIES NUMBER THREE

- CYAO(J) 1-12 EXHAUST ORIFICE AREA (IN**2).
- SPRK(J) 13-24 SPRING CONSTANT OF A LINEAR SPRING USED TO SIMULATE ATTACHMENT OF THE BAG AT THE DEPLOYMENT POINT IN THE VEHICLE (LB/IN).
- VSCS(J) 25-36 COEFFICIENT OF SLIDING FRICTION OF THE AIR BAG (DIMENSIONLESS)
- CK(J) 37-48 PARAMETER USED TO STABILIZE AIR BAG NUMERICAL INTEGRATION (1/SEC). SUGGESTED VALUE = 250.
- CMASS(J) 49-60 MULTIPLIER TO INCREASE OR DECREASE THE MASS OF THE AIR BAG TO ARTIFICIALLY DAMPEN THE INTEGRATED AIR BAG MOTION.
- CONVD 61-72 TEMPERATURE UNITS IN TERMS OF DEGREES RANKINE. (J=1 ONLY)

.

• ·

NPANEL(J) SETS OF THE FOLLOWING TWO CARDS ARE REQUIRED TO DEFINE THE ELLIPSOIDS USED TO APPROXIMATE THE CONTACT PANELS FOR THE JTH AIR BAG. THE FIRST PANEL IS THE REACTION PANEL. PLACE AIR BAG "J" IN COL. 73 AND PANEL "K" IN COL. 74.

CARD D.4.G AIR BAG PANEL SIZE AND RELATIVE LOCATION

1-12 X, Y AND Z SEMIAXES FOR THE KTH B(I,K,J),13-24 PANEL FOR THE JTH AIR BAG (IN). I = 1, 325-36 37-48 THE LOCATION OF THE CENTER OF THE BFB(I,K,J),49-60 PANEL ELLIPSOID WITH RESPECT TO I = 1, 361-72 ITS CENTER OF GRAVITY (IN). AIR BAG PANEL ORIENTATION CARD D.4.H ZR(I,K,J),1-12 X, Y AND Z COORDINATES IN VEHICLE 13-24 REFERENCE OF THE CENTER OF GRAVITY I = 1, 325-36 OF THE KTH PANEL OF THE JTH AIR

BAG (IN). YP 37-48 ANGULAR ORIENTATION, YAW, PITCH PP 49-60 AND ROLL (DEG) OF THE KTH PANEL RP 61-72 WITH RESPECT TO THE VEHICLE.

61-72 WITH RESP.

IF NELP<>0, NELP D.5 CARDS ARE REQUIRED.

NOTE: NELP IS THE NUMBER OF CONTACT ELLIPSOIDS. THESE DATA CARDS MUST BE IN ASCENDING ORDER ON NELSEG.

CARD D.5 BODY SEGMENT ELLIPSOID SPECIFICATIONS

M 1-3 CONTACT ELLIPSOID NUMBER.

- NELSEG 4-6 NUMBER OF BODY SEGMENT TO WHICH THIS ELLIPSOID IS ATTACHED (MAY ALSO BE NSEG+1 FOR VEHICLE OR NSEG+NBAG+2 FOR GROUND).
- NMATRL 7-9 IDENTIFICATION NUMBER OF MATERIAL SPECIFICATION, ZERO IF RIGID.
- ELPTTL(I,M), 10-25 A 16 CHARACTER TITLE OF THE MTHI=1,4 ELLIPSOID.
- P1(I),I=1,3 26-30 THE X, Y AND Z SEMIAXES OF THE 31-35 CONTACT ELLIPSOID (IN). 36-40
- P2(I),I=1,3 41-45 THE X, Y AND Z COORDINATES OF THE 46-50 ELLIPSOID OFFSET FROM THE SEGMENT 51-55 CENTER OF GRAVITY (IN).
- P3(I),I=1,3 56-60 THE YAW, PITCH AND ROLL (DEGREES) 61-65 OF THE CONTACT ELLIPSOID FROM THE 66-70 PRINCIPAL AXIS OF THE SEGMENT.

IF NQ<>0, NQ D.6 CARDS ARE REQUIRED. PLACE "J" IN COLS. 73-74.

CARDS D.6.A-D.6.B

KQTYPE(J) 1-6 TYPE NO. OF THE JTH CONSTRAINT

- 1: POINT SPECIFIED BY RK1 ON SEGMENT KQ1 WILL BE CONSTRAINED TO BE THE SAME AS THE POINT SPECIFIED BY RK2 ON SEGMENT KQ2.
- 2: POINT SPECIFIED BY RK1 ON SEGMENT KQ1 WILL BE CONSTRAINED TO REMAIN AT AN EQUAL DISTANCE (D>0) FROM THE POINT SPECIFIED BY RK2 ON SEGMENT KQ2.
- 5: TENSION ELEMENT CONSTRAINT CONNECTING POINT RK1 ON SEGMENT KQ1 TO POINT RK2 ON SEGMENT KQ2 (REQUIRES TWO CARDS WITH KQTYPE, KQ1 AND KQ2 THE SAME ON BOTH).
- KQ1(J) 7-12 SEGMENT IDENTIFICATION NUMBER OF THE 1ST SPECIFIED POINT.
- KQ2(J) 13-18 SEGMENT IDENTIFICATION NUMBER OF THE 2ND SPECIFIED POINT.
- RK1(I,J), 19-24 COORDINATES OF SPECIFIED POINT ON I=1,3 25-30 SEGMENT KQ1 (IN). IF KQTYPE=5, THE 31-36 SECOND CARD (D.6.B) WILL CONTAIN THE EFFECTIVE MASSES MA, MB AND MAB (LB.SEC**2/IN) INSTEAD OF RK1.
- RK2(I,J), I=1,3 37-42 COORDINATES OF SPECIFIED POINT ON 43-48 THE SECOND SEGMENT KQ2 (IN). IF 49-54 KQTYPE=5, THE SECOND CARD WILL CONTAIN THE SPRING CONSTANT K (LB/IN), THE VISCOUS DAMPING CONSTANT D (LB SEC/IN) AND THE REFERENCE LENGTH L (IN) IN PLACE OF RK2. NOTE: IF KQTYPE=1 AND KQ2 IS THE NUMBER FOR THE VEHICLE, THEN SUBROUTINE EQUILB WILL MODIFY THESE VALUES OF RK2 SUCH THAT THEY WILL BE EQUIVALENT TO RK1 IN INERTIAL REFERENCE FOR TIME ZERO. (SEE DESCRIPTION UNDER CARDS G.6.)

CARD D.7 IS ALWAYS REQUIRED. SUPPLY BLANK CARD FOR NORMAL 3D MOTION.

- CARD D.7 RUN SYMMETRY OPTION SPECIFICATION
 - NSYM(J), 1-4 CONTROLS SYMMETRY OPTION OF BODY J=1,NSEG 5-8 SEGMENTS AS FOLLOWS : ETC.
 - NSYM(J)=0: NORMAL THREE DIMENSIONAL MOTION FOR BODY SEGMENT J.
 - NSYM(J)=J: MOTION OF BODY SEGMENT J WILL BE RESTRICTED TO THE X-Y PLANE WITH NO LATERAL MOTION, HENCE IT WILL BE TWO DIMENSIONAL.
 - NSYM(J)=K: BODY SEGMENTS J AND K ARE TO REMAIN SYMMETRIC WITH NO LATERAL MOTION. THE MOTION OF EACH WILL BE REPLACED WITH THEIR AVERAGE AND RESTRICTED TO THE LOCAL X-Y PLANE. NSYM(K) MUST EQUAL J.
 - NSYM(J)=-K: BODY SEGMENTS J AND K ARE TO REMAIN MIRROR SYMMETRICAL WITH RESPECT TO THE X-Z PLANE. EQUAL BUT OPPOSITE LATERAL MOTION IS PERMITTED. NSYM(K) MUST EQUAL -J.

NOTE: IN THE ABOVE SYMMETRY OPTIONS, THE USER MUST TAKE EXTREME CARE THAT ALL INPUT WILL ALLOW THE SYMMETRY TO EXIST. IF NSD<>0, NSD D.8 CARDS ARE REQUIRED.

CARDS D.8	SPRIN	G DAMPER SPECIFICATIONS
MSDM(J) MSDN(J)	1-3 4-6	SEGMENT IDENTIFICATION NUMBERS (M AND N) TO WHICH THE JTH SPRING DAMPER IS ATTACHED.
APSDM(I,J), I=1,3 APSDN(I,J), I=1,3	7-12 13-18 19-24 25-30 31-36 37-42	COORDINATES OF ATTACHMENT POINTS IN LOCAL SEGMENT REFERENCE ON SEGMENTS M AND N FOR THE JTH SPRING DAMPER (IN).
ASD(I,J),I=1,5 I=1:DO (IN) I=2:A1 (LB/IN) I=3:A2 (LB/IN**2) I=4:B1 (LB SEC/IN) I=5:B2 (LB SEC**2 /IN**2)	43-48 47-54 55-60 61-66 67-72	COEFFICIENTS OF QUADRATIC FUNCTIONS TO COMPUTE THE SPRING FORCE (FS) AND THE VISCOUS FORCE (FD) FOR THE JTH SPRING DAMPER USING THE RELATIONSHIPS: FS=(D-D0)*(A1 + A2* D0-D) FD=DV*(B1 + B2* DV) WHERE D AND DV ARE THE DISTANCE AND ITS TIME DERIVATIVE BETWEEN THE POINTS APSDM AND APSDN. IF A1<0. AND (D-D0)<0., PROGRAM WILL SET FS=0., I.E. THIS WILL ACT AS A TENSION ELEMENT.

38

.

IF NUMATL<>0, NUMATL D.9.A CARDS ARE REQUIRED.

CARD D.9.A NORMAL FORCE MATERIAL SPECIFICATION

NMATRL	1-4	IDENTIFICATION	NUMBER	OF	MATERIAL
		SPECIFICATION.			

MATNAM 5-20 16 CHARACTER MATERIAL NAME.

MSTW 21-24 LOADING CURVE SWITCH: POLYNOMIAL INDEX IF NEGATIVE, BIVARIATE TABLE INDEX IF POSITIVE. ZERO MEANS ZERO PROPERTIES.

- NGRTAB 25-28 NUMBER OF G-R TABLE. ZERO MEANS USE DEFAULT VALUES OF G=0 AND R=1. IF NGRTAB=-1, LOADING CURVE MSTW WILL BE USED FOR UNLOADING ALSO.
- IFRIK 29-32 FRICTION CLASS. ZERO MEANS NO FRICTION.
- DC 33-40 DEFLECTION AT YIELD POINT, WHERE PLASTIC BEHAVIOR BEGINS, IF POSITIVE. IF NEGATIVE, ALTERNATIVE RELOADING WILL BE USED. IF ZERO, BEHAVIOR WILL BE ELASTIC.
- DE 41-48 DEFLECTION AT WHICH BREAKDOWN BEGINS. ZERO MEANS NO BREAKDOWN.
- DF 49-56 DEFLECTION AT WHICH BREAKDOWN IS COMPLETED. DF MUST BE GREATER THAN DE.
- FSAT 57-64 SATURATION FORCE. ZERO MEANS NOT OPERATIONAL.
- DM 65-72 SLOPE FOR UNLOADING FROM SATURATION, IF POSITIVE. IF NEGATIVE, ABSOLUTE VALUE OF DM WILL BE USED FOR G INSTEAD.

IF NUTANG<>0, NUTANG D.9.B CARDS ARE REQUIRED.

CARD D.9.B TANGENTIAL FORCE SPECIFICATION

IFRIKA 1-5 FRICTI(ON CLASS ONE.
--------------------	---------------

IFRIKB 6-10 FRICTION CLASS TWO.

FMU0 11-18 ZEROTH ORDER FRICTION COEFFICIENT.

FMU1 19-26 FIRST ORDER FRICTION COEFFICIENT.

FMU2 27-34 SECOND ORDER FRICTION COEFFICIENT.

A1 35-42 FIRST ORDER SNAP BACK COEFFICIENT.

A2 43-50 SECOND ORDER SNAP BACK COEFFICIENT

FTMAX 51-58 MAXIMUM TANGENTIAL FORCE.

TVON 59-66 VELOCITY MAGNITUDE FOR FULL USE OF FRICTION TERMS.

NOTE: TANGENTIAL FORCE IS COMPUTED BY THIS EQUATION:

FT=MIN(MIN(DELBARDOT/TVON, 1.)(FMU0+FMU1*DEL+FMU2*DEL**2)*FN +(A1*DELBAR+A2*DELBAR**2),FTMAX)

.

40

E. SPECIFICATION OF MATERIAL PROPERTY FUNCTIONS

THESE FUNCTIONS ARE REFERRED TO BY NUMBER IN THE NF ARRAYS REQUIRED ON CARDS F.2.B AND F.4.B. THEY ARE USED TO DEFINE THE FORCE DEFLECTION, INERTIAL SPIKE, R (ENERGY ABSORPTION) FACTOR, G (DEFLECTION) FACTOR AND FRICTION COEFFICENT FUNCTIONS.

EACH FUNCTION MAY BE SUBDIVIDED, IF DESIRED, INTO TWO SEPARATE PARTS, F1 AND F2, WHERE

F1(D) IS DEFINED FOR 0 .LE. DO .LE. D .LE. D1

F2(D) IS DEFINED FOR |D1| .LE. D .LE. |D2|.

IN ADDITION, EACH PART OF EACH FUNCTION MAY BE DEFINED IN EITHER OF THREE FUNCTIONAL FORMS: CONSTANT VALUE, TABULAR DATA OR A FIFTH DEGREE POLYNOMIAL. THE EXISTENCE AND FORM OF EACH FUNCTION PART IS INDICATED BY THE SUPPLIED VALUES OF D0, D1, D2 AS FOLLOWS:

F 1	F2		DO			D1			D2	
CONSTANT	-		0			0		F1	= D2	
TABULAR	-	DO	.GE.	0	D1	.LT.	0		0	
POLYNOMIAL	-	D0	.GE.	0	D1	.GT.	0		0	
TABULAR	POLYNOMIAL	D0	.GE.	0	D1	.LT.	0	D2	.GT.	0
POLYNOMIAL	TABULAR	DO	.GE.	0	D1	.GT.	0	D2	.LT.	0
POLYNOMIAL	POLYNOMIAL	DO	.GE.	0	D1	.GT.	0	D2	.GT.	0

THE CONSTANT FORM IS APPLICABLE ONLY TO F1 BECAUSE THE ROUTINES ASSUME IF D .GT. |D2| THEN F(D) = F(|D2|) FOR D2 .NE. 0 OR

IF D.GT. |D1| THEN F(D) = F(|D1|) FOR D2 = 0. THE CASE OF BOTH F1 AND F2 BEING TABULAR IS UNNECESSARY. A MAXIMUM OF 50 FUNCTIONS MAY BE SUPPLIED TO THE PROGRAM. EACH FUNCTION WILL REQUIRE THE FOLLOWING INPUT. CARD E.1 FUNCTION IDENIFICATION

I 1-4 THE FUNCTION IDENTIFYING NUMBER. THESE NUMBERS NEED NOT BE SUPPLIED IN NUMERIC ORDER. IF THE SAME NUMBER IS USED MORE THAN ONCE, A WARNING WILL BE PRINTED AND THE LAST ONE SUPPLIED WILL BE USED. THE END OF THE FUNCTION INPUT IS INDICATED BY SUPPLYING A SINGLE CARD WITH I>50.

KTITLE(I),9-28A 20CHARACTER ALPHANUMERIC TITLEI=1,5DESCRIBING THE FUNCTION.

CARD E.2 FUNCTION CONTROLS (PLACE FUNCTION I.D. IN COLS. 73-74.)

D0 1-12 THE LOWER ABSCISSA VALUE OF THE FIRST PART OF THE FUNCTION, F1. D0 MUST BE NON-NEGATIVE (UNITS ARE IN. OR RAD. EXCEPT FOR THE BELT STRESS-STRAIN FUNCTIONS WHERE THEY ARE IN/IN).

- D1 13-24 THE MAGNITUDE OF D1 IS THE UPPER ABSCISSA VALUE OF F1 AND THE LOWER ABSCISSA VALUE OF F2, IF ANY. D1<0 INDICATES F1 IS TABULAR, D1>0 INDICATES F1 IS A POLYNOMIAL, AND D1=0 INDICATES F1=D2, A CONSTANT.
- D2 25-36 IF D1=0, D2 IS THE CONSTANT VALUE OF F1. OTHERWISE, THE MAGNITUDE OF D2 IS THE UPPER ABSCISSA VALUE OF F2. IF D2=0, F2 IS NOT DEFINED; IF D2 IS NEGATIVE, F2 IS TABULAR; IF D2 IS POSITIVE, F2 IS A POLYNOMIAL.
 - 37-48 IF THE FUNCTION IS TO BE USED FOR AN INERTIAL SPIKE, D3 REPRESENTS THE ABSCISSA VALUE FOR WHICH THE INERTIAL SPIKE IS TO BE IGNORED IF UNLOADING OCCURS AFTER DEFLECTION EXCEEDS D3. IF THE FUNCTION IS TO BE USED FOR A COEFFICIENT OF FRICTION, D3=(1+U)/2 WHERE U IS THE COEFFICIENT OF RESTITUTION FOR THE IMPULSE OPTION (-1<U<+1 OR 0<D3<1). A VALUE OF D3=0 MEANS THAT THE IMPULSE OPTION WILL NOT BE USED FOR THOSE CONTACTS USING THIS FUNCTION. WHEN THE GLOBALGRAPHIC OPTION IS USED, A FRICTION FUNCTION IS DEFINED AND THE VALUE OF D3 IS USED TO SPECIFY THE IMPULSE. (SEE CARD B.5.)
 - 49-60 IF USED AS THE FRICTION FUNCTION FOR A ROLL-SLIDE CONSTRAINT, D4 IS THE COEFFICIENT OF STATIC FRICTION FOR THE ROLL CONSTRAINT.
- D4

D3

THE DEFINITIONS OF F1 AND F2, IF THEY EXIST, ARE NOW SUPPLIED ON CARD E.3 FOR THE FIFTH DEGREE POLYNOMIAL DEFINITION OR ON CARDS E.4 FOR THE TABULAR DEFINITION.

CARD E.3 POLYNOMIAL FUNCTION SPECIFICATION (PLACE FUNCTION I.D. IN COLS. 73-74.)

A01-12COEFFICIENTS OF FIFTH-DEGREEA113-24POLYNOMIAL:A225-36F=A0+ A1*X+ A2*X**2A337-48+ A3*X**3+ A4*X**4+ A5*X**5A449-60(UNITS ARE DEPENDENT ON USE OFA561-72FUNCTION.)

CARD E.4.A TABULAR FUNCTION CONTROL

NPI 1-6 THE NUMBER OF DATA POINTS TO BE SUPPLIED TO IDENTIFY THE FUNCTION IF IT IS DEFINED IN TABULAR FORM.

CARDS E.4.B TABULAR FUNCTION SPECIFICATION (PLACE FUNCTION I.D. IN COLS. 73-74. ONLY THE LAST CARD MAY HAVE LESS THAN THREE POINTS.)

