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For the wave equation
(0, +ad,)u=0, (1)

with a(t, x) real valued, we ask whether the solutions which are real
analytic with respect to the time variable ¢ are dense. The question is
motivated by the study of low frequency control by Bardos, Lebeau, and
Rauch; see [1] and [2]. The answer depends on the regularity of the coef-
ficient a. For example, if a is real analytic in ¢, x, the Cauchy-Kovalevsky
theorem implies that the solutions real analytic in # x are dense since
it suffices to approximate the initial data by polynomials and then to
solve the resulting approximate problems using the Cauchy-Kovalevsky
theorem [3].

Somewhat surprisingly, the same positive result is valid when a =a(x) is
only C'in x [4]. The proof is by regularization in ¢ with a Gaussian kernel
j,=ce ",

We show that the hypothesis that & is independent of ¢ cannot be
replaced by the weaker assumption that « is real analytic in f, even when
itis C* in x.

First we present a preliminary result whose proof is particularly simple.
If the coefficient a is required only to be C™ in ¢, x, then there are smooth
a for which the only C' solutions to (1) which are real analytic in ¢ are the
constant solutions. Take

1 +e¥1‘s(1+.’c)’ t+x>0,
a:=
L 1+x<0.

Then ais C* in ¢ and x.
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THEOREM. For T>0, if ue C'([0, T]1x [ —~T, T]) satisfies (1) and is
real analytic in t, then u is constant.

Proof. For x,e€]1—T,0[, consider u(t, x,). By the uniqueness of
analytic continuation, the value of u at points (¢, x,) for > —x, is
uniquely determined by u(¢, x,) for 1€ 10, —x,[.

Note that u satisfies the equation

(6,+0,)u=0 (2)

in the region below the line ¢+ x =0 since here (2) is identical to (1). By
considering the characteristics of (2} with speed dx/dr =1, we see that the
solution below ¢+ x =0 extends to a solution »’ above 1+ x =0, and that
this solution is analytic in time. Then by the uniqueness of analytic con-
tinuation, u’ = u below ¢ + x =0 implies that ¥’ = u above the line t + x =0,
Thus u solves both (1) and (2) in [0, T]x[—-T,0].

Subtracting (2) from (1) in the region above 7 + x =0, we obtain

(a—1)8.u=0.

Since a > 1 in this region, ¢, 4 =0, and then ¢,u =0, so u is constant in the
portion of ]0, T[ x ]— T, O[ above 1+ x=0.

Then by the uniqueness of analytic continuation, u is constant along
lines x = x, <0, and therefore in [0, 7] x [ — 7, 0]. Let C denote the value
of u in this region.

By tracing the characteristics of (1) into the region where x is positive,
we find for each xe [0, T] a nonempty open interval in [0, T]x {x} on
which u=C.

Again using the uniqueness of analytic continuation, we see that u=C
on [0, T]x {x}. Therefore u=C in [0, T]x[-7,T]. 1|

In the above example, the coefficient a is smooth but not real analytic in
t. Next we give an example of an a which is real analytic in ¢, and for which
the solutions real analytic in 7 are not dense. Set

X, x>0,

a(t, x)=sint+x,e " where x, =
o1, x) N ) =10, x<0.

Then a, is analytic in ¢ and smooth in ¢, x.

THEOREM. There is an £,> 0 such that for 0 <e<eg,, the C'(R?) solu-
tions which are analytic in time are 2m-periodic in time. In particular these
solutions are not dense in the sense that their 2’'(R?) closure contains no non-
trivial solutions with Cauchy data supported in x > e.
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Proof. The characteristic curves for (1) have speed dx/dt =a,=sint+
x,e “* and the solution u is constant along characteristics. Note that
since the vector field is (1, @,), all characteristics can be extended for all real
t, and can be expressed as y(¢) = (¢, x(¢)). In the entire plane the vector field
is 2n-periodic in ¢, so translation by any multiple of 2z in ¢ gives exactly
the same characteristics. In the region x < 0, the characteristics are given by
x(t)= —cos t + ¢ with constant c.

We next show that for sufficiently small ¢ all characteristics meet the half
plane x <0.

First we find ¢, so that for 0 <& <g,, there is an a,.-characteristic 7y,
which crosses both x =0 and x=e.

We want 7, to cross into x> e, since for xe “*> 1, the speed a, of
the characteristics is positive. If we consider only ¢ < e, then for x > e, we
have

—&ix

xe ¥>e. e =p.e =1,
so any characteristic through (¢, x') for x’ > e has positive speed at all later
times. Then since xe ~“* is an increasing function of x, the speed a, will be
bounded away from zero, so along the characteristic x increases to oo as
t approaches oo,

For any x>0, as ¢ approaches 0, e “~ approaches 1. So as ¢ approaches

0, the speed a, of the characteristics approaches

dx in t +
—=qay:=s8int+x,,
dt [¢] +

whose characteristics in the region x >0 are given by
x(t)=be'—i(sin t +cos t) (3)

for constants b.

Now fix a point (', x') with x’>e. For 0<e¢<e, let y, denote the a,
characteristic of (1) through (¢, x'). For t>t we have that x(¢)>x" on
any .. By solving (3) for b in terms of x’" and ¢, we find an explicit formula
for the connected component of y, intersected with x >0 containing (¢, x’).

Suppose that y, lies in the region x >0 for all +. Then (3) holds for all
t and satisfies x(¢) = 0. But as ¢ approaches — oo, the first term goes to 0,
and the second term oscillates between plus and minus 2~ Y2 This is a
contradiction, so for some ¢, x(¢) <0.

Choose a point (17, x”) on y, such that x” <0, and an open disk D about
(t”, x”) lying in the region x <0. Then as ¢ goes to 0, the a,-characteristics
. through (¢, x") will intersect the disk D. Pick ¢, so that for 0 <¢ <¢,, 7.
intersects D. Thus these y, cross the ¢ axis and the line x =e.
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Now we use these y, to show that all characteristics passing through
points in the half plane x>0 also pass through points in the half plane
x <0, provided 0 <& < g,.

Since characteristics cannot intersect each other, a characteristic which
hies to the left of a characteristic y at some time lies to the left of y at all
times t € R.

Suppose there is a characteristic » which is in the x