(X(I),Y(I), I=1.NPI)	1-12 13-24	THE ABSCISSA AND ORDINATE VALUES OF THE DATA POINTS USED TO DEFINE
- ,	25-36 37-48	FORM OF THE FUNCTION. SUPPLY THREE POINTS PER CARD. USE AS
	49-60 61-72	MANY CARDS AS REQUIRED. (UNITS ARE DEPENDENT ON USE OF FUNCTION.)

ONE SET OF E.5.A-E.5.C CARDS REQUIRED FOR EVERY BIVARIATE POLYNOMIAL USED IN D.9.A CARDS. LAST SET MUST BE FOLLOWED BY A BLANK CARD. MUST BE IN ORDER OF ASCENDING NPOLY.

CARD E.5.A-E.5.C BIVARIATE POLYNOMIAL SPECIFICATION

NPOLY COEFM(I,J), I=1,9			1-3	1-3 NUMBER OF POLYNOMIAL SPECIFICATI							N
			5-67	5-67 COEFFICIENTS OF TERMS OF FORM: AKL*DEL**K*DELDOT**L							
	I=	1	2	3	4	5	6	7	8	9	
	COL.	5- 11	12- 18	19- 25	26-	33- 39	40- 46	47-	54-	61-	
CARD	J		10	20	02	09	10	55	00	0,	
E.5.A	1	A10	A20	A30	A40	A50	A60	A11	A21	A31	
E.5.B	2	A41	A51	A12	A22	A32	A42	A13	A23	A33	
E.5.C	3	A14	A24	A15	A01	A02	A03	A04	A05	90A	

ONE E.5.D CARD REQUIRED FOR EVERY TABLE POINT FOR EVERY TABLE USED IN D.9.A CARDS. ALL POINTS FOR EACH TABLE MUST BE CONTIGUOUS. TABLE SPECIFICATIONS MUST BE IN ORDER OF ASCENDING NTABL. LAST TABLE MUST BE FOLLOWED BY A BLANK CARD. THE LAST THREE QUANTITIES NECESSARY FOR FIRST POINT OF EACH TABLE ONLY. NOTE THAT EACH BIVARIATE TABLE MUST HAVE A MINIMUM OF FOUR DISTINCT POINTS, WHILE EACH UNIVARIATE TABLE MUST HAVE A MINIMUM OF TWO DISTINCT POINTS.

- CARD E.5.D TABLE SPECIFICATION
 - NTABL 1-3 NUMBER OF TABLE.
 - BIVTAB(I,J), 5-14 DEFLECTION, DEFLECTION RATE AND I=1,3 15-24 FORCE POINT FOR TABLE OF RANDOMLY 25-34 SCATTERED POINTS. IF TABLE CONSISTS OF POINTS ON A LATTICE (REGULAR OR IRREGULAR SPACING), DEFLECTION SHOULD BE SET NEGATIVE HERE AND THE RATE AND FORCE ENTRIES WILL BE IGNORED.
 - XLATIC 35-44 DEFLECTION INCREMENT FOR BOX, IF (NBIVX) RANDOM TABLE. IF LATTICE, CONTAINS NUMBER OF DEFLECTION POINT VALUES TO BE ENTERED ON E.5.E CARDS. IF TABLE FORCE VALUES ARE NOT DEPENDENT ON DEFLECTION, THIS ENTRY MUST BE SET TO ZERO.
 - YLATIC 45-54 DEFLECTION RATE INCREMENT FOR BOX, (NBIVY) IF RANDOM TABLE. IF LATTICE, CONTAINS NUMBER OF DEFLECTION RATE POINT VALUES TO BE ENTERED ON E.5.F CARDS. IF TABLE FORCE VALUES ARE NOT DEPENDENT ON DEFLECTION RATE, THIS ENTRY MUST BE SET TO ZERO.
- INMETA 55-56 0 FOR LINEAR INTERPOLATION, 1 FOR LOG-LINEAR INTERPOLATION. (MINIMUM FORCE OFFSET TO 1.)

ONE E.5.E CARD IS REQUIRED FOR EVERY LATTICE TABLE, FOLLOWING ITS E.5.D CARD, UNLESS NBIVX=0, IN WHICH CASE THE E.5.E CARD IS OMITTED. (PLACE NTABL IN COLS. 73-74. IF NBIVX>9, CONTINUE ON ANOTHER E.5.E CARD.)

- CARD E.5.E LATTICE HORIZONTAL GRID VALUES
 - XLAT(K), 1-8 DEFLECTION POINT VALUES, IN K=1,NBIVX ETC. ASCENDING ORDER.

NBIVY SETS OF E.5.F CARDS ARE REQUIRED FOLLOWING E.5.E CARD. IF NBIVY=0, ONE SET IS STILL NEEDED. (I=1,NBIVY. PLACE NTABL IN COLS. 73-74.)

- CARD E.5.F LATTICE VERTICAL GRID AND FORCE VALUES
 - I 1-8 DEFLECTION RATE POINT INDEX. (WITH DECIMAL POINT)
 - YLAT(I) 9-16 DEFLECTION RATE POINT VALUE. (MUST BE IN ASCENDING ORDER ALSO.) IF NBIVY=0, THIS ENTRY WILL BE IGNORED.
 - FLAT(K,I), 17-24 FORCE VALUES FOR THIS DEFLECTION

.

K=1,NBIVX 25-32 RATE VALUE AT THE DEFLECTION ETC. VALUES GIVEN ON CARD(S) E.5.E. IF NBIVX>7, THESE FORCE VALUES CONTINUE ON THE NEXT CARD

BEGINNING IN THE FIRST FIELD.

.

IF NUMGR=0, NO E.6 CARDS SHOULD BE USED.

ONE E.6 CARD REQUIRED FOR EVERY TABLE POINT FOR EVERY G-R TABLE USED IN D.9.A CARDS. ALL POINTS FOR EACH TABLE MUST BE CONTIGUOUS. TABLE SPECIFICATIONS MUST BE IN ORDER OF ASCENDING NTABL. LAST TABLE MUST BE FOLLOWED BY A BLANK CARD. IT IS THE RESPONSIBILITY OF THE USER TO SEE THAT THE G AND R RATIO VALUES ARE COMPATIBLE.

CARD E.6 G-R TABLE SPECIFICATION

NTABL 1-3 NUMBER OF G-R TABLE.

GRTAB(I,J), 5-14 DEFLECTION VALUE. I=1,3 15-24 G RATIO VALUE. 25-34 R RATIO VALUE.

NOTE: IF R IS NEGATIVE, THE VALUE OF G WILL BE USED AS AN UNLOADING SLOPE INSTEAD. IF R IS ZERO, THE VALUE OF G WILL BE USED FOR LINEAR UNLOADING BASED ON THE G RATIO.

F. ALLOWED CONTACT SPECIFICATIONS

IF NELP<>0, NELP SETS OF F.1.A-F.1.B ARE REQUIRED.

- CARD F.1.A ALLOWED ELLIPSOID-PLANE LINE AND ELLIPSOID-ELLIPSOID CONTACT CONTROLS
 - MNELPC 1-4 FOR ELLIPSOID MNELPC = 1 TO NELP, MNELEL 5-8 MNELEL IS THE SUM OF THE NUMBER OF PLANES FOR WHICH SEGMENT-PLANE CONTACT IS ALLOWED AND THE NUMBER OF ELLIPSOIDS FOR WHICH SEGMENT-SEGMENT CONTACT IS ALLOWED FROM CARD D.1. THE VALUE OF MNELEL MUST BE ZERO OR POSITIVE.

MNELEL F.1.B CARDS ARE REQUIRED FOLLOWING F.1.A CARD.

- CARD F.1.B PLANES AND ELLIPSOIDS ALLOWED CONTACTS
 - NJ 1-4 NUMBER OF ELLIPSOID FOR WHICH CONTACTS ARE BEING SPECIFIED. NJ MUST EQUAL MNELPC ABOVE. THERE MUST BE MNELEL CARDS WITH THIS SAME NJ. IF MNELEL=0, NO CARD WITH NJ=MNELPC SHOULD BE PRESENT. IF NJ<0, ELLIPSOID |NEP| IS INSIDE ELLIPSOID |NJ|.
 - NEP 5-8 THE PLANE NUMBER OR ELLIPSOID NUMBER FOR WHICH CONTACT IS ALLOWED. IF POSITIVE, INTERPRETED AS PLANE; IF NEGATIVE, INTERPRETED AS ELLIPSOID. ALLOWED ELLIPSOID-ELLIPSOID CONTACTS MUST BE SPECIFIED SO THAT |NEP|>NJ.

IF NBLT<>0, F.2 IS REQUIRED.

CARD F.2.A ALLOWED BELT-BODY SEGMENT CONTACT CONTROLS

MNBLT(J), 1-4 FOR BELT J, THE NUMBER OF SEGMENTS J=1,NBLT 5-8 FOR WHICH SEGMENT-BELT INTERACTION 9-12 IS ALLOWED. NBLT IS THE NUMBER OF ETC. BELTS FROM CARD D.1. EACH MNBLT 29-32 MAY HAVE A VALUE OF 0 OR 1 ONLY.

FOR EACH BELT J, MNBLT(J) CARDS OF THE FOLLOWING MUST BE SUPPLIED.

- CARDS F.2.B ALLOWED BELT-BODY SEGMENT CONTACT SPECIFICATION
 - NJ 1-4 THE BELT NUMBER TO BE CONTACTED, MUST CORRESPOND TO J ABOVE. THERE MUST BE MNBLT(J) CARDS WITH THE SAME NJ. IF MNBLT(J)=0, NO CARD WITH NJ=J SHOULD BE PRESENT.
 - NS(1) 5-8 THE SEGMENT NUMBER TO WHICH BELT NJ IS ATTACHED. IF VEHICLE, SUPPLY NSEG+1, IF GROUND, SUPPLY NSEG+NBAG+2.
 - NS(2) 9-12 THE SEGMENT NUMBER (DETERMINED BY THE CARD NUMBER I UNDER CARD B.2.A) FOR WHICH INTERACTION WITH THE NJTH BELT IS ALLOWED.
 - NS(3) 13-16 THE NUMBER OF THE CONTACT ELLIPSOID ASSOCIATED WITH THE SEGMENT NS(2).
 - NF(1) 17-20 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE FORCE-DEFLECTION FUNCTION FOR THIS CONTACT. THE ABSCISSA FOR THIS FUNCTION SHOULD BE STRAIN (IN/IN).
 - NF(2) 21-24 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE INERTIAL SPIKE FUNCTION FOR THIS CONTACT. IF NF(2)=0, NO INERTIAL SPIKE EXISTS.

- NF(3) 25-28 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE R (ENERGY-ABSORPTION) FACTOR FUNCTION. IF NF(3)=0, A DEFAULT VALUE OF R=1 IS ASSUMED.
- NF(4) 29-32 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE G (DEFLECTION) FACTOR FUNCTION. IF NF(4)=0, A DEFAULT VALUE OF G=0 IS ASSUMED.
- NF(5) 33-36 IF NON-ZERO, FULL BELT FRICTION IS ASSUMED, I.E., FORCES ARE COMPUTED FOR EACH HALF OF THE BELT SEPARATELY. IF ZERO, ZERO BELT FRICTION IS ASSUMED, I.E., BELT TENSION IS THE SAME AT BOTH BELT ANCHOR POINTS.

IF NJNT>0, F.4.A IS REQUIRED. SUPPLY IGLOB=1 FOR GLOBALGRAPHIC OPTION, OTHERWISE SUPPLY 0 OR BLANK

CARD F.4.A GLOBALGRAPHIC JOINT CONTROLS

(18 VALUES ON FIRST CARD. IF NJNT>18, USE TWO CARDS. PLACE "J" FOR FIRST VALUE ON CARD IN COLS. 73-74.)

IGLOB(J),	1-4	FOR EACH JOINT J, SUPPLY 1 FOR
J=1,NJNT	5-8	IGLOB(J) IF IPIN(J) IS +3 OR -3
	ETC.	ON CARDS B.3.A-B.3.B, OTHERWISE
	69-72	SUPPLY ZERO OR BLANK. ONE CARD
		F.4.B MUST BE SUPPLIED BELOW FOR
		EACH J FOR WHICH $IGLOB(J)=1$.

CARDS F.4.B GLOBALGRAPHIC JOINT SPECIFICATION

- NJ 1-4 THE IDENTIFICATION NUMBER FOR A GLOBALGRAPHIC JOINT, MUST CORRESPOND TO J ABOVE AND CARDS MUST BE SUPPLIED IN ASCENDING ORDER ON NJ.
- NS(I), I=1, 3 5-16 CURRENTLY NOT USED BY PROGRAM.

- NF(1) 17-20 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE TORQUE-DEFLECTION FOR THIS GLOBALGRAPHIC JOINT. THE ORDINATE FOR THIS FUNCTION SHOULD BE TORQUE (IN-LB) AND THE ABSCISSA IS THE ANGULAR DEFLECTION (RADIANS) INTO THE STOP.
- NF(2) 21-24 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE HERRON FORMULAS FOR T (JOINT STOP ANGLE IN RADIANS) AND ITS DERIVATIVE TP WITH RESPECT TO PHI BOTH AS FUNCTIONS OF PHI (THE JOINT ANGLE FROM THE REFERENCE AXIS IN RADIANS). NORMALLY THEY WILL BE COMPUTED BY

T = P1 + SP*P2TP = P1' + CP*P2 + SP*P2'

WHERE P1,P2, ARE THE 5TH DEGREE POLYNOMIAL EVALUATIONS OF COS(PHI) USING THE TWO POLYNOMIALS F1 AND F2 OBTAINED BY SETTING BOTH D1,D2>0 ON CARD E.2; P1',P2' ARE THEIR DERIVATIVES WITH RESPECT TO PHI; AND CP,SP ARE COS(PHI) AND SIN(PHI). IF D1,D2 ARE NOT BOTH POSITIVE, T AND TP WILL BE EVALUATED AS FUNCTIONS OF PHI IN RADIANS (0<PHI<2*PI) AS SPECIFIED ON CARDS E.1-E.4 FOR FUNCTION NF(2).

- NF(3) 25-28 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE R (ENERGY-ABSORPTION) FACTOR FUNCTION. IF NF(3)=0, A DEFAULT VALUE OF R=1 IS ASSUMED.
- NF(4) 29-32 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE G (DEFLECTION) FACTOR FUNCTION. IF NF(4)=0, A DEFAULT VALUE OF G=0 IS ASSUMED.
- NF(5) 33-36 THE FUNCTION NUMBER FROM CARD E.1 TO DEFINE THE FRICTION COEFFICIENT FUNCTION.

52

IF NBAG<>0, NBAG CARDS OF THE FOLLOWING MUST BE SUPPLIED. SINCE THE AIR BAG ROUTINES DO NOT USE THE FORCE-DEFLECTION FUNCTIONS, THIS INPUT HAS DIFFERENT FORMATS THAN THE ABOVE ALLOWED CONTACTS.

CARDS F.5.A AIR BAG ALLOWABLE CONTACT SPECIFICATIONS

- K 1-4 THE AIR BAG NUMBER CORRESPONDING TO INDEX J UNDER CARDS D.4 ABOVE. K MUST BE IN NUMERIC ORDER K=1 TO NBAG, WHERE NBAG IS THE NUMBER OF AIR BAGS DEFINED ON CARD D.1.
- NK 5-8 THE NUMBER OF SEGMENTS ALLOWED TO CONTACT THE KTH AIR BAG. THE MAXIMUM VALUE IS 10. IF NK=0, THE REMAINDER OF THE CARD IS BLANK.

MBAG(2,I,K),	9-10	THE SEGMENT NUMBERS (DETERMINED
MBAG(3, I, K),	11-12	BY THE CARD I OF B.2 CARDS) EACH
I = 1, NK	ETC.	FOLLOWED BY THE NUMBER OF THE
	47-48	ASSOCIATED CONTACT ELLIPSOID FOR
		WHICH CONTACT FORCES WITH THE KTH
		AIR BAG WILL BY COMPUTED. UP TO 10
		SETS OF SEGMENT AND ELLIPSOID
		SPECIFICATIONS.

G. INITIAL CONDITIONS

•

CARD G.1	PLOT	AND INITIAL CONDITION CONTROLS.
ZPLT(I), I=1,3	1-10 11-20 21-30	THE X, Y AND Z PLOT COORDINATES OF THE ORIGIN OF THE VEHICLE REFERENCE SYSTEM. 0 < X < 61 0 < Y < 61 0 < Z < 121
I 1 .	31-34	A VALUE OF 15 IS REQUIRED FOR AUTOMATIC EQUILIBRIUM COMPUTATION AND PROCESSING OF CARDS G.4, G.5 AND G.6
J1,I2,J2	35-38 39-42 43-46	NOT USED BY CURRENT PROGRAM.
13	47-50	IF ZERO, SEGMENT AND ANGULAR VELOCITIES ARE NOT SUPPLIED ON THE FOLLOWING CARDS BUT ARE SET EQUAL TO THE INITIAL VEHICLE VELOCITY. IF 13<>0, SEGLV AND WMGDEG MUST BE SUPPLIED.

54

ONE G.2 CARD MUST BE SUPPLIED FOR EACH REFERENCE SEGMENT (I.E., SEGMENT NO. 1 AND EACH SEGMENT J+1 FOR WHICH JNT(J)=0 ON CARD B-3) IN ASCENDING SEGMENT NUMBER SEQUENCE. PLACE "J" IN COLS. 73-74.

CARDS G.2 POSITIONS AND VELOCITIES OF BODY SEGMENTS

SEGLP(I,J),	1-10	THE INITIAL X, Y AND Z COORDINATES
I=1,3	11-20	OF THE JTH REFERENCE SEGMENT
	21-30	CENTER OF GRAVITY IN INERTIAL
		REFERENCE (IN).

SEGLV(I,J), 31-40 THE INITIAL X, Y AND Z COMPONENTS I=1,3 41-50 OF VELOCITY OF THE JTH REFERENCE 51-60 SEGMENT IN INERTIAL REFERENCE (IN/SEC). THESE FIELDS MAY BE LEFT BLANK IF I3=0 ON CARD G.1 IN WHICH CASE THE INITIAL VELOCITY OF THE VEHICLE WILL BE USED.

CARDS G.3 BODY SEGMENT ORIENTATION AND ANGULAR VELOCITIES (NSEG CARDS, PLACE "J" IN COLS. 73-74.)

YPR(I,J), 1-10 THE INITIAL YAW, PITCH AND ROLL I=1,3 11-20 ANGLES OF THE JTH BODY SEGMENT 21-30 (DEGREES).

NOTE: FOR THE PURPOSE OF DEFINING INITIAL BODY SEGMENT ORIENTATION ONLY, ROTATIONS MUST BE TAKEN IN THE ORDER ROLL-PITCH-YAW. (I.E., ROLL ABOUT X, PITCH ABOUT RESULTING Y, THEN YAW ABOUT FINAL Z.)

WMGDEG(I,J), 31-40 THE INITIAL COMPONENTS OF ANGULAR I=1,3 41-50 VELOCITY ABOUT THE LOCAL X, Y AND 51-60 Z AXES OF THE JTH BODY SEGMENT (DEG/SEC). IF I3=0 ON CARD G.1, DO NOT ENTER VALUES FOR WMGDEG. CARDS G.4, G.5 AND G.6 ARE REQUIRED IF I1=15 ON CARD G.1

CARD G.4 EQUILIBRIUM CONTROLS

- NVAR 1-4 NO. OF INDEPENDENT VARIABLES SUPPLIED ON CARDS G.2 AND G.3 THAT ARE TO BE ADJUSTED SUCH THAT CONTACT NORMAL FORCES ARE EQUAL TO EITHER GX SUPPLIED ON CARDS G.5 OR CONSTRAINT NORMAL FORCES CONTROLLED BY CARDS G.6 (MAX=10)
- NCON 5-8 NO. OF CONSTRAINTS TO BE IMPOSED TO COMPUTE THOSE CONSTRAINT FORCES WHICH WILL BE SATISFIED BY INITIAL CONTACT FORCES. IF ZERO, THE SUPPLIED VALUES OF GX WILL BE USED. (MAX=5)

CARDS G.5 VARIABLES TO BE ADJUSTED FOR EQUILIBIUM (NVAR CARDS, PLACE "J" IN COLS. 73-74)

- NTV(J) 1-4 INDICATES TYPE OF JTH INDEPENDENT VARIABLE; 1 MEANS SEGLP FROM CARDS G.2.; 2 MEANS YPR FROM CARDS G.3.
- NI1(J) 5-8 A VALUE OF 1, 2 OR 3 TO INDICATE THE X, Y OR Z COORDINATE OF SEGLP IF NTV(J)=1, OR YAW, PITCH OR ROLL OF YPR IF NTV(J)=2.
- NSG(J) 9-12 THE SEGMENT NUMBER (AS SPECIFIED BY INDEX I OF CARDS B.2) FOR THE JTH INDEPENDENT VARIABLE
- GX(J) 13-20 THE MAGNITUDE OF THE CONTACT NORMAL FORCE FROM THE JTH INDEPENDENT VARIABLE (LBS.). IF THIS CONTACT IS TO BE CONTROLLED BY A CONSTRAINT OF CARDS G.6 (I.E., J=INDGX(I)), THE SUPPLIED VALUE OF GX WILL BE THE INITIAL VALUE FOR THE ITERATION OF THE CONTACT FORCE TO EQUAL THE CONSTRAINT FORCE; OTHERWISE, THE JTH INDEPENDENT VARIABLE WILL BE ADJUSTED SUCH THAT THE CONTACT NORMAL FORCE WILL BE EQUAL TO GX.

- XDEV(J) 21-28 THE MAXIMUM ALLOWABLE DEVIATION FROM THE INITIAL POSITIONS SPECIFIED ON CARDS G.2 AND G.3 DURING THE ITERATION OF THE JTH INDEPENDENT VARIABLE FOR THE CONTACT NORMAL FORCE TO EQUAL GX. IF EXCEEDED, THE PROGRAM WILL TERMINATE WITH AN ERROR MESSAGE. IF XDEV=0, THE TESTS WILL NOT BE PERFORMED.
- JPL(J) 29-32 THE PLANE NUMBER CORRESPONDING TO NJ ON F.1.B CARDS FOR THE CONTACT WHOSE NORMAL FORM IS TO BE CONTROLLED BY THE JTH VARIABLE.
- JSG(J) 33-36 THE SEGMENT IDENTIFICATION NUMBER (AS SPECIFIED BY INDEX I OF CARDS B.2) INVOLVED IN THE CONTACT WITH PLANE NO. JPL(J). NOTE: A CONTACT FOR THIS PLANE AND SEGMENT MUST HAVE BEEN SET UP ON F.1.B CARDS.
- NAV(J) 37-40 NO. OF VARIABLES ASSOCIATED WITH THE JTH INDEPENDENT VARIABLE. (MAX=5, MAY BE ZERO)
- KSG(I,J), 41-44 THE SEGMENT NUMBERS (DEFINITION
- I=1, NAV 45-48 SAME AS FOR NSG(J) FOR THE NAV(J)
- 49-52 VARIABLES ASSOCIATED WITH THE JTH 53-56 INDEPENDENT VARIABLE. ANY CHANGE 57-60 MADE TO THE JTH INDEPENDENT VARIABLE TO ACHIEVE INITIAL EQUILIBRIUM WILL ALSO BE MADE TO THE CORRESPONDING VARIABLES FOR THESE SEGMENTS SUCH THAT THE INITIAL RELATIVE ORIENTATION WILL BE MAINTAINED AS SPECIFIED ON CARDS G.2 AND G.3.

CARDS G.6 EQUILBRIUM CONSTRAINTS (NCON CARDS, PLACE "I" IN COLS. 73-74)

IPL(I)1-4THE PLANE AND SEGMENT NUMBERSISG(I)5-8(DEFINITION SAME AS FOR JPL(J) AND
JSG(J) ABOVE) FOR THE ITH
CONSTRAINT TO BE IMPOSED FOR
INITIAL EQUILIBRIUM DURING THE
CONTACT NORMAL FORCE TO CONSTRAINT
NORMAL FORCE ITERATION.

- LTYPE(I) 9-12 INDICATES THE TYPE OF THE ITH CONSTRAINT: 3=ROLL, 4=SLIDE.
- INDGX(I) 13-16 THE INDEX J (FROM 1 TO NVAR) FROM CARD G.5 FOR WHOSE CONTACT NORMAL FORCE WILL BE ITERATED TO BE EQUAL TO THE ITH CONSTRAINT NORMAL FORCE. MAY BE ZERO, BUT IF INDGX(I)=J, THEN IPL(I) AND ISG(I) MUST BE EQUAL TO JPL(J) AND JSG(J)

NOTE: THE EQUILIBRIUM ALGORITHM WILL ADJUST THE INITIAL POSITION PARAMETERS SUPPLIED ON CARDS G.2 AND G.3. IF THE CONSTRAINTS TEMPORARILY IMPOSED BY CARDS G.6 PROPERLY CONSTRAIN ALL OF THE SEGMENTS, ZERO ACCELERATIONS WILL BE OBTAINED WHILE THE CONSTRAINTS ARE ON. THE ITERATION WILL PRODUCE NORMAL AND TANGENTIAL CONTACT FORCES THAT WILL RESULT IN SMALL (<0.02 G) INITIAL LINEAR ACCELERATIONS FOR ALL OF THE BODY SEGMENTS. FOR THE SEATED STANDARD FIFTEEN SEGMENT OCCUPANT, THIS CAN BE ACHIEVED AS FOLLOWS:

A. LOCK JOINT P,W,NP,HP,RA AND LA BY SETTING IPIN=-2 ON CARDS B.3 IF THE MAXIMUM TORQUE FOR A LOCKED JOINT (T1 FOR VISC(4,3*J-2) ON CARDS B. IS ZERO, THEN T1 WILL BE SET FOR THESE LOCKED JOINTS TO 1.5 TIMES THE MAGNITUDE OF THE JOINT TORQUE FINALLY PRODUCED AT TIME ZERO.

B. CONSTRAIN THE ARMS BY EITHER SETTING UP FIXED POINT CONSTRAINTS (TYPE=1 FOR THE RLA AND LLA WITH THE VEHICLE ON CARDS D.6), OR LOCK THE JOINTS RS, LS AND LE AS IN STEP A ABOVE. IF THE CONSTRAINTS ARE IMPOSED ON CARDS D.6 THE POINT ON THE VEHICLE (RK2 ON CARDS D.6) FOR ANY TYPE 1 CONSTRAINT INVOLVING THE VEHICLE WILL BE ADJUSTED SO THAT IT WILL COINCIDE WITH THE SPECIFIED POINT ON THE BODY SEGMENT (RK1 ON CARDS D.6) AS ADJUSTMENTS ARE MADE TO THE INITIAL POSITION PARAMETERS. C. SET UP ALLOWED CONTACTS AND ASSOCIATED FORCE DEFLECTION FUNCTIONS ON CARDS F.1 FOR THE SEAT CUSHION PLANE WITH THE LT, RUL AND LUL SEGMENTS, THE SEAT BACK PLANE WITH THE LT, CT AND UT SEGMENTS, AND THE FLOORBOARD PLANE WITH THE RF AND LF SEGMENTS.

D. SET UP INITIAL POSITION PARAMETERS ON CARDS G.2 AND G.3 THAT ARE JUST "SHORT OF" OR CLOSE TO THE FINAL PENETRATION DISTANCES FOR THE SEGMENTS WITH THE CONTACT PLANES.

E. SET NVAR = 5 AND NCON = 4 ON CARD G.4

F. SUPPLY THE FOLLING INPUT PARAMETERS ON CARDS G.5:

J	NTV	NI	NSG	GX	XDEV	JI	PL	JSG	NAV	KSG	
1	1	3	(LT)	90.0	1.0	(SEAT	CUSHION) (LT)	0		
2	1	1	(LT)	5.0	1.0	(SEAT	BACK)	(LT)	0		
3	2	2	(UT)	10.0	5.0	(SEAT	BACK)	(UT)	4	(LT),((CT),
										(N), (F	1)
4	2	2	(RUL)	25.0	10.0	(SEAT	CUSHION) (RUL)) 1	(LUL)	
5	2	2	(RLL)	10.0	10.0	(FLOC	ORBOARD)	(RF)	1	(LLL)	
		()]	NDICA	res th	II TAF	DENTIFI	CATION	NUMBER	SHO	ULD BE	E USED

G. SUPPLY THE FOLLOWING INPUT PARAMETERS ON CARDS G.6:

I	IPL	ISG	LTYPE	INDGX
1	(SEAT CUSHION)	(LT)	3	1
2	(SEAT BACK)	(UT)	4	3
3	(FLOORBOARD)	(RF)	3	5
4	(FLOORBOARD)	(LF)	3	0

USING THE ABOVE INPUT PARAMETERS, THE X AND Z COORDINATES OF THE LT, THE PITCH ANGLES (MAINTAINING THE INITIAL RELATIVE ORIENTATION) OF THE UT, LT, CT, N AND H SEGMENTS, THE RUL AND LUL SEGMENTS, AND THE RLL AND LLL SEGMENTS, AND THE INITIAL NORMAL CONTACT FORCE (GX) OF THE SEAT CUSHION WITH THE LT, THE SEAT BACK WITH THE UT AND THE FLOORBOARD WITH THE RF WILL BE ADJUSTED. IT IS BELIEVED THAT THE RESULTING INITIAL POSITION IS UNIQUE AND IS A FUNCTION OF THE VALUES OF THE CONTACT NORMAL FORCES (GX) SUPPLIED FOR THE SEAT BACK WITH THE LT AND THE SEAT CUSHION WITH THE RUL CONTACTS.

59

H. CONTROL OF OUTPUT OF SELECTED SEGMENT LINEAR AND ANGULAR ACCELERATIONS, VELOCITIES AND DISPLACEMENTS, AND JOINT PARAMETERS.

H.1 (K=1) SEGMENT LINEAR ACCELERATIONS IN LOCAL REFERENCE

- CARD H.1.A LINEAR ACCELERATION CONTROLS
 - NSG(K) 1-6 THE NUMBER OF SELECTED POINTS ON THE VARIOUS BODY SEGMENTS FOR WHICH TIME HISTORIES ARE DESIRED. THE MAXIMUM VALUE FOR NSG(K) IS 20.
 - MSG(1,K) 7-12 THE SEGMENT NUMBER OF THE FIRST POINT AS DETERMINED BY THE INDEX I ON CARDS B.2. THE VEHICLE MAY BE SPECIFIED BY NSEG+1, OR THE JTH AIRBAG BY NSEG+1+J. IF NEGATIVE, OUTPUT WILL BE IN INERTIAL REFERENCE.
 - XSG(I,1,K), 13-24 THE X, Y AND Z COORDINATES IN I=1,3 25-36 SEGMENT REFERENCE OF THE FIRST 37-48 POINT (INCHES).
- CARDS H.1.B REPORT POINTS ON SEGMENT (NSG(K)-1 CARDS, PLACE "J" IN COLS 73-74.)
 - MSG(J,K) 1-12 SAME AS ABOVE BUT FOR THE JTH POINT.
 - XSG(I,J,K), 13-24 SAME AS ABOVE BUT FOR THE JTH I=1,3 25-36 POINT. 37-48
- H.2 (K=2) SEGMENT LINEAR VELOCITIES IN VEHICLE REFERENCE

CARDS H.2.A, H.2.B DESCRIPTION SAME AS FOR H.1.

H.3 (K=3) SEGMENT LINEAR DISPLACEMENTS IN VEHICLE REFERENCE

CARDS H.3.A, H.3.B DESCRIPTION SAME AS FOR H.1.

H.4 (K=4) SEGMENT ANGULAR ACCELERATIONS IN LOCAL REFERENCE

CARD H.4.A, H.4.B SEGMENTS FOR WHICH ANGULAR ACCELERATIONS TO BE OUTPUTED

NSG(K) 1-6 THE NUMBER OF SELECTED SEGMENTS FOR WHICH TIME HISTORIES ARE DESIRED (MAXIMUM = 20).

MSG(J,K), 7-12 THE SEGMENT NUMBERS AS DETERMINED J=1,KSG 13-18 BY INDEX I ON CARDS B.2. THE WHERE 19-24 VEHICLE MAY BE SPECIFIED BY KSG=NSG(K) ETC. NSEG+1, OR THE JTH AIR BAG BY 67-72 NSEG+1+J. IF NSG(K)>11, USE THE SECOND CARD (H.4.B), LEAVING THE FIRST FIELD OF 6 COLUMNS BLANK.

H.5 (K=5) SEGMENT ANGULAR VELOCITIES IN VEHICLE REFERENCE CARD H.5.A, H.5.B DESCRIPTION SAME AS FOR H.4.

H.6 (K=6) SEGMENT ANGULAR DISPLACEMENTS IN VEHICLE REFERENCE

CARD H.6.A, H.6.B DESCRIPTION SAME AS FOR H.4

H.7 (K=7) JOINT PARAMETERS

CARD H.7.A, H.7.B JOINTS FOR WHICH OUTPUT DESIRED

NSG(K)	1-6	THE NUMBER OF SELECTED JOINTS FOR WHICH TIME HISTORIES ARE DESIRED. INSERT BLANK CARD IF NONE ARE DESIRED (NJNT MAXIMUM).
MSG(J,K), J=1,KSG WHERE KSG=NSG(K)	7-12 13-18 19-24 ETC. 67-72	THE JOINT NUMBERS AS DETERMINED BY INDEX J ON CARDS B.3. IF NSG(K)>11, USE THE SECOND CARD (H.7.B), LEAVING THE FIRST FIELD OF 6 COLUMNS BLANK.

A. Cards	_
A.1.a	-3
A.1.b	.3
A 1 C	2
	• •
A.2	-5
A.3	.6
A	
	• _
A.5	• 8
А.б.а	.9
λ <i>C</i> h	10
A.O.D	10
B. Cards	
B.1	11
B 2	11
	1 1
B.3.a	13
B.3.b	·13
R A a	1.4
	1 4
B.4.D	14
B.5.a	·16
B 5 b 15-	16
	10
B.5.C	16
B.6	·18
B 7 a	10
	10
B./.D	19
B.7.c	19
B 7 d	19
	10
в./.е	19
C. Cards	
C 1	20
	21
	21
C.3	.22
C.4	22
D.cards	
D.1	.23
D.2.a	24
	24
	- 24
D.2.c	24
D.2.d	24
	26
J.J.A	. 20
D.3.b	26
D.3.c	26
	27
D.4.a	. 2 /
D.4.b	27
D.4.C	.27
	28
	20
D.4.e	28
D.4.f	. 29
	30
	.50
D.4.h	, 30

.

62

D.5 D.6.a D.6.b D.7 D.8 D.9.a	 		· · · · · · · · · · ·		
D.9.D E. Cards E.1 E.2 E.3 E.4.a E.4.b E.5.a E.5.b E.5.c E.5.c E.5.c E.5.c					
E.5.f E.6 F. Cards F.1.a F.1.b F.2.a F.2.b F.2.b f.2 F.4.a F.4.b F.5.a					43 44 44 45 45 45 45 46 46 46 47 47 47 47 48 49
G. Cards G. 1 G. 2 G. 3 G. 4 G. 5 G. 6 H. Cards	· · · · · ·	· · · · · · · ·			
H. 1 H. 2 H. 3 H. 4 H. 5 H. 6 H. 7		· · · · · · · · · · · · · · · · · · ·			

3.0 OUTPUT FROM CVS (GENERAL DESCRIPTION)

Output produced by the model has been classified into four types. The four succeeding subsections discuss each of the four types in turn.

3.1 Normal Output

This type of output lists time histories of particular categories of quantities with headings. Eight such categories exist for the CVS model. These are summarized in Table 1.

Category Number	Description				
1	Segment Linear Accelerations				
2	Segment Linear Velocities				
3	Segment Linear Displacements				
4	Segment Angular Accelerations				
5	Segment Angular Velocities				
6	Segment Angular Displacements				
7	Joint Parameters				
8	Contact Output				

Table 1 Normal Output Categories

The first seven categories are controlled by the H cards of the input deck. Category eight is printed automatically for any interaction which produces force.

The first three categories allow the user to specify the points for which corresponding kinematics are to be printed and whether each point is to be printed in local or inertial coordinates. The second three categories allow the user to specify which segments are to be printed as well as whether local or inertial coordinates are desired. The seventh category allows specification of which joints are to be printed.

3.2 Supplementary Normal Output

This type of output is printed with headings but is under switch control and comes out all quantities for each time in sequence. This type of output together with the final type (binary files of information written for postprocessors) are controlled by means of the NPRT array which is inputted by the A.I.A card. Table 2 lists the general categories of such output controlled by each element of the NPRT array.

64
Table 2 NPRT Output Categories

NPRT	Output Categories	Description
1	Tape 1 Output	Input to graphic postprocessor
2	Eltime Output	Printout of elapsed execution times
3	Accel Output	Accelerations at print times
4	HIC Tape	Input to HIC postprocessor data
5	Y-Z Printer Plot	Y-Z printer plot depicting simulated situation
6	X-Z Printer Plot	X-Z printer plot depicting simulated situation
7	HA, HB from Binput	Printout of joint arrays
8	Accel from DAUX	Accelerations at each time step
9	Packing Dictionary	Summary of packing parameters
10	Output from CMPUTE, DINT	Printout of time step control
11	Accel from EQUILB	Accelerations during equilibrium iteration

3.3 Auxiliary (Debugging) Output

This type of output is much like that covered in the last subsection except that it is keyed to block numbers for identification and has few if any headings. These printouts cover details of the run which no ordinary user would desire and is so copious that its use must be controlled within certain time spans during the run rather than over the whole run. Such output is controlled by sixteen two bit (four level) switches which are inputted at a maximum of eight different times during the run packed together as an eight hexidecimal digit number by means of cards A.6.A and A.6.B. Table 3 lists the sixteen debugging printout categories.

Category	Debugging Information Printed
1	Air bag quantities
2	Belt quantities
3	Level 1: Joint positions
	Level 2: Body segment positions and velocities
4	System equation matrix and right hand side
5	Time step convergence quantities
6	Ellipsoid-Ellipsoid penetration quantities
7	Impulse function quantities
. 8	Torque and joint constraint quantities
9	Roll-slide constraint quantities
10	Joint quantities
11	Body contact quantities
12	Ellipsoid-plane deflection quantities
13	Load-deflection quantities
14	Shared deflection and tabular fitting quan- tities
15	Force evaluation guantities
16	Level 1: Storage allocation quantities Level 2: Abort and dump

A detailed list of individual blocks is presented in Volume 3. Level zero is always off.

3.4 Output for Postprocessors

This output is not in the form of printing but binary information written to external files intended to serve as input for various postprocessors. This optional output is controlled by the NPRT array described in Table 2 of Section 3.2. Detailed formats for these output files are presented in Volume 3. The program also has a restart capability which is controlled by cards A.1.A and A.2. In this case, the program itself serves as its own postprocessor to continue a run with possible minor changes.

4.0 EXAMPLE RUN

The following three subsections present an example data deck and the resulting run. The first subsection explains the physical problem which is being simulated. The second subsection presents the input deck. The last subsection presents parts of the resulting output.

4.1 Run Description

The situation is the collision between two vehicles with gross modeling of the occupant within one of them. Five segments are used with one ellipsoid attached to each together with three contact panels attached to two of the segments. Figure 1 illustrates the layout. The figure shows the segment number and segment name of two or three letters hyphenated below the

Figure 1. Two Vehicle Collision

ellipsoid. The ellipsoid name (which is sixteen characters including blanks) is shown above the ellipsoid in each case. The three vertical lines represent the contact panels with their names specified below.

Five contact interactions are allowed: three of the ellipsoid-panel type: Upper Leg - Inner Door, Bumper - Outer Door, and Bullet Vehicle -Outer Door and two of the ellipsoid-ellipsoid type: Target Vehicle - Door and Bullet - Bumper. The purpose of this configuration is to simplify contact interactions between the occupant and two vehicles.

4.2 Input Data Deck with Comments

The input data deck contains the formal description of the situation described above. In the data deck presented in Table 4 below, the B-cards list and specify the five segments; ULM, TVM, DM, BVM and BM. The D.2 - cards describe the three contact panels: INNER DOOR, OUTER DOOR, and

BUMPER FRONT. The D.5 - cards describe the five ellipsoids: BUMPER, DOOR, TARGET VEHICLE, UPPER LEG, and BULLET VEHICLE. The D.9.A - cards specify three materials. Outer Door and Bumper Front have properties of material 1 (MAT1), the two vehicles have properties of MAT2, and Upper Leg has properties of MAT3. The Bumper, Door, and Inner Door are considered rigid. The F.1 - Cards list the allowable interactions which were listed in the previous subsection. The G - cards state initial conditions, that the target vehicle is sitting still while the bullet vehicle is coming from the side at 300 in/sec. The H - cards list the desired normal output: linear acceleration, velocity, and displacement of center of gravity of each of the five segments.

	2														
READY .															
\$.00,	\$.03	31													
BLIST OLDB	AS			_					_		•	•		•	
1	9 JUI	VE 80	0	0	_	1	0	0	0	0 0	0	0	1 0	O	A.)
2	SIDE	IMPAC	.T TK	IO CAR	000	UPANI	ſ								A • 1
3	BASE	NO. 1	Ļ							_		_		_	A.
4	IN .	LB.SE	C.	1.		1.		1.		0.		0.		0.	A.:
5	4	40	.001	• 00	1 .	005	.000	5	1				_		A
6	•01		.001		1.		.1			2000.		500	0.		A.:
7	0.	00	0000000	.011	FFFFF	FFE	.015	00(00000	F					A
8															A.
9		5	4	ONE	MASS	SPHER	RE								8.
10	UL M	00.12	.94	0.8		0.8			9.8						1 B.
11	TVM	110.8	3696	6000.		250(00.	i	25000	•					2 8.3
12	DM	D0.51	76	1000.		200	•	1	1000.						3 8.3
13	BVM	V9.96	538	6000.		2500	00.	2	25000	•					4 B.
14	BM	80.38	382	700.		200	•	-	700.						5 8.3
15		C)												1 8.3
16		-													1 B.
17		C)												2 B .:
18			-												2 8.
19		ſ	1												3 8.
20			-												3 8.
21		(л.												4 B.
22		•													4 B.
22															1 8.
23															2 8.
24															1 8.
27															
20															1 0 1
21															2 0 .
28															2 0 • 2
29															7 70) 4 m 4
30												<u> </u>			- 8.
31												0.1			1 0.
32												0.1			2 8.(
33												0.1			5 8.
34												0.1			- B.(
35												0.1			5 8.(
36	NONE														C.)
37	0.	υ.	0.	0.	0.2	0.	0.		0.	0.		00.	0.0		C •3
38		3	0	0	5	0	0	3		00.1	•000) 1	0		D .
39	1	1	03	3	OINNE	8 DOOI	R								D.
40	0.		-20.		2.		20.							A	1 D.3
41			20.		2.		20.							A	1 D.
42			-20.		2.		-20	•						A	1 0.3
43	2	1	1 3	3	UDUTE	R DODE	R								0.3
44	0.		20.		-2.		20.							8	1 0.3
45			-20.		-2.		20.							B	1 D.3
46			20.		-2.		-20							8	1 0.3
47	3	1	1 3	5	UBUMPI	ER FRI	ONT -								0.
48	0.	-	-20-	-	3.		20 -							C	1 0.
49			20.		j .		20							ň	1 0.
50			-20		3.		-20							ř	1 0-1
		E 00	2.74		10	2.00	-2U 9 10	` ^	•	0	•	•	•	C.	
61															11 ~ '

Table 4 Example Input Data (1 of 2)

1

١

)

٦

N.,

)

1

Û

 \mathbf{O}

 \bigcirc

- U

 $\hat{}$

 \mathbf{C}

0000 2000		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
••••	5000 . 2000 .	f 2)
•••• ••••	5000. 10000. 5000.	Jata (2 o
000	27.	hput
•••	500. 500.	
		Examp
		• • • • • • • • • • • • • • • • • • • •
		Table 0.00000000000000000000000000000000000
VENICLE 30. Leg b. Vehicle 34.		
2 TARGE T 3UPPER 2 BULL ET	A12 A12 A13 A13 	₩ 1 ₩ 0 1 0 0 0 0 0
2 - 2 2 2 - - 2 2 - - 2 - - - 2 - - - - - - - - - - - - -		
ም ም ም ም ም ም ም ም	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

•

,

4.3 Program Output with Comments

The first output from the program is a summary with captions of the input deck produced as the deck is read. If there are any error flags, generally only a portion of this output will occur up to the flag at which time the program will terminate. Table 5 presents this summary for the example run.

CALSPAN 3-D CRASH VICTIM SIMULATION PROGRAM

9 JUNE 80 NPRT ARRAY	0 1	JUN 27, 1980 0 0 0 0) IRSIN= 0 U O	0 IRS0 1 0 0	DUT= 0 R	STIME =	0.0					CA	RDS A
SIDE IMPACT BASE NO. L	TW	O CAR OCCUP	PANT										
UNITL = Gravity	IN. Vecto	UNITF = L R = (0.0	.B. U • 0.0	NITT = SE , 0.0	c.)	0.10000	00000E +01	0.1000	000000E+0	1 0.100	0000000E+	01	
KNTL PP-	NDI	NT = 4 M	ISTEPŞ =	40 (DT =0.00100	0 H	0 =0.00100	O HMA:	K ≠0.0050	1 MH 00	N =0.0005	00	
EPSILONS	0.1000	00000000E-01	0.100000	000000E-0	2 0.100000	300000E	+01 0.100	0000000000	E+00 0.2	00000000000	0E+04 0.	5000000000	DOOE+04
CRASH VICTU	M	NNE MASS SDHER) E	5 SEGME	DI & 211	INTS						CAPD	5 B. 2
	•	UNE MASS STREP	с. с	NT MOMENT								CARD.	3 0.02
SEGMENT		MASS	SEGME	NI MUMENI	UF INERIIA SEC.**2-	IN.)							
I SYM PLOT	(LBSEC.**2/	IN.)	x	Y -	L							
1 ULM O		0.129		0.80000	0.80000	0.800	00						
2 TVM T		10.870	6 00	0.00000250	000.0000025	000.000	00						
3 DM D		0.518	100	0.00000	200.00000 1	000.000	00						
4 BVM V		9.964	600	0.000025	000.0000025	000-000	00						
5 BM B		0.388	70	0.0000	200.00000	700.000	00						
												CAR	N 8.3
JOINT		LOCATION	IN.) -	SEG(JNT)	LOCAT ION	IN.) -	SEG(J+1)	PRIN. AX	IS(DEG) -	SEG(JNT)	PRIN. AX	IS(DEG) -	SEG(J+1)
J SYM PLOT	JNT P	IN X	Y	2	X	Y	2	YAW	PITCH	ROLL	Y AW	PITCH	ROLL
1	0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0
2	ŏ	0 U.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ŏ.ŏ
3	Ō	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 5 Example Output of Input (1 of 7)

+ • 0 CUNE		J0INT St0P (Deg)	0000 0000	CARDS 8.5	INPULSE RESTITUTION CREFFICIENT	0000	CARDS B.6	IONS) Rel. Error	00000
	RISTICS	ENERGY DISSIPATION COEF.	0000		 VELOCITY CKED JOINT /SEC.) 	0.00		EAR ACCELERAT IN。/SEC。**2 ABS。 Errur	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	G CHARACTE	DEG**J) CUBIC []=3]	0000		MIN. ANG FOR UNLOG (RAD			LIN Mag. Test	0000 000 000
	NAL SPRIN	IN. LB./I .D?ATIC J=2)	0000	5 1 1 1 ON S	QUE FOR) JOINT LB.)			RATIONS +2) Rel. Errdr	00000 00000
	TORSIO	NG CDEF. (Ear qua 1) (NLOCK CONC	MIN TOR UNLOCKEI I IN+			AR ACCELE Rad/Sec.* Abs. Error	00000 00000
		SPRI LIN LJ=	6666	אם רסכא-ח	QUE FOR D JOINT LB.}	0000		ANGUL ANGUL MAG. TEST	00000 00000
		J01NT ST0P (DEG)	0.00	RISTICS A	MAX TOR A LOCKE I IN•		UT	r tes) Rel. Error	00000
	57165	ENERGY JISSIPATION COLEF.	3333 0000	US CHARACTE	FRICTION Velocity Sec.)	0000	ICE TEST IN	IE AR VELOCI 1 IN-/SEC. Abs. Error	00000 00000
	HARACTER 1	66++J) CUBIC [[J=3]	0.000	DINT VISCO	FULL • ANGULAR (DEG/	0000	C ONV ERGE N	LIN Mag. Test	00000
	VL SPRING C	IN. L.B./DE Jratic J=2)	0.000	ī	COULOMB ICTION COEI IN. LB.)	0000	NTEGRATION	ITIES) Rel. Error	00000
ERISTICS	FLEXURA	S COEF . L R OUAU			S ENT FR ./DEG) (SEGMENT I	LAR VELOC (RAD/SEC. Abs. Error	00000
DUE CHAP.ACT		SPRING LI NEA LI NEA	0000		VISCOU: CUEFFICIU	0000 000 000		ANGU Mag. Test	00000
JOINT TURC		TNIOL	- 2 6 4) JOINT	N M 4		SEGMENT NT SYM	1 ULM 2 TVM 4 DVM 5 BVM 8M

73્

(.

ć

Ċ

-

Ć

Ć

(

Table 5 Example Output of Input (2 of 7)

Ĉ

Ń

Ć

<u>_</u>

 $\widehat{}$

~

^

0

~

~

VEHICLE DECELERATION INPUTS

NONE

-

ť

ADT 0.0 AT0 0.0 NATAB 0 x0(2) 0.0 0.0 0.0 (x) 0 X) 0 • 0 . 211PS 0.0 (YIPS) VIIME 0.200 PASSENGER COMPARTMENT DISPLACEMENT HISTORY AMALYTICAL HALF-SINE WAVE DECELERATION VO= 0.0 IN./SEC., UDLIQUE ANGLES = 0 0°0 RULL 0.0 P1 TCH 0.0 44H 0.0

0.0 DEGREES, TIME DURATION = 0.200 SEC. 0.0 0.0

 \tilde{C}_{i}

Ċ

•

(

74

ſ

(

Ć

•

Ċ

Ċ,

Ċ

Ċ

С

C

Ć

CARDS C

11 MEFF 0.0	x1 - 20.0000	Y 1 2 • 0000	21 20.0000	x 2 20-000	7 2.0000 2.0000	22 20.0000	X3 -20.0000	үз 2.0000	23 -20.0000
PL ANE NO.	2. NUPTIM= 1.	NMATRL= 1.	LEUGSM=	3, NINTRL=	3, 150LAT= 0	. WITH NAME OF O	UTER DOOR		
11MEFF 0.0	x1 20.0000	γ1 -2.0000	21 20.0000	x2 -20.000	Y2 -2.0000	22 20.0000	х <u>э</u> 20.0000	Y3 -2.0000	23 -20.0000
PLANE ND.	3, NUMTIM= 1,	NMATRL = 1.	reogsw=	3, NINTRL=	5, ISOLAT= 0	, WITH NAME OF B	JMPER FRONT		
11 MEFF 0.0	x1 -20.0000	Y1 3.0000	21 20.0000	X2 20.000	Y 2 3.0000	22 20.0000	X3 20.0000	Y3 3.0000	23 -20.0000
ADDIT LONAL	ELL I PSOLD I NPUT							3	RDS 0.5
• UN ·		SEM	IAXES (IN. Y	2 7	OFFSET 4 X	[N.) Y Z	ROTATIO Yan	N (DEG) Pitch	ROLL
-2092 5002 5002 5002 500 500 500 500 500 500	BUMPER DOOR Target Vehicle UPPER Leg Bullet Vehicle		000 2 -990 00 1 -990 00 30 -000 00 34 -000	10.000 10.000 30.000 34.000	••••• •••••			00000 00000	00000
BODY SEGMEN	T SYMMETRY INPUT							3	R0 D.7
SEG ND. NSYM(J)	1 2 7 1 0								
MATERIA	L NURMAL FORCE SP	ECTF ICATION						5	RD D.9.A
NMA TR L	AME	MSTH NGRTAB	IFRIK	DC	DE	DF	F SA T	MQ	
1 MAT 2 MAT 3 MAT			•••	1000006+02 1000006+02 1000006+02	0.2000000 00 0.02 0.2000000 00 0.20 0.2000000 00 00 02 0.2000000 00 00 00	0.2100006+02 0.2100006+02 0.2100006+02	0.500000E+04 0.1000000E+05 0.5000000E+05	0.5000 0.1000 0.2000	00E+04 00E+05 00E+04 00E+04
BIVAR IANT P	CLYNUMIAL SPECIFI	CALLUNS						CARDS E.5	• A- E • 5 • C
1 NP0L	۲ 0.0 0.0	E+04 0.0		0.0 0.0	FFICIENTS 0.0 0.0	0.0	0.0		·
			Tahle	c Evamolo	Output of Iv	1			

-

.-

1

<u>, -</u>.

77

3

CARDS D.2

PLANE INPUTS

00	0000	0000
0 0 0 0	0000	0000
0 0 0 0	0000 0000	0000
000 000	0000 0000	00000 00000
000	00000	00000 00000
0.0	0. 10000JUUE +05 0.0 0.0 0.0	0.20000000E +U4 0.0 0.0 0.0 0.0
	~	m

.

Table 5 Example Output of Input (5 of 7)

,**.**,

ć

Ċ.

76

C

(

٢.

€ ⊂

.

Ç.

1

С

С

Ć

Ć

0

×.

ALLOWED CONTACTS AND ASSOCIATED FUNCTIONS

ELLI PS OI D INDEX NAME		D BULLET VEHICLE	3 TARGET VEHICLE
PANEL OR INDEX NAME	2 DUTER DOCR	3 BUMPER FRONT	1 INNER DOCR
ELLIPSOID CONTACTS Ndex Name	1 BUMPER 1 RIMPER	2 0 0 0 R	4 UPPER LEG

,

•

, .)

Ċ

Ċ

C

ŕ

. . .

.

77

(

C

Ç

Ċ,

Ċ

Ę

7

ť.,

(.

SUBROUTINE INITAL INPUT

,

1

	CARDS G.2								CARDS G.3							
		/ SEC.)	2	0.0	0.0	0.0	0.0	0.0		/SEC.1	7	0.0	0.0	0.0	0.0	0.0
		VELOCITY (IN./	*	0.0	0.0	0.0	300.00000	300°00000		VELOCITY (DEG/	>	0.0	0.0	0.0	0.0	0.0
61 1		L I NE AR	×	0.0	0.0	0.0	0.0	0.0		ANGULAR	×	0.0	0.0	0°0	0.0	0.0
20																
0 [2																
1°	(E)	[• NI	7	0.0	0.0	0.0	0.0	0.0	7	(DEG)	ROLL	0.0	0.0	0.0	0.0	0.0
: °	ERENC) NO		000	000	000	000	000	1001	NO1	_					
2PLT(2) 60.00	VERTIAL REF	VEAR PUSITI	>	16.00	34.00	2.00	-40.00	-3.00	LION AND VE	ULAR RUTAT	PI TCH	0.0	0.0	0.0	0.0	0.0
2PLT(Y) 30.00	DSITIONS (I)		×	0.0	0.0	0.0	0.0	0•0	VGULAR ROTA	ANG	A A W	0.0	0.0	0.0	0.0	0.0
ZPLT(X) 30.00	INITIAL P	SEGMENT	ND. SEG	I ULM	2 TVM	3 DM	4 BVM	5 BM	INITIAL AF	SEGMENT	ND. SEG	I ULM	2 TVM	3 DM	4 BVM	5 BM

78

Ę

Ć

Ċ

Ć

Ć

Table 5 Example Output of Input (7 of 7)

.

~

1

0

After the output of input comes the supplementary and auxiliary output which the user has requested. The very first is a summary of the input with references to the packed tables set up to hold contact interaction information. This information is useful in understanding the debugging output. Table 6 presents the packing dictionary and a few sample pages of debugging output from a run which specified that all debugging be printed starting 11.1 milliseconds of simulated time. Reference to the appropriate sections of Volume 3 is necessary to read this information with understanding. While each group is identified uniquely, the captions are generally not self-explanatory. Included also is some of the formatted supplementary normal output in its place within the time sequence.

	EXTERNAL	ELLI PSATO	.0N	4	F î	2	ŝ	-	
	ALLOWED	LISTS:	LLIPSOID	0	c	188	0	184	EXTERNAL Panel No. 3 3
	8.1. OF	CONTACT	PANEL E	190	0	186	0	182	EDGE SCALING SMITCH 3 3 3 3 3 3 4 4 4 1 1 2 2 3 2 2 3
	0F	ONTAC TS	LLIPSOID	0	0	4	0	I	COORDINATE SVETCH SWITCH 3 3 3 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1
	NUMBER	ALLOWED C	PANEL E	1	0	1	0	I	SOLID SOLID SWITCH 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2
	SEGMENT	CONTROL	B. L.	130	128	126	132	124	NUMBER OF TIME POINTS 1 1 1 1 1 1 1 1 6-R 1 -1 -1 -1
ONARY	æ	MATRIX	B.I.	0	Ð	0	0	0	INPUT PLANE ND. 1 2 2 3 5 CLASS 0 0
CKING DICTI		MATER IAL	B. I.	156	145	0	145	0	MATERIAL B.1. B.1. 0 134 134 134 134 134 134 -141 -141 -168 -168 -195
PA		REAL	B.1.	88	69	50	107	16	REAL 8.1. 1. 1. 2.1 2.1 2.1 2.1 1.1 1.2 1.2 1.
			NAME	IPPER LEG	ARGET VEHICLE	ADR.	ULLET VEHICLE	UMP ER	NAME NNER DUDR Juter Dojr Sumper Front NAME Mati Mati Mati
		CONTROL	B. I.	1 86	85	72 0	111 6	59 E	CONTRUL B.1. B.1. 17 17 17 17 45 145 145 156
	A. BODY	SFG. FIL.	ND. ND.	1	-	 . ~	4	5 1	B. PANELS INUEX 1 2 3 6 C. Materia 1 NDEX 3 3

80 、

Ċ

Ĺ

Ć

C

^

~

•

Ć

9

Table 6 Example Auxiliary Printer (1 of 8)

0.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ARRAY 0.0 0.0	0.0	0.0	0•0	0*0	0.0	0.0	0.0	0.0
LINE AR 0.0 0.0 0.0	POSITIUHS AND 16.0 16.5 -36.5 2.4 1.9 1.9	VELUCITIES 0F 00000 0.0 5897 0.0 7378 0.0 4082 0.0	800Y SEGMENTS FR 0.0 0.0	CM CHAIN FOR TIM 34.00621 -0.55014 135.79233	E = 0.01150 0.0 0.0	0.000000000000000000000000000000000000	. 79237 0.0 . 0 . 49097 0.0	
-1-10. -2-1 -2-2 -2-3	0011500 98 1.00000000 -20.00000000 4.19237037 20.00000000 40.00000000 40.000000000000	17 199 1 0.0 0.0 (135.79233073 0.0 0.0 1.0000000	300 20.00000000 20.00000000 20.00000000 20.000000000 -0.0 0.0 -0.0	0 0.0 1.00000 0.0 1.35.79233073 0.0 1.0000000 1.0000000	0.0 -20.00000000 -20.00000000 -20.0000000 -20.0000000 -0.0 1.00000000	0.0 135.79233073 0.0 -1.00000000	0.0 20.0000000 20.00000000 11.20762963	1.0000000
	011500 72 1.0000000 -20.00000000 2.44986439 20.00000000 40.00000000 40.00000000 40.00000000	45 223 3 0.0 0.0 139.74082339 0.0 0.0 1.00000000 0.0 -0.0 -0.0	0 0 0 0 5 1 0 20.0000000 20.00000000 20.00000000 20.00000000	0 0.0 0 20.00000000 0.0 1.0000000 1.0000000 1.0000000 0.0 0.	0.0 20.0000000 -20.0000000 -20.0000000 2.44986439 -20.0000000 -0.0 1.00000000 1.0000000 20.00000	-3.20762963 -3.20762963 0.0 139.14082335 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 20.0000000 20.0000000 0.34250598 0.0 0.0	1.0000000
-1-1 0. -1-2 -1-2 -3-1 -3-1 -2-4 2(011500 45 1.647494 223 1.647494 223 1.647494 500 0.0 0.80237037 0.0 0.000000 0.0000000 1.64749402 1.64749402	72 223 1 22 0.0 402 3.94849 402 3.94849 135.79233073 135.79233073 135.79233073 135.79233073 135.79233073 135.79233073 135.79232073 -0.0	1 1.64749 262 0.0 3.548 0.0 1.0000000 1.0000000 1.0000000 5000.0000000	402 3.9484926 49262 0.0 0.0 1. 0.0 50 3.94849262 3.94849262 -0.0 -0.0	2 000 000000 000 000000 -1.9900000 -0.0 -0.0 -0.0		0.0 1.35250598 0.0	0.0 5000.0000000
-1-1* -1-1 0.(-2-2 -2-2 -2-3	011500 59 1.0000000 2.00000000 2.179237037 20.0000000 40.0000000 40.00000000000000	31 247 5 0.0 0.0 135.79233073 0.0 0.0 0.0 1.0000000	1 1 0 3 1 0 -20.00000000 0.79237037 20.00000000 -0.0 -0.0	0 20.0000000 0 20.0000000 0.0 1.000000 135.79233073 0.0 -1.0000000 -0.0	20.00000000 20.00000000 20.0000000 20.0000000 -20.0000000 0.0 -0.0 -	1.64749402 0.0 1.00 1.35.79233073 0.0 -1.00000000	0.0 20.0000000 20.0000000 1.34250598	1.0000000

 $\widehat{}$

.

C

~

~

Table 6 Example Auxiliary Printout (2 of 8)

9

• •

	0.0 -5010.07000000	0.0	0.0	1.00000	1.00000011.000000
000	0.0 -0.35250598 0.0	0.0	0.0	0.0	000
00000 0.0 50598 0.0	0.0000000 0.00 0.0 - 5000.0000000 - 5000.0000000	1.64749402 7761.58566954 1.58566954	9811 • 63206 936 1 • 63206936	C • •	0.00 0.00 0.00
-20.000 -1.342 -20.000	500 0,000000 0,0 0,0 0,0 2,9900000 2,9900000 2,9900000 2,99000000 2,0 0,0	20.0000000 000000 52.04 7761	000000 5005 9811	0 0 0	
0.0 0.0 -3.94849262	3.94849262 .0 0.0 .0 1.0 .0 500 .0 .0 .0 .0 .0 .0 .0 .0 .0	20.0000000 133.31855204 20000.00 133.3185	156.75015005 20000.00 156.7501	1 • 00000	1.00000
0.0.0	1. 64 749402 3. 54 8492 62 3. 54 8492 62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0	0.98116321 9811.63206936 0.0	0	0.00
0.01	247 1 1 1 3.94849262 (00000 0.0 .10 .74082335 -1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1 271 2 2 -168 131 0.77615857	295 2 2 -168 131 0.98116321	E = 0.011500 E N1S	000
2.00	0 31 59 -64749402 1.64749402 1.64749402 3986439 139 3986439 139 00000 -0.0	0 72 85 271 1	0 59 111 .0 295 1 .0	TIDNS FOR TIN IJK MATRIX 4 5 6 7 0 0 0 0 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RHS ARRAY RHS ARRAY 0 0 0 0 0	000
1 2- 2- 1 -0.(-0.(13-1-1 0.01150 13-1-2 1. 11-1-2 247 1 11-3-1 0.0 11-3-1 0.0 0.0 11-2-4 20.000 11-2-4 20.000	11-1-1* 13-1-1 0.01150(15-2-2 13-1-2 0.	13-1-1 0.01150 15-2-2 13-1-2 0.	VI SPR COMPUTA DAUX PRINT OF 1 2 3 1 -1 2 0 2 0 -2 0 3 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 7 0 0 0 0 8 0 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 7 0 0 0 8 0 0 0 1 1 0 00000	2 1.00000 3 1.00000 4 1.00000
		С С	C C		0

•

.

ŗ

 \sim

 $\overline{}$

0

 $\widehat{}$

1

.....

~

Table 6 Example Auxiliary Printout (3 of 8)

^

0

83

C

Ć

Ć

Ċ

	16-2-2					
#	7	R0 ([])R0 (]+4)				
	C	0.0 0.200000000000000000000000000000000	-0.200000000000000000000000000000000000		0.200000000000000000000000000000000000	
1	11	0.0	U • 200000000000000000000000000000000000	-0.200000000000000000000000000000000000	0. 2000000 0000000 + 02	-0.200000000000000000000000000000000000
	16	-0.20000000000000000E+01	U.200000000000000E+U2	0.20000000000000000E+02	-0.2000000000000000E+01	-0 • 2000000000000000000000000 +0 2
/	21	0.0	-0.200000000000000000000000000000000000	0.30000000000000000E+01	0.2000000000000000E+02	0 + 200 00 00 000 000 00E + 0 2
-	92 7	0.3 (00000 000000000 + 0 1 0.1 0000000000000 + 0 2	0 • 20000000000000000 • 0 2 0 - 2 99000000000000 • 40 1	-0.20000000000000000E+02 0.100000000000000E+02	0. 3000 0000 0000 000 000 E + 01 0. 0	- 0 • 20 00000 000 000 00E + 0 2 0 • 0
	36				0.0	0.766333333333333333333
0	41	0.10000000000000E+01	0.0	0.0	0.0	0.100000000000000E+01
	46	0.0	0.0	0.0	0-1000000000000000E+01	0.100000000000000000000000000000000000
	ע איז	0.1990000000000000E+01	U.I 000000000000000 E+U2		0.0 0.7329999999999999996401	0.0 0.100000000000000000000000000000000
-	61		0.0	0-0	0.10000000000000E+01	
	99 99	0.0	0.0	0.1000000000000000E+01	0. 300000000000000E+02	0.300000000000000000000000
C	11	0 • 3000000 00000000E + 0 Z	0.0	0.0	0.0	0.0
	76	0.0	0.0	0.300000000000000000E+0 Z	0.1000000000000000E+01	
C	1 A L		U.U D.1 000000000000000000000000000000000000	U . 100000000000000000000000000000000000	0.0 0.800000000000000000000000000000000	0.80000000000000000000000
	16	0.0			0.0	0.0
	96	0.0	0.80000000000000000E+u1	0.1000000000000000000000000000000000000	0.0	0.0
Ċ	101	0.0	0.1000000000000000000000000000000000000	0.0	0.0	0.0
	106	0.100000000000000000000000000000000000	0.3400000000000000000000000000000000000	0.3400000000000000000000000000000000000	0.34000000000000000E+02	0.0
C	111	U.U D.34000000000000000000000000000000000000	0.1 0.100000000000000000000000000000000			
	121	0.10000000000000000E+05				0 - 100 000 0000 000 00E + 0 1
84	126	0.5000000000000000E+04	0.5000000000000000E+u4	0.1000000000000000000000000000000000000	0.200000000000000E+02	0.2100000000000000000000000000000000000
4 C	131	0.100000000000000E+05	0.10000000000000000 + U 5	0.1000000000000000E+02	0. 200000000000000E+02	0 - 2100000000000000 + 0 2
	136	0.5000000000000000000404	0.200000000000000000000000000000	0.100000000000000E+02	0.20000000000000000E+02	0 • 2100000000000000000 00E + 0 2
(141	0.5000000000000000000	0.0	0.0	0.0	0.0
Ĵ	146	0.0				
	151					
ت	161	0.0	0.0	0.0	0.0	0.0
	166	0*0	0.0	0.100000000000000E+05	0.0	0.0
ļ	171	0.0	. 0.0	0.0	0.0	
J	176	0.0				
	191					0.0
0	161	0.0	0.0	0.0	0.0	0 . 200 000 000 000 00 E + 0 4
	196	0.0	0*0	0.0	0.0	0.0
(201	0.0	0.0	0.0	0.0	0.0
С	206	0.0	0.0			
	112				0.0	0.0
C	221		0.0	0.0	0.0	0.0
)	226	0.0	0.0	0.0	0.0	0*0
	231	0.0	0.0	0.0	0.0	0.0
Ű	236	0.0	0.0	0.0	0.0	0.0
	192	0.0				
	246					
``	256		0 0	0.0	0.0	0.0
	261	0.0	0.0	0.0	0.0	0.0
	266	0.0	0.0		0.0	
	117	0.0				
3						

Table 6 Example Auxiliary Printout (5 of 8)

٩,

<u>^</u>.

-

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1644788312270717E+01 0.1174680592958868E+01	-0.1990000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-0.3525059790605716E+00 0.0 0.2960170532068221E+04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1990000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
00000000000000000000000000000000000000	0.0 0.1355211687729283E+01 0.0 0.0 0.2946641988724662E+04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1644788312270717E+01 0.17468059295868E401 0.299000000000000000E+01 0.2990000000000000000000000000000000000	0.0 0.200000000000 00 E + 02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
0.U 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 352505979060572E+01	0.2960170532068220E+04 0.0 0.0 0.0 0.1644788312270717E+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	U.29900000000000000000000000000000000000
R0([]R0([+4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 000 00 00 00 00 0 0 0 0 0.0 0.2 00 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 946641988724663E+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.1311789 230 794863E+03 0.1 0.1 0.0 0.0
16-2-2 76 276 281 281 281 286 291 291 295 301 315 315 315	926 9326 9326 9326 9326 9326 9326 9326 9	718818 78818 78818 78818 79918 79918 7000000000000000000000000000000000000	4 7 6 4 8 4 4 8 4 4 9 6 5 9 9 6 5 9 9 6 5 9 8 5 9 8 5 9 8 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9

Table 5 Example Auxiliary Printout (6 of 8)

9

Ĉ

ŝ,

Ċ

C

L

0

.

		0.0	- 20 • 0 0000000	0.0	20,0000000		0.00000000 U.V	- 2 -
1.0000000	0.0	0.0	0.0 0.0	0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 0	1500 98 17 199 00000000 0.0	-1 0.0
0.0	296.49108	0.0	0.0	135.79373	0.0	0.0	2.47378 139.73803	0.0
0.0	2.79237 0.0	° • • •	IME = 0.01150 0.0 0.0	CHAIN FOR T 34.00621 -0.55013	000Y SEGMENTS FROM 0 0.0 0.0	S 0F 0.0		NE AR PU: 0.0 0.0
0.0	0.0	0.0	0.0	0•0	0.0	0.0	0.0	AR R AY 0 . 0 0 . 0
0.0	0.0	0•0	0.0	0.0	0.0	0.0	0°0	AR RAY 0.0 0.0
					650519031141868E-03	0		
	0311418686-03	0.8650519	99999999996-02 0131141868F-03	0.999999 0.865051				36 0.0
0.999999999999999999999996-02	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.0				0		26 0.0
0.0		00		000		00		16 0.(21 0.C
0.0				0.0				
		0		, o , o , o , o , o , o , o , o , o , o				01 0.6
0.0		•••		0.0	794117647058823E-01	8.0)•0 16
0.9811632009309121E+UU 0.0	5 003 2 915 a 41 9	0.0 0.0		•••	8 1 16 3 20 69 36 4 7 21 E + UU 8 1 1 63 20 69 36 4 7 20 E + U 4	200	567501500529156E+03	81 0.(86 0.1
0.0		0.0				20		76 0.0
		00						99
		0		00		00		56 0.C
0.0				•••		?0		10 0.0
0.0		0.0	7647058823E-01	0.879411	- - - - - - - - - - - - - - - - - - -	0.0	3 1 1 1 1 1	11
0.1564781676937016E+03 0.0		0.0	1827993079E+00 1827993078E+04	0.902809	564 7816 7693 7016E+U3	0.0	111111111111111100 028091827993079E+00	31 0.1 36 0.5
0.0		0.0	111111111116-02	0.0	99999999999999999999996-02 1111111111111111111E-02	0.0		21 0.(26 0.0
	1	0.0	18757859650E+00	0.252518		0.0		16 0.6
0.0	9999999999 <u>6-02</u>	0°0 0.99999999		00				0.0 11 0.0
0.0				0.0				10
0.0		0.0		•••		0.0		0.0 16
0.0		0.0		000				36 U.U
							633333333333333335-01	76 0.6 19
0.0		0.0		0.0		0.0	761 585 6695 389 78E + 0 4	11 0.1
0.13331855204285906+03	669538978E+00	0.7761 585	5520428590E+03	0.133318		0.0	761 585 6695 38978E+00	56 0.1
		0.0						90°0°0
0.0		0.0		0.0		0.0		51 0.0
•								

8.54 SECONDS	TIME S	11 1.29	12 1.41	19 2.22	402 54.10	20 2.34	62 7.26	8 0.54	160 18.74	41 4.80	6 0.10	2 0.23	2 0.23	5 0.59	0.0	2 0.23	2 0.23	32 3.15	0.0	0.0	8 0.94	
U TIME =	CALLS	l		162	41	201	161	161	161	322	161	161	161	161	161	161	161	41	41	40	160	
ELAP SED CP	SUB	MAL N3D	I NP UT	CHAIN	DINT	PDAUX	DAUX	SET UP1	CUN TCT	SEG SEG	VISPR	EJUINT	SET UP 2	UAU XII	DAU X12	DAU X 22	F SM SUL	OUTPUT	PRI PLT	UPD ATE	020	TOTAL

Ċ

1

,

•

Table 6 Example Auxiliary Printout (8 of 8)

 \sim

 $\widehat{}$

٠

.

87

Ċ

Ċ

Ċ

Ĺ

Ċ

Ć

į

ć

9

(

C

Ĉ

.

.

•

As the run progresses, the information needed to print the normal printout is written out in a binary file. When the run is completed, the binary file produced during the run is read back in and the tabular normal output is produced. Table 7 contains the normal output which was requested for this example run.

PAGE: 21.01

...

-

DATE: 9 JUNE 80 RUN DESCRIPTION: SIDE IMPACT -- TWO CAR -- OLCUPANT BASE NO. 1 Vehicle Deceleration: None Crash Victim: UNE Mass Sphere

(_

Ć

.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		POINT	. 0.0	0.0	ND (0.0	POINT (. 0.0	.0.0.0.0	ND (0	POINT	. 0.0	. 0.0	NO 1 0.0
		TI ME MS EC)	SEG NO.	1- ULM W.	R.T. (INE Z	ERTL) RES	SEG ND . Z	- TVM W.R	T. LINER	TL) RES	SEG NO.	M MO - E	R.T. (IN Z	RTL) RES
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.43	0.0	14.4
		2.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.69	0.0	28.6
		3.000	0.0	0.0	0.0	0.0	0.0	E0° 0	0.0	0.03	0.0	40.93	0.0	40.9
		4.000	0.0	0.0	0.0	0.0	0.0	0.11	0.0	0.11	0-0	47.65	0.0	47.6
		5.000	0.0	0.0	0.0	0.0	0.0	0.24	0.0	0.24	0.0	45.09	0.0	45.0
		6.000	0.0	0.0	0.0	0.0	0.0	0**0	0.0	0**0	0.0	41.67	0.0	41.6
		7.000	0• 0	0.0	0.0	0.0	0.0	09-0	0-0	0 • 60	0.0	37.45	•••	37.4
		8.000	0.0	0.0	0.0	0.0	0.0	0.83	0.0	0.83	0.0	32.51	0.0	32.5
		9.000	0.0	0.0	0.0	0.0	0.0	1.10	0.0	1.10	0.0	26.97	0.0	26.9
		0.000	0.0	0.0	0.0	0.0	0.0	1.39	0.0	1.39	0.0	20.93	0.0	20.9
2.000 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 </td <td></td> <td>1.000</td> <td>0.0</td> <td>0.0</td> <td>0*0</td> <td>0.0</td> <td>0.0</td> <td>1.69</td> <td>0.0</td> <td>1.69</td> <td>0.0</td> <td>14.51</td> <td>0.0</td> <td>14.5</td>		1.000	0.0	0.0	0*0	0.0	0.0	1.69	0.0	1.69	0.0	14.51	0.0	14.5
3.000 0.0 </td <td></td> <td>2.000</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>2.01</td> <td>0.0</td> <td>2.01</td> <td>0.0</td> <td>7.85</td> <td>0.0</td> <td>7.8</td>		2.000	0.0	0.0	0.0	0.0	0.0	2.01	0.0	2.01	0.0	7.85	0.0	7.8
		3.000	0.0	0.0	0.0	0.0	0.0	2.33	0.0	2.33	0.0	1.07	0.0	1.0
5,000 0.0 </td <td></td> <td>4.000</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>2.38</td> <td>0.0</td> <td>2.38</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>		4.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
6,000 0.0 </td <td>0.0 0.0<td>5.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td>	0.0 0.0 <td>5.000</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>2.38</td> <td>0.0</td> <td>2.38</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	5.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
7,000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9,000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9,000 0.0	7,000 0.0 <td< td=""><td>6.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0-0</td></td<>	6.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0-0
8.000 0.0 </td <td>0.000 0.00</td> <td>7.000</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>2.38</td> <td>0.0</td> <td>2.38</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>	0.000 0.00	7.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
9,000 0.0 0.0 0.0 0.0 0.0 0.0 2,000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2,000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2,000 0.0	0.000 0.00 <t< td=""><td>8.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0-0</td></t<>	8.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0-0
0.000 0.0 <td< td=""><td>0.00 0.00</td><td>9.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	0.00 0.00	9.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
1,000 0.0 <td< td=""><td>1000 0.0</td><td>0. 000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	1000 0.0	0. 000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
2,000 0.0 <td< td=""><td>2.000 0.0 <td< td=""><td>1.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<></td></td<>	2.000 0.0 <td< td=""><td>1.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	1.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
3.000 0.0 <td< td=""><td>1,000 0.0 0.0 0.0 2.38 0.0 <t< td=""><td>2.000</td><td>0*0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0-0</td></t<></td></td<>	1,000 0.0 0.0 0.0 2.38 0.0 <t< td=""><td>2.000</td><td>0*0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0-0</td></t<>	2.000	0*0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0-0
4,000 0.0 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>3.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
5.000 0.0 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>4.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
6.000 0.0 0.0 0.0 2.38 0.0 0.0 0.0 7.000 0.0	5.000 0.0 <td< td=""><td>5.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0</td><td>2 • 38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	5.000	0.0	0.0	0.0	0.0	0.0	2.38	0	2 • 38	0.0	0.0	0.0	0.0
7,000 0.0 0.0 0.0 2.38 0.0 <t< td=""><td>7,000 0.0 0.0 2.38 0.0 <t< td=""><td>6.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2 .38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<></td></t<>	7,000 0.0 0.0 2.38 0.0 <t< td=""><td>6.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2 .38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<>	6.000	0.0	0.0	0.0	0.0	0.0	2 .38	0.0	2.38	0.0	0.0	0.0	0.0
8.000 0.0 0.0 0.0 2.38 0.0 0.0 0.0 9.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.000 0.0	8.000 0.0 0.0 2.38 0.0 0.0 0.0 0.0 9.000 0.0	7.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0-0
9,000 0.0 <td< td=""><td>9.000 0.0 0.0 0.0 2.38 0.0 <t< td=""><td>8.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<></td></td<>	9.000 0.0 0.0 0.0 2.38 0.0 <t< td=""><td>8.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<>	8.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
0.000 0.0 <td< td=""><td>0.00 0.0 0.0 0.0 2.38 0.0 <td< td=""><td>9.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<></td></td<>	0.00 0.0 0.0 0.0 2.38 0.0 <td< td=""><td>9.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	9.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
1.000 0.0 0.0 2.38 0.0 2.38 0.0 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	0.0	0.0	0.0	0.0	0.0	2+38	0.0	2.38	0.0	0.0	0.0	0-0
2.000 0.0 0.0 0.0 2.38 0.0 <t< td=""><td>2.000 0.0 <td< td=""><td>1.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<></td></t<>	2.000 0.0 <td< td=""><td>1.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	1.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
3.000 0.0 <td< td=""><td>3.000 0.0 <td< td=""><td>2.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<></td></td<>	3.000 0.0 <td< td=""><td>2.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></td<>	2.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0.0
4,000 0.0 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>3.000</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>2.38</td><td>0.0</td><td>2.38</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0-0</td></td<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0.0	0-0
5,000 0.0 2.67 0.0 2.38 0.0 -0.67 0.0 0.0 -0.67 0.0 0.0 -0.67 0.0 0.0 0.0 -0.67 0.0	5.000 0.0 2.67 0.0 2.67 0.0 2.38 0.0 2.38 0.0 -0.67 0.0 2. 5.000 0.0 8.20 0.0 8.20 0.0 8.20 0.0 2.38 0.0 2.38 0.0 2.0 2.0 7.000 0.0 13.57 0.0 13.57 0.0 2.38 0.0 2.38 0.0 3.3 7.000 0.0 13.57 0.0 13.57 0.0 2.38 0.0 2.38 0.0 3.4 3.000 0.0 13.57 0.0 2.38 0.0 2.38 0.0 4.67 0.0 3.000 0.0 23.44 0.0 2.38 0.0 2.38 0.0 5.86 0.0 3.000 0.0 23.44 0.0 2.38 0.0 2.38 0.0 5.86 0.0 3.000 0.0 2.38 0.0 2.38 0.0 5.86 0.0	4.000	0.0	0.0	0.0	0.0	0.0	2.38	0.0	2.38	0.0	0.0	0-0	0.0
6.000 0.0 8.20 0.0 8.20 0.0 8.20 0.0 2.38 0.0 2.38 0.0 -2.05 0.0 2.4 7.000 0.0 13.57 0.0 13.57 0.0 2.38 0.0 2.38 0.0 -3.39 0.0 3.5 8.000 0.0 18.68 0.0 18.68 0.0 2.38 0.0 2.38 0.0 -5.86 0.0 4.67 0.0 4.67 9.000 0.0 23.43 0.0 23.43 0.0 2.38 0.0 2.38 0.0 -5.86 0.0 5.1	5.000 0.0 8.20 0.0 2.38 0.0 -2.05 0.0 2. 7.000 0.0 13.57 0.0 13.57 0.0 2.38 0.0 2.38 0.0 -3.39 0.0 3. 7.000 0.0 13.57 0.0 13.57 0.0 2.38 0.0 2.38 0.0 -3.39 0.0 3. 7.000 0.0 13.57 0.0 2.38 0.0 2.38 0.0 -3.39 0.0 4. 3.000 0.0 2.38 0.0 2.38 0.0 2.38 0.0 5. 6.00 5. 3.000 0.0 27.72 0.0 2.38 0.0 2.38 0.0 5. 5.93 0.0 5.	5.000	0.0	2.67	0.0	2.67	0.0	2.38	0.0	2.38	0.0	-0.67	0.0	0.6
7,000 0.0 13.57 0.0 13.57 0.0 13.57 0.0 2.38 0.0 2.38 0.0 -3.39 0.0 3.2 8,000 C.0 18.68 0.0 18.68 0.0 2.38 0.0 2.38 0.0 -4.67 0.0 4.6 9,000 0.0 23.43 0.0 23.43 0.0 2.38 0.0 2.38 0.0 5.3	7,000 0.0 13.57 0.0 13.57 0.0 2.38 0.0 2.38 0.0 -3.39 0.0 3. 3,000 0.0 18.68 0.0 18.68 0.0 2.38 0.0 2.38 0.0 -4.67 0.0 4. 3,000 0.0 23.43 0.0 23.43 0.0 2.38 0.0 2.38 0.0 7.338 0.0 5. 3,000 0.0 27.72 0.0 27.72 0.0 2.38 0.0 2.38 0.0 7.3 0.0 6.	6.000	0.0	8.20	0.0	8.20	0.0	2,38	0.0	2.38	0.0	-2.05	0.0	2.0
8.000 0.0 18.68 0.0 18.68 0.0 2.38 0.0 2.38 0.0 2.38 0.0 -4.67 0.0 4.6 9.000 0.0 23.43 0.0 23.43 0.0 2.343 0.0 2.38 0.0 2.38 0.0 -5.86 0.0 5.1	3.000	7.000	0.0	13.57	0.0	13.57	0.0	2.38	0.0	2.38	0.0	-3.39	0.0	€1 - €1
	3,000 0.0 23,43 0.0 23,43 0.0 2,38 0.0 2,38 0.0 2,38 0.0 -5.86 0.0 5. 3,000 0.0 27.72 0.0 27.72 0.0 2.38 0.0 2.38 0.0 6.	8.000	0.0	18.68	0.0	18.68	0.0	2.38	0.0	2.38	0.0	-4.67	0.0	9 • 9 •
	J.000 0.0 27.72 0.0 27.72 0.0 2.38 0.0 2.38 0.0 -6.93 0.0 6.	9.000	0.0	23.43	0.0	23.43	0.0	2,38	0.0	2.38	0.0	-5.86	0.0	8°6

89

C

C

Ċ

Ċ

C

Ċ

(

....

Ç

<u>(</u>

٢

\$

~

-

Table 7 Example Normal Printout (1 of 11)

0

۰,

•

C

Ċ

Ć

PAGE: 22.01

9 JUNE 80 SIDE IMPACT -- TWO CAR --- OCCUPANT BASE NU. 1 None UNE Mass Sphere DATE: RUN DESCRIPTION:

VEHICLE DECELERATION: CRASH VICTIM:

ſ

ţ

(______

SEGMENT LINEAR ACCELERATIONS (C.S)

Ċ

(

l_

			NI LINCAR	ALLELERA					
	POINT (. 0.0	0.0.000	ND (0	POINT	. 0.0	0.0.0.	NO (O	
TI ME	SEG NO. 4	- BVM W.R	T. (INERI	11)	SEG NU.	5- BM W.R	.T. (INER	11)	. SEG NO.
(MS EC)	×	۶	2	RES	×	۲	7	RES	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1.000	0°0	0.0	0.0	0.0	0.0	-19.24	0.0	19.24	
2.000	0°0	0.0	0.0	0.0	0.0	-38.25	0.0	38.25	
3.000	0.0	-0.06	0.0	0.06	0.0	-54.03	0.0	54.03	
4.000	0°0	-0.17	0.0	0.17	0.0	- 62.27	0.0	62.27	
5.000	0.0	-0.35	0.0	0.35	0.0	-57.77	0.0	57.77	
6.000	0°0	-0.58	0.0	0.58	0.0	-51.80	0.0	51.80	
7.000	0°0	-0.87	0.0	0.87	0.0	-44.51	0.0	44.51	
8.000	0.0	-1.19	0.0	1.19	0.0	-36.09	0.0	36.09	
9.000	0 0	-1.56	0.0	1.56	0.0	-26.78	0.0	26.78	
10.000	0.0	-1.94	0.0	1.94	0.0	-16.83	0.0	16.83	
11.000	0.0	-2.35	0.0	2.35	0.0	-6.48	0.0	6.48	
12.000	0.0	- 2.60	0.0	2.60	0.0	0°0	0.0	0.0	
13.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
14.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
15.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
16.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
17.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
18.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
19.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
20.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
21.009	0.0	-2.60	0.0	2.60	0.0	0-0	0.0	0.0	
22.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
23.000	0.0	- 2 • 60	0.0	2.60	0.0	0.0	0-0	0-0	
24.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
25.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
26.000	0.0	- 2.60	0.0	2.60	0.0	0.0	0.0	0.0	
27.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
-28.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0*0	
29.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
000 • 0 E	0.0	-2.60	0.0	2.60	0-0	0.0	0.0	0-0	
31.000	0.0	- 2.60	0.0	2.60	0.0	0.0	0.0	0.0	
32,000	0°0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
33.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
34.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
35.000	0.0	-2.60	0.0	2.60	0.0	0.0	0-0	0-0	
36.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
37.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
38.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	
39.000	0.0	- 2.60	0.0	2.60	0.0	0.0	0.0	0.0	
40.000	0.0	-2.60	0.0	2.60	0.0	0.0	0.0	0.0	

90

Ć

Ç

C

{ [`]

i,

ţ

Ċ

Ċ

Ľ

ς.

}

•

Table 7 Example Normal Printout (2 of 11)

2

9

.

ſ

PAGE: 23.01

١

)

)

)

7

7

 (\cdot, \cdot)

• •

DATE:	9 JUNE 80
RUN DESCRIPTION:	SIDE IMPACT TWO CAR DECUPANT
	BASE NU. 1
VEHICLE DECELERATION:	NUNE
CRASH VICTIM:	DHE MASS SPHERE

(

C

0

ן פ

C

(

C.

 \cap

()

1

0

 $\ell^{+};$

 \cdot

SEGMENT LINEAR VELOCITIES (IN./SEC.)

	POINT	(0.0 .	0.0. 0	.0) ON	POINT	(0.0 ,	0.0, 0.	.O) ON	POINT	(0.0 ,	0.0, 0	.0) ON
TI ME	SEG NO.	1- ULM W.R	.T. (INE	RTL)	SEG NO.	2- TVM W.R.	.T. (INEF	RTL)	SEG NO.	3- DM W.R	.T. (INE	RTLI
(MSEC)	x	۲	Z	RES	x	۲	1	RES	x	۲	2	RES
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.73	0.0	2.73
2.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.09	0.0	11.09
3.000	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.00	0.0	24.62	0.0	24.62
4.000	0.0	0.0	0.0	0.0	0.0	0.03	0.0	0.03	0.0	42.17	0.0	42.17
5.000	0.0	0.0	0.0	0.0	0.0	0.10	0.0	0.10	0.0	60.10	0.0	60.10
6.000	C.O	0.0	0.0	0.0	0.0	0.22	0.0	0.22	0.0	16.87	0.0	76.87
7.000	0.0	0.0	0.0	0.0	0.0	0.41	0.0	0.41	0.0	92.17	0.0	92.17
8.000	0.0	0.0	0.0	0.0	0.0	0.69	0.0	0.69	0.0	105.70	0.0	105.70
9.000	0.0	0.0	0.0	0.0	0.0	1.06	0.0	1.06	0.0	117.20	0.0	117.20
10.000	0.0	0.0	0.0	0.0	0.0	1.54	0.0	1.54	0.0	126.46	0.0	126.46
11.000	0.0	0.0	0.0	0.0	0.0	2.13	0.0	2.13	0.0	133.31	0.0	133.31
12.000	0.0	0.0	0.0	0.0	0.0	2.85	0.0	2.85	0.0	137.63	0.0	137.63
13.000	0.0	0.0	0.0	0.0	0.0	3.68	0.0	3.68	0.0	139.35	0.0	139.35
14.000	0.0	0.0	0.0	0.0	0.0	4.60	0.0	4.60	0.0	139.42	0.0	139.42
15.000	0.0	0.0	0.0	0.0	0.0	5.52	0.0	5.52	0.0	139.42	0.0	139.42
16.000	0.0	0.0	0.0	0.0	0.0	6.44	0.0	6.44	0.0	139.42	0.0	139.42
17.000	0.0	0.0	0.0	0.0	0.0	7.36	0.0	7.36	0.0	139.42	0.0	139.42
18.000	0.0	0.0	0.0	0.0	0.0	8.28	0.0	8.28	0.0	139.42	0.0	139.42
19.000	0.0	0.0	0.0	0.0	0.0	9.20	0.0	9.20	0.0	139.42	0.0	139.42
20.000	0.0	0.0	0.0	0.0	0.0	10.12	0.0	10.12	0.0	139.42	0.0	139.42
21.000	0.0	0.0	0.0	0.0	0.0	11.04	0.0	11.04	0.0	139.42	0.0	139.42
22.000	0.0	0.0	0.0	0.0	0.0	11.96	0.0	11.96	0.0	139-42	0.0	139.42
23.000	0.0	0.0	0.0	0.0	0.0	12.88	0.0	12.88	0.0	139.42	0.0	139.42
24.000	0.0	0.0	0.0	0.0	0.0	13.80	0.0	13.80	0.0	139.42	0.0	139.42
25.000	0.0	0.0	0.0	0.0	0.0	14.72	0.0	14.72	0.0	139.42	0.0	139.42
26.000	0.0	0.0	0.0	0.0	0.0	15.64	0.0	15.64	0.0	139.42	0.0	139.42
27.000	0.0	0.0	0.0	0.0	0.0	16.56	0.0	16.56	0.0	139.42	0.0	139.42
28.000	0.0	0.0	0.0	0.0	0.0	17.48	0.0	17.48	0.0	139.42	0.0	139.42
29.000	0.0	0.0	0.0	0.0	0.0	18.40	0.0	18.40	0.0	139.42	0.0	139.42
30.000	0.0	0.0	0.0	0.0	0.0	19.32	0.0	19.32	0.0	139.42	0.0	139.42
31.000	0.0	0.0	0.0	0.0	0.0	20.24	0.0	20.24	0.0	139.42	0.0	139.42
32.000	0.0	0.0	0.0	0.0	0.0	21.16	0.0	21.16	0.0	139.42	0.0	139.42
33.000	0.0	0.0	0.0	0.0	0.0	22 .08	0.0	22.08	0.0	139.42	0.0	139.42
34.000	0.0	0.0	0.0	0.0	0.0	23.00	0.0	23.00	0.0	139.42	0.0	139.42
35.000	0.0	0.17	0.0	0.17	0.0	23.92	0.0	23.92	0.0	139.38	0.0	139.38
36.000	0.0	2.27	0.0	2.27	0.0	24.84	0.0	24.84	0.0	138.86	0.0	138.86
37.000	0.0	6.48	0.0	6.48	0.0	25.76	0.0	25.76	0.0	137.80	0.0	137.80
38.000	0.0	12.72	0.0	12.72	0.0	26.68	0.0	26.68	0.0	136.24	0.0	136.24
39.000	0.0	20.86	0.0	20.86	0.0	27.60	0.0	27.60	0.0	134.21	0.0	134.21
40.000	0.0	30.75	0.0	30.75	0.0	28.52	0.0	28.52	0.0	131.74	0.0	131.74

DATE:	9 JUNE 80
RUN DESCRIPTION:	SIDE IMPACT TWO CAR OLCUPANT
	BASE NU. 1
VEHICLE DECELERATION:	NUNE
CRASH VICTIM:	ONE MASS SPHERE

SEGMENT LINEAR VELOCITIES (IN./SEC.)

TIME	POINT	(0.0 . (0.0.0	.0) ON	POINT	(0.0 .	0.0,0	.0) ON	
INCECT	SEG NU.	4- UVM W.R	• • • • • • • •	RILI	SEG NO.	5- 8M W.R	• I. (INE	RILI	SEG ND
(MSEC)	X	Ŧ	Z	RES	X	¥	Z	RES	
0.0	0.0	300.00	0.0	300.00	0.0	300.00	0.0	300.00	
1.000	0.0	300.00	0.0	300.00	0.0	296.36	0.0	296.36	
2.000	0.0	300.00	0.0	300.00	0.0	285.22	0.0	285.22	
3.000	0.0	299.99	0.0	299.99	0.0	267.29	0.0	267.29	
4.000	0.0	299.95	0.0	299.95	0.0	244.23	0.0	244.23	
5.000	0.0	299.85	0.0	299.85	0.0	221.01	0.0	221.01	
6.000	0.0	299.67	0.0	299.67	0.0	199.81	0.0	199.81	
7.000	0.0	299.39	0.0	299.39	0.0	181.18	0.0	181.18	
8.000	0.0	299.00	0.0	299.00	0.0	165.59	0.0	165.59	
9.000	0.0	298.47	0.0	298.47	0.0	153.43	0.0	153.43	
10.000	0.0	297.79	0.0	297.79	0.0	144.99	0.0	144.99	
11.000	0.0	296.96	0.0	296.96	0.0	140.49	0.0	140.49	
12.000	0.0	295.99	0.0	295.99	0.0	139.74	0.0	139.74	
13.000	0.0	294.99	0.0	294.99	0.0	139.74	0.0	139.74	
14.000	0.0	293.98	0.0	293.98	0.0	139.74	0.0	139.74	
15.000	0.0	292.98	0.0	292.98	0.0	139.74	0.0	139.74	
16.000	0.0	291.97	0.0	291.97	0.0	139.74	0.0	139.74	
17.000	0.0	290.97	0.0	290.97	0.0	139.74	0.0	139.74	
18.000	0.0	289.97	0.0	289.97	0.0	139.74	0.0	139.74	
19.000	0.0	288.96	0.0	288.96	0.0	139.74	0.0	139.74	
20.000	0.0	287.96	0.0	287.96	0.0	139.74	0.0	139.74	
21.000	0.0	286.96	0.0	286.96	0.0	139.74	0.0	139.74	
22.000	0.0	285.95	0.0	285.95	0.0	139.74	0.0	139.74	
23.000	0.0	284.95	0.0	284.95	0.0	139.74	0.0	139.74	
24.000	0.0	283.95	0.0	283.95	0.0	139.74	0.0	139.74	
25.000	0.0	282.94	0.0	282.94	0.0	139.74	0.0	139.74	
26.000	0.0	281.94	0.0	281.94	0.0	139.74	0.0	139.74	
27.000	C.O	280.93	0.0	280.93	0.0	139.74	0.0	139.74	
28.000	0.0	279.93	0.0	279.93	0.0	139.74	0.0	139.74	
29.000	0.0	278.93	0.0	278.93	0.0	139.74	0.0	139.74	
30.000	0.0	277.92	0.0	277.92	0.0	139.74	0.0	139.74	
31.000	0.0	276.92	0.0	276.92	0.0	139.74	0.0	139.74	
32.000	0.0	275.92	0.0	275.92	0.0	139.74	0.0	139.74	
33.000	0.0	274.91	0.0	274.91	0.0	139.74	0.0	139.74	
34.000	0.0	273.91	0.0	273.91	0.0	139.74	0.0	139.74	
35.000	0.0	272.91	0.0	272.91	0.0	139.74	0.0	139.74	
36.000	0.0	271.90	0.0	271.90	0.0	139.74	0.0	139.74	
37.000	0.0	270.90	0.0	270.90	0.0	139.74	0.0	139.74	
38.000	0.0	269.89	0.0	269.89	0.0	139.74	0.0	139.74	
39.000	0.0	268.89	0.0	268.89	0.0	139.74	0.0	139.74	
40.000	0.0	267.89	0.0	267.89	0.0	139.74	0.0	139.74	

PAGE: 24.01

< 1

5

1

)

Table 7 Example Normal Printout (4 of 11)

92

c

 \odot

 \cap

.

()

P

PAGE: 25.01

•

N.

Ľ

)

3

 ${\mathcal M}_{i,i}$

1.1

DATE:	9 JUNE 80
RUN DESCRIPTION:	SIDE IMPACT TWO CAR OCCUPANT
	BASE NO. 1
VEHICLE DECELERATION:	NONE
CRASH VICTIM:	ONE MASS SPHERE

t

 \sim

1

1

 $(\cdot$

 \cap

⊂ 93 ⊂

(

 \cap

C

C

C

(

C

C

120

1 0

SEGMENT LINEAR DISPLACEMENTS (IN.)

	PO INT (0.0.	0.0.0	.0 I ON	POINT	0.0.	0.0,0	.0) ON	POINT (0.0 ,	0.0, 0.	.0) ON
TI ME	SEG NO. 1	L- ULM W.R.	.T. (INE	RTL)	SEG NO.	2- TVM W.R	.T. LINEF	RTL)	SEG ND. 3	- DM W.R	.T. (INEP	(TL) •
(MS EC)	x	Y	Z	RES	×	۲	2	RES	×	Y	Z	RES
0.0	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.00	0.0	2.00
1.000	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.00	0.0	2.00
2.000	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.01	0.0	2.01
3.000	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.02	0.0	2.02
4.000	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.06	0.0	2.06
5.000	G.O	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.11	0.0	2.11
6.000	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.18	0.0	2.18
7.000	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.26	0.0	2.26
8.000	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.36	0.0	2.36
9.000	0.0	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.47	0.0	2.47
10.000	C .O	16.00	0.0	16.00	0.0	34.00	0.0	34.00	0.0	2.59	0.0	2.59
11.000	0.0	16.00	0.0	16.00	0.0	34.01	0.0	34.01	0.0	2.73	0.0	2.73
12.000	0.0	16.00	0.0	16.00	0.0	34.01	0.0	34-01	0.0	2.86	0.0	2.86
13.000	0.0	16.00	0.0	16.00	0.0	34.01	0.0	34.01	0.0	3.00	0.0	3.00
14.000	0.0	16.00	0.0	16.00	0.0	34.01	0.0	34.01	0.0	3.14	0.0	3.14
15.000	0.0	16.00	0.0	16.00	0.0	34.02	0.0	34.02	0.0	3.28	0.0	3.28
16.000	0.0	16.00	0.0	16.00	0.0	34.03	0.0	34.03	0.0	3.42	0.0	3.42
17.000	U'.O	16.00	0.0	16.00	0.0	34.03	0.0	34.03	0.0	3.56	0.0	3.56
18.000	C.O	16.00	0.0	16.00	0.0	34.04	0.0	34.04	0.0	3.70	0.0	3.70
19.000	0.0	16.00	0.0	16.00	0.0	34.05	0.0	34.05	0.0	3.84	0.0	3.84
20.000	0.0	16.00	0.0	16.00	0.0	34.06	0.0	34.06	0.0	3.98	0.0	3.98
21.000	0.0	16.00	0.0	16.00	0.0	34.07	0.0	34.07	0.0	4.11	0.0	4.11
22.000	0.0	16.00	0.0	16.00	0.0	34.08	0.0	34.08	0.0	4.25	0.0	4.25
23.000	0.0	16.00	0.0	16.00	0.0	34.09	0.0	34.09	0.0	4.39	0.0	4.39
24.000	0.0	16.00	0.0	16.00	0.0	34.11	0.0	34.11	0.0	4.53	0.0	4.53
25.000	0.0	16.00	0.0	16.00	0.0	34.12	0.0	34.12	0.0	4.67	0.0	4.67
26.000	0.0	16.00	0.0	16.00	0.0	34.14	0.0	34.14	0.0	4.81	0.0	4.81
27.000	0.0	16.00	0.0	16.00	0.0	34.15	0.0	34.15	0.0	4.95	0.0	4.95
28.000	0.0	16.00	0.0	16.00	0.0	34.17	0.0	34.17	0.0	5.09	0.0	5.09
29.000	0.0	16.00	0.0	16.00	0.0	34.19	0.0	34.19	0.0	5.23	0.0	5.23
30.000	0.0	16.00	0.0	16.00	0.0	34.21	0.0	34.21	0.0	5.37	0.0	5.37
31.000	0.0	16.00	0.0	16.00	0.0	34.23	0.0	34.23	0.0	5.51	0.0	5.51
32.000	0.0	16.00	0.0	16.00	0.0	34.25	0 . 0	34.25	0.0	5.65	0.0	5.65
33.000	0.0	16.00	0.0	16.00	0.0	34.27	0.0	34.27	0.0	5.79	0.0	5.79
34.000	0.0	16.00	0.0	16.00	0.0	34.29	0.0	34.29	0.0	5.93	0.0	5.93
35.000	0.0	16.00	0.0	16.00	0.0	34.31	0.0	34.31	0.0	6.07	0.0	6.07
36.000	0.0	16.00	0.0	16.00	0.0	34.34	0.0	34.34	0.0	6.21	0.0	6.ZI
37.000	0.0	16.01	0.0	16.01	0.0	34.36	0.0	34.36	0.0	6.34	0.0	6.34
38.000	0.0	16.01	0.0	16.01	0.0	34.39	0.0	34.39	0.0	6.48	0.0	6.48
39.000	0.0	16.03	0.0	16.03	0.0	34.42	0.0	34.42	0.0	6.62	0.0	6.62
AD. 000	0.0	16 06	0 0	16 06	0 0	34 45	0 0	34 45	n.n	6.75	0.0	5.75

PAGE: 26.01

.

DATE: 9 JUNE 80 RUN DESCRIPTION: SIDE IMPALT -- TWO CAR -- OCCUPANT BASE NU. 1 Vehicle deceleration: Nome Crash Victim: Une Mass Sphere

SEGMENT LINEAR DISPLACEMENTS (IN.)

Ć

Ċ

ſ

(

Ć

Ç

Ć

SEG ND.

:	POINT	0.0	0.0.0.0.	ND (O	POINT (• • • •	0.0 . 0.0	NO
II ME (MS EC)	SEG NU.	4- M W A + +	. 1. 1.1 NEH 2	RES			(• • • • • • • • • • • • • • • • • • •	RES
0.0	0.0	-40.60	0.0	40.00	0.0	-3.00	0.0	900 е
1.000	0.0	-39.70	0.0	39.70	0.0	-2.70	0.0	2.70
2.000	0.0	- 39.40	0.0	39.40	0-0	-2.41	0.0	2.41
3.000	0.0	-39.10	0.0	39.10	0.0	-2.13	0.0	2.13
4.000	0° 0	-38.80	0.0	38.80	0.0	-1.88	0.0	1.88
5.000	0.0	-38.50	0.0	38.50	0.0	-1.64	0.0	1.64
6.000	0.0	-38.20	0.0	38.20	0.0	-1.43	0.0	l .43
7.000	0.0	-37.90	0.0	37.90	0.0	-1.24	0.0	1.24
8.000	0.0	-37.60	0.0	37.60	0.0	-1.07	0.0	1.07
9.000	0.0	-37.30	0.0	37.30	0.0	-0.91	0.0	16.0
10.000	0.0	-37.00	0.0	37°00	0.0	-0.76	0.0	0.76
11.000	0.0	-36.71	0.0	36.71	0.0	-0.62	0.0	0.62
12.000	0.0	-36.41	0.0	36.41	0.0	-0.48	0.0	0.48
13.000	0.0	-36.12	0.0	36.12	0.0	-0.34	0.0	0.34
14.000	0.0	-35.82	0.0	35.82	0.0	-0.20	0.0	0.20
15.000	0.0	-35.53	0.0	35.53	0.0	-0 .06	0.0	0.06
16.000	0°0	-35.23	0.0	35.23	0.0	0.08	0.0	0.08
17.000	0.0	-34.94	0.0	34.94	0.0	0.22	0.0	0.22
18.000	0.0	-34.65	0.0	34.65	0.0	0.36	0.0	0.36
19.000	0°0	-34.36	0.0	34.36	0.0	0.50	0.0	0.50
20.000	0.0	-34.08	0.0	34.08	0.0	0.64	0.0	0.64
21.000	0.0	-33.79	0.0	93 . 79	0.0	0.78	0.0	0.78
22.000	0° 0	-33.50	0.0	33.50	0.0	0.92	0.0	0.92
23.000	0.0	-33.22	0.0	33.22	0.0	1.06	0.0	1.06
24.000	0.0	-32.93	0.0	32.93	0.0	1.20	0.0	1 .20
25.000	0.0	- 32 • 65	0.0	32.65	0.0	1.34	0.0	1.34
26. 000	0.0	-32.37	0.0	32.37	0.0	1.48	0.0	1.48
27.000	0.0	-32.08	0.0	32.08	0.0	1.62	0.0	1.62
28.000	0.0	-31.80	0.0	31.80	0.0	1.76	0.0	1.76
29.000	0.0	-31.52	0.0	31.52	0.0	1.90	0.0	1.90
30.000	0.0	-31.25	0.0	31.25	0.0	2 -04	0.0	2.04
31.000	0.0	-30.97	0-0	30.97	0.0	2.17	0.0	2.17
32.000	0.0	-30.69	0.0	30.69	0.0	2.31	0.0	2.31
33.000	0.0	-30.42	0.0	30.42	0.0	2 .45	0.0	2.45
34.000	0.0	-30.14	0.0	30.14	0.0	2.59	0.0	2.59
35.000	0.0	-29.87	0.0	29.87	0.0	2.73	0.0	2.73
36.000	0.0	-29.60	0.0	29.60	0.0	2.87	0.0	2.87
37.000	0.0	-29.32	0.0	29.32	0.0	3.01	0.0	3.01
38.000	0.0	-29.05	0.0	29.05	0.0	3.15	0.0	3.15
39.000	0.0	-28.78	0.0	28.78	0.0	3.29	0.0	3.29
40.000	0.0	-28.52	0.0	28.52	0.0	3.43	0.0	3.43

Table 7 Example Normal Printout (6 of 11)

0

0

`)

ļ

(94

C C

Ç

Ç

Ċ

ť

Ę

INTER STREEL INTER CONTACT INTERACTION BETHERN ELLIPSOID MARE DOOR ADD OF ALLIPSOID ADD OF ALLI	40.000 0.	39.000 0.	38.000 0.										28.000 0.	27.000 0.	26.000 0.	25.000 0.	24 000 0		22-000 0-			16.000 0.	15.000 0.	14.000 0.	13.000 0.	12.000 0.	11.000 0.	10.000 0.	-000 00.e	B-000 0-	5.000 0.	4.000 0.	3.000 0.	2.000 0.	1.000 0.	0.0	(MSEC) (IN	TIME PLA					CRASH VICT	VENICIE DECELEDATI	RUN DESCRIPT	DUM DECENTRI	00
SPHER CUNTACT INTERACTION BETWEEN ELLIPSOID UPPER LEG PLANE INTER DOOR MODE OF MATS AND TORCE CONTACT INTERACTION DEFNEID DEFL. RATE PLANE INTER DOOR FORCE FORCE ULL STUDIO CONTACT INTERACTION OF MATS AND TORCE ULL STUDIO CONTACT INTERACTION OF MATS AND TORCE ULL STUDIO TANGMIT ULL STUDIO TANGMIT	0 0.69	0 0.59	.0 0.47	0.34									0 0.0	0 0 0	.0 0.0	.D 0.0	0 0 0	0 0 0				0.0	.0 0.0	0.0	.0 0.0	0.0	0.0	0.0			0.0	.0 0.0	.0 0.0	.0 0.0	0.0	.0 0.0	N-) (IN-)	EFLECTION					TIM: ONE MASS	DASE NU.			TE: 9 JUNE 80
CUNINCT INTERACTION BETWEEN PER LEG ANO ETRIC CONTACT LOCATION ETNEN DOR ANO ETRIC ULL SYSTEM CONTACT LOCATION (I.M.) DOR ANO DOR ANO DOR ANO SECJ ILLBJ LBJ VLL SYSTEM CONTACT LOCATION (I.M.) DOR SYSTEM DOR DOR </td <td>0. 101.</td> <td>c. 113.</td> <td>0. 124.</td> <td>0. 131.</td> <td></td> <td>0.0.0.</td> <td></td> <td></td> <td></td> <td>0.</td> <td>0.</td> <td>0. 0.</td> <td>o. o.</td> <td>o. o.</td> <td>o. o.</td> <td>0.</td> <td>0.0</td> <td></td> <td></td> <td>0. 0.</td> <td>o. 0.</td> <td>0.0.</td> <td>0.</td> <td>0. 0.</td> <td>(IN-/SEC) (IN-/</td> <td>DEFL. RATE</td> <td>PLANE IN</td> <td>DIANE IN</td> <td>ELLIPSOID UP</td> <td></td> <td>SPHERE</td> <td>F</td> <td>ICI INU CAR</td> <td></td> <td></td>	0. 101.	c. 113.	0. 124.	0. 131.														0.0.0.				0.	0.	0. 0.	o. o.	o. o.	o. o.	0.	0.0			0. 0.	o. 0.	0.0.	0.	0. 0.	(IN-/SEC) (IN-/	DEFL. RATE	PLANE IN	DIANE IN	ELLIPSOID UP		SPHERE	F	ICI INU CAR		
Inder of Mats ULH System Location (Im.) System Diagonal Diagonal <thdiagonal< th=""> Diagonal <thdia< td=""><td>1385.1</td><td>1170.4</td><td>933.1</td><td>011.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0,0</td><td>0,0</td><td>0_0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0-0</td><td>0.0</td><td></td><td></td><td></td><td>.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>SEC) (L8.) (</td><td>D NORMAL TAN</td><td></td><td></td><td>PER LEG</td><td>CUNTACT INTERAC</td><td></td><td></td><td>UCCUPANT</td><td>DO DUD ANT</td><td></td></thdia<></thdiagonal<>	1385.1	1170.4	933.1	011.9							0,0	0,0	0_0	0.0	0.0	0.0	0-0	0.0				.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	SEC) (L8.) (D NORMAL TAN			PER LEG	CUNTACT INTERAC			UCCUPANT	DO DUD ANT	
JD CONTACT LOCATION INJ ULH SYSTER 0.7 0.7 0.7 0.7 0.7 0.0 0.0 0.0 0.0 0.7 0.7 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	0.0 0.0	0.0 0.0	0.0								0-0 0-0		0.0	0.0	0.0		0.0 0.0	0.0 0.0	0-0 0-0			0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	LB.) X	IGNTL	13 30MED 10 DE A1		IADE OF MAT3	TION BETWEEN					
KT LOCATION IN-J Z 0.0 0.0 Z 0.0 2.00 Z 0.0 2.00	-7.31 0	-7.41 0	-1-53 0		-7 66 0								0.0	0.0	0.0		0-0	0.0						0.0	0.0	0.0 0	0.0	0.0 0	0.0			0.0	0.0	0.0 0	0.0 0	0.0	Υ	ULM SYSTEM	910	7 2							
	0.0	0.0								0.0	0.0	0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	.0	0.0	-0 0.0	0.0	0.0	0.0		-0	.0	0.0	.0 0.0	0.0	X 2	ICT LOCATION (]									PAGE: 2
¥ ????????????????????????????????????	2.00 0.	2.00			2.00 0.	2.00 0.	2.00 0.		0-0 0-	0.0	0.0	0.0	0.0 0.	0.0 0.	0.0 0.	0.0 0.	0.0 0.	0.0 0.	0.0	0.0			0.0	0.0	0.0 0.	0.0 0.	0.0 0.	0.0 0.	0.0	0.0		a.a	0.0	0.0 0.	0.0 0.	0.0 0.	~	DH SYSTEM									7_01

റ 96

7

0

 $\widehat{}$

C

)

.

L

.

C

Ĵ

j

ĵ,

PAGE: 28.01

9 JUNE 80 SIDE "MPACT -- TWO CAR -- OLCUPANT BASE NO. 1 NUNE ONE MASS SPHERE DATE: Run description:

VEHICLE DECELERATION: CRASH VICTIM:

(

(

 \boldsymbol{C}

(.

C

C

CONTACT INTERACTION BETWEEN

		ELLIPSOID D	DOR	ASSUMED TO BE RIGI	•				
		PLANE BI	UMPER FRONT	MADE OF MATI					
	DEFLECTION	DEFL. RATE	FO	RCE	00	NTACT LOC	ATION (N.)	
TI ME	PLANE ELLIPSOID	PLANE ELLIPSO	IO NORMAL	TANGNTL	DM SYSTEM	4		BN SYSTEM	I
(MS EC)		I IN. / SEC) (IN.	/SEC) ([8.]		> (×	> (
0.0	0.0 0.0	•••	0.0		0.0	0.0	0.0		
1.000		294. 0.	1442.1		66.1-	•••		2.11	
5 °UUU		6.14. U.	6 800 . 1	0.0	6 F = 1 -				
3.000	0.83 0.0	243. 0.	4163.1	0.0	-1-99	0.0	0.0	2.17	0.0
4.000	1.06 0.0	202. 0.	5000°0	0.0 0.0	-1.99	0.0	••	1.94	0.0
5.000	1.24 0.0	161. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.76	0.0
6.000	1.38 0.0	123. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.62	0.0
1.000	1.48 0.0	89. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.52	0.0
8.000	1.56 0.0	60. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.44	0.0
000*6	1.61 0.0	36. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.39	0.0
10.000	1.63 0.0	19. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.37	0.0
11.000	1.64 0.0	7. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.36	0.0
12-000	1.65 0.0	2.0.	5000 .0	0.0 0.0	-1.99	0.0	0.0	1.35	0.0
13-000	1.65 0.0	0,	5000.0	0-0	-1.99	0.0	0.0	1.35	0.0
14 .000	1.65 0.0	0.0	5000.0	0.0 0.0	-1.99	0.0	0.0	1.35	0.0
15,000			5000.0		-1.99	0.0	0.0	1.35	0.0
			5000.0		66.1-	0-0	0.0	1.35	0-0
000-21			5000.0		-1.99	0-0	0-0	1.35	0.0
			5000.0		66.1-	0-0	0.0	1.35	0.0
			5000.0		-1.99		0.0	1.35	0.0
					-1.99			1.35	0-0
21,000			5000.0						0.0
22 000					00 11				0.0
33 000									
			5000.0		- 1-			1.35	0.0
25,000			5000.0	0.0	-1.99	0.0	0.0	1.35	0.0
26.000			5000.0	0-0	-1.99	0.0	0.0	1.35 .	0.0
27.000			5000.0	0.0	-1.99	0.0	0.0	1.35	0.0
28.000	1.65 0.0		5000.0	0.0 0.0	-1.99	0.0	0.0	1.35	0.0
29 000	1.66 0.0	.0.	5000.0	0.0	-1.99	0.0	0.0	1.34	0.0
30,000	1.66 0.0	0.	5000.0	0.0	-1.99	0.0	0.0	1.34	0.0
11.000	1.66 0.0	0.0	5000.0	0.0	-1.99	0.0	0.0	1.34	0.0
12 - 000	1.66 0.0	0.0	5000.0	0.0 0.0	-1.99	0.0	0.0	1.34	0.0
000.66	1.66 0.0	0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.34	0.0
34.000	1.66 0.0	0.0	5000.0	0.0 0.0	-1.99	0.0	0.0	1.34	0.0
35.000	1.66 0.0	0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.34	0.0
36.000	1.66 0.0	1. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.34	0.0
37.000	1.66 0.0	2. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.34	0.0
38.000	1.66 0.0	4.0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.34	0.0
39.000	1.67 0.0	6. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.33	0.0
4 0. 000	1.67 0.0	в. 0.	5000.0	0.0 0.0	-1.99	0.0	0.0	1.33	0.0

_96__

C

(

Ć.

(

(

Ĵ

ł

4

Ċ

(``

ſ

`)

11

e 1

Table 7 Example Normal Printout (8 of 11)

2

7

9 JUNE BO SIVE LMPACT -- THO CAR -- OCCUPANT BASE NU. 1 NUNE UNE MASS SPHERE DATE: RUN DESCRIPTION:

VEHICLE DECELERATION: CRASH VICTIM:

, ---

(

<u>ر</u> ...

(

CUNTACT INTERACTION BETWEEN

		ELLP	SOLD BUMPE	R	AS SUME D A ND	TO BE RIGI	0				
			LANE CUTER	L DOOR	HADE OF	MATI					
DEFLE	5C T I ON	DEFL.	RATE	F.O.	RCE		J	ONTACT LOI	CATION ([]	
PLANE	ELL IPSUID	PLANE E	LL1 PS010	NORMAL	TANGNTL		BM SYSTE	I		DM SYSTE	_
(IN.)	(IN.)	I IN./SEC)	I IN./SEC	() (LB.)	(18.)	×	7	2	×	۶	2
0.0	0.0	•	••	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.29	0.0	294.	••	1442.1	0.0	0.0	2.99	0.0	0.0	-1.71	0.0
0.57	0.0	274.	••	2866.7	0.0	0.0	2.99	0.0	0.0	-1.43	0.0
0.83	0.0	243.	•••	4163.1	0.0	0.0	2.99	0.0	0.0	-1.17	0.0
1.06	0.0	202.	••	5000.0	0.0	0.0	2.99	0.0	0.0	+6-0-	0.0
1.24	0.0	161.	••	5000.0	0.0	0.0	2.99	0.0	0.0	-0.76	0.0
1.38	0.0	123.	••	5000.0	0.0	0-0	2.99	0.0	0-0	-0.62	0.0
1.48	0.0	89.	•0	5000.0	0.0	0.0	2.99	0.0	0.0	-0.52	0.0
1.56	0.0	60.	.0	5000 .0	0.0	0.0	2.99	0-0	0-0	-0.44	0.0
1.61	0.0	36.		5000-0	0.0		00 . 0			01.0-	0.0
1.63		01									
44.1			5								
							2				
		•••	•••	0.0002			66.2			-0.35	
1.02	0.0	•	••	0.0003	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	•	•	5000.0	0.0	0.0	2.99	0.0	0.0	-0-35	0.0
1.65	0.0	•	•	5000.0	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	••	••	5000 .0	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	•••	••	5000.0	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	.0	•••	5000.0	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	••	••	5000.0	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	••••	.0	5000.0	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	•••	•0	5000-0	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	.0		5000.0	0.0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	.0	.0	5000.0	0.0	0.0	2.99	0-0	0-0	-0.35	0.0
1.65	0.0	0	50	5000.0		0.0	00.0			56.0-	
1.65	0.0			5000.0			00.0			56.0-	
1.65	0.0			5000.0	0-0	0.0	2.99	0.0	0-0	-0.35	0.0
1.65	0.0	.0	.0	5000.0	0-0	0.0	2.99	0.0	0.0	-0.35	0.0
1.65	0.0	. 0		5000.0		0.0	00.0	0-0	0.0	56.0-	
1.66	0.0			5000-0	0.0	0.0	2.99	0.0	0-0	46-0-	0.0
1.66	0.0	0	.0	5000 .0	0.0	0.0	2.99	0.0	0.0	46.0-	0.0
1.66	0.0	.0	•	5000.0	0.0	0-0	2.99	0-0	0-0	-0.34	0.0
1.66	0.0	.0		5000 .0	0.0	0.0	2.99	0.0	0.0	-0.34	0.0
1.66	0.0	•0	.0	5000.0	0.0	0.0	2.99	0.0	0-0	-0.34	0.0
1.66	0.0	••	•••	5000.0	0.0	0.0	2.99	0.0	0.0	-0-34	0.0
1.66	0.0	•••	••	5000.0	0.0	0.0	2.99	0.0	0.0	-0.34	0.0
1.66	0.0	l.	••	5000.0	0.0	0.0	2.99	0.0	0.0	+0-0-	0.0
1.66	0.0	۲.	••	5000.0	0.0	0.0	2.99	0.0	0.0	-0.34	0.0
1.66	0.0	4.	.0	5000.0	0.0	0.0	2.99	0.0	0.0	-0.34	0.0
1.67	0.0	6 .	••	5000.0	0.0	0.0	2.99	0.0	0.0	-0.33	0.0
1.67	0.0	8.	.0	5000.0	0.0	0.0	2.99	0.0	0.0	-0.33	0.0

ر97 ر

Ū

5

Ċ

Ĺ

Ċ

Ć

C

- --

Ć

C

-

•

,• ·

....

 $\hat{}$

 $\widehat{}$

0

(

ت ----

C

•

77

Ċ

Ĵ

.

۰.

.

()

Э.

.)

)

 \mathbf{O}

 \mathcal{O}

)

 $\cdot \gamma$

5

DATE:	9 JUNE 80
RUN DESCRIPTION:	SIDE IMPACT TWO CAR OCCUPANT
	BASE NO. 1
VEHICLE DECELERATION:	NONE
CRASH VICTIM:	UNE MASS SPHERE

 \sim

 \sim

<u>,</u>

 $\widehat{}$

 \sim

775

0

~

 $\overline{}$

86

 \sim

1

12

CONTACT INTERACTION BETWEEN

ASSUMED TO BE RIGID AND

`

ELLIPSOID	TARGET	VEHICLE	MADE	OF	MAT2

ELLIPSOID DOOR

	DEFLEG	CTION	DEFL.	RATE	FC	RC E		C	ONTAGT LOC	AT LON C	IN.)	
TIME	ELLIPSOID	ELL IPSOID	ELLIPSOID	ELLIPS	OID NORMAL	TANGNTL		DM SYSTE	M		TVM SYSTEM	1
(MSEC)	(IN.)	(IN.)	(IN./SEC)	(IN./	SEC) (LB.)	(LB.)	X	Y	2	X	Y	Ĺ
0.0	0.0	0.0	0.	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.000	0.0	0.0	0.	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.000	0.0	0.0	0.	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.000	v.0	0.01	0.	25.	146.1	0.0	0.0	0.0	0.07	0.0	0.0	0.0
4.000	0.0	0.05	0.	42.	477.7	0.0	0.0	0.0	0.07	0.0	0.0	0.0
5.000	0.0	0.10	0.	60.	989.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
6.000	0.0	0.17	0.	77.	1673.4	0.0	0.0	0.0	0.07	0.0	0.0	0.0
7.000	0.0	0.25	0.	92.	2516.9	0.0	0.0	0.0	0.07	0.0	0.0	0.0
8.000	0.0	0.35	0.	105.	3502.4	0.0	0.0	0.0	0.07	0.0	0.0	0.0
9.000	0.0	0.46	0.	116.	4610.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
10.000	0.0	0.58	0.	125.	5817.4	0.0	0.0	0.0	0.07	0.0	0.0	0.0
11.000	0.0	0.71	Ö.	131.	7100.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
12.000	0.0	0.84	0.	135.	8432.1	0.0	0.0	0.0	0.07	0.0	0.0	0.0
13.000	0.0	0.98	0.	136.	9786.7	0.0	0.0	0.0	0.07	0.0	0.0	0.0
14.000	0.0	1.11	0.	135.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
15.000	0.0	1.25	0.	134.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
16.000	0.0	1.38	0.	133.	10000 -0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
17.000	0.0	1.51	ō.	132.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
18.000	0.0	1.65	0.	131.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
19.000	0.0	1.78	0.	130.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
20.000	0.0	1.91	0.	129.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
21.000	0.0	2.04	0.	128.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
22.000	0.0	2.16	0.	127.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
23.000	0.0	2.29	0.	127.	10000 -0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
24.000	0.0	2.42	<u>0</u> .	126.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
25.000	0.0	2.54	Ö.	125.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
26.000	0.0	2.67	0.	124.	10000-0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
27.000	0.0	2.79	0.	123.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
28.000	0.0	2.91	0.	122.	10000-0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
29.000	0.0	3.03	0.	121.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
30.000	0.0	3,15	0.	120.	10000-0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
31.000	0.0	3.27	0.	119.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
32.000	0.0	3.39	0.	118.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
31.000	0.0	3.51	Ô.	117.	10000-0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
34.000	0.0	3.63	0.	116.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
35.000	0.0	3.74	0.	115.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
36.000	0.0	3.86	0.	114.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
37.000	0.0	3.97	0.	112.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
38.000	0.0	4.08	0.	110.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
39.000	0.0	4.19	0.	107.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
40.000	0.0	4.29	0.	103.	10000.0	0.0	0.0	0.0	0.07	0.0	0.0	0.0
38.000 39.000 40.000	0.0 0.0 0.0	4.08 4.19 4.29	0. 0. 0.	110. 107. 103.	10000.0 10000.0 10000.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.07 0.07 0.07	0.0 0.0 0.0	0.0 0.0 0.9	0.0 0.0 0.0

Table 7 Example Normal Printout (10 of 11)

PAGE: 31.01

-

9 JUNE BU SIDE IMPACT -- TWD CAR -- OCCUPANT BASE NO. 1 NUNE One Mass Sphere UALE: RUN DESCRIPTION:

VENICLE DECELERATION: CRASH VICTIM:

International control with contro with contro with control with control with control with control w	Interfection Entrement Control Control				ELLP	SOLD BUMPER		AS SUMED	TO BE RIGIC	•				
			Ŭ Ŭ Ŭ	I ECT ION	ELLIP	SOLD BULLET	VEHICLE	ANU Made of Ce	MA 72		CONTACT 15	TATION 1	- 21	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T I ME	ELLIPSO	ID ELLIPSOID	ELLIPSOID	ELLIPSOLU	NORMAL	TANGNTL		BM SYSI	EM		BVM SYSTEM	
		(MSEC)	([N.	1 (IN.)	I IN./SEC)	IN./SECI	(18.)	(18.)	×	۶	7	×	7	
		0.0	0.0	0.0	••	••	0.0	0.0	0.0	0-0	0.0	0.0	0.0	
		1.000	0.0	0.0	••	••	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
		2.000	0.0	0.0	••	••	0.0	0.0	0.0	0.0	0.0	•••	0.0	
		3.000	0.0	0.02	•	33.	227.8	0.0	0.0	0.0	0.09	0.0	0-0	
		4.000	0.0	0.07	••	56.	667.3	0.0	0.0	0.0	0.09	0.0	0.0	
		5.000	0.0	0.13	••	19.	1341.3	0.0	0.0	0.0	0.09	0.0	0.0	
		000.9	0.0	0.22	.0	100.	2236.8	0.0	0.0	0.0	0.09	0.0	0.0	
		7.000	0.0	0.33	•0	118.	3329.5	0.0	0.0	0.0	0.09	0.0	0.0	
		8.000	0.0	0.46	0.	133.	4590.4	0.0	0.0	0.0	0.09	0.0	0.0	
		9.000	0.0	0.60	•••	145.	5985.8	0.0	0.0	0.0	0.09	0.0	0.0	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.000	0.0	0.75	.0	153.	7478.3	0.0	0.0	0.0	0.09	0.0	0.0	
		11.000	0.0	0. 00	.0	156.	9028.1	0.0	0.0	0.0	0.09	0.0	0.0	
		12.000	0.0	1.06	•	156. 1	0000	0.0	0.0	0.0	0.09	0.0	0.0	
		13.000	0.0	1.22	.0	155.	0000 .0	0-0	0.0	0.0	0.09	0.0	0.0	
		14.000	0.0	1.37	.0	154.	0.000	0.0	0.0	0-0	0.09	0.0	0.0	
	11,000 0.0 132 10000.0 0.0 0.0 0.0 11,000 0.0 131 10000.0 0.0 0.0 0.0 11,000 0.0 140 10000.0 0.0 0.0 0.0 11,000 0.0 140 10000.0 0.0 0.0 0.0 11,000 0.0 147 10000.0 0.0 0.0 0.0 11,000 0.0 147 10000.0 0.0 0.0 0.0 0.0 11,000 0.0 147 10000.0 0.0 0.0 0.0 0.0 0.0 11,000 0.0 147 10000.0 0.0 <td>15.000</td> <td>0.0</td> <td>1.52</td> <td></td> <td>153.</td> <td>0000.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.09</td> <td>0.0</td> <td>0.0</td> <td></td>	15.000	0.0	1.52		153.	0000.0	0.0	0.0	0.0	0.09	0.0	0.0	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.000	0.0	1.68	.0	152.	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
	18.000 0.0 1.98 0. 150. 0.0	17.000	0.0	1.83	••	151. 1	0.000	0.0	0.0	0.0	0.09	0.0	0.0	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.000	0.0	1.98	.0	150. 1	0.0000	0.0	0.0	0-0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19.000	0.0	2.13	••	149. 1	0.000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.000	0.0	2.28	••	148. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.000	0.0	2.43	•	147. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.000	0.0	2.57	•	146. 1	0.0000	0.0	0.0	0-0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.000	0.0	2.12	•	145. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.000	0.0	2.86	.0	144. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.000	0.0	3.01	••	143. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.000	0.0	3.15	•	142. 1	0.000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.000	0.0	3.29	••	141. 1	0.000	0.0	0.0	0.0	0.09	0.0	0.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.000	0.0	3.43	••	140. 1	0.0000	0.0	0-0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.000	0.0	3.57	.0	139. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.000	0.0	3.71	••	138. 1	0000.0	0.0	0-0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.000	0.0	3.85	•	137. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.000	0.0	3.98	.0	136. 1	0.0000	0.0	0.0	0-0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000 ° E E	0.0	4.12	••	135. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.000	0.0	4.25	•	134. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.000 0.0 4.52 0. 132. 10000.0 0.0	35.000	0.0	4.39	•••	133. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.000 0.0 4.65 0.1 131. 10000.0 0.0	36.000	0.0	4.52	••	132. 1	0.000	0.0	0.0	0.0	0.09	0.0	0.0	
38.000 0.0 4.78 0. 130. 10000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	38.000 0.0 4.78 0. 130. 10000.0 0.0 0.0 0.0 0.0 0.09 0.0 0.0 39.000 0.0 4.91 0. 129. 10000.0 0.0 0.0 0.0 0.0 0.09 0.0 0.0 40.000 0.0 5.04 0. 128. 10000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	37.000	0.0	4.65	.0	131. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
39.000 0.0 4.91 0. 129. 10000.0 0.0 0.0 0.0 0.0 0.09 0.0 0.0 40.000 0.0 5.04 0. 128. 10000.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	39.000 0.0 4.91 0. 129. 10000.0 0.0 0.0 0.0 0.0 0.09 0.0 0.0 4.0.000 0.0 0.0 0.0 0.0 0.0	38.000	0.0	4.78	••	130. 1	0.0000	0.0	0.0	0.0	0.09	0.0	0.0	
	40.000 0.0 5.04 0. 128. 10000.0 0.0 0.0 0.0 0.0 0.0 0.0	39.000	0.0	4.91	•••	129.	00000	0.0	0.0	0.0	0.09	0.0	0.0	
		40.000	0.0	5.04	.0	128. 1	0000-0	0.0	0.0	0.0	0.09	0.0	0.0	

Ċ

Ċ

Ć

Ć

С

Ċ

C

Ċ

C

Ċ

Table 7 Example Normal Printout (11 of 11)

1 •

9

•

`, `

. مر

0

C

Ç

~

7

,-

C

~

9

C

Û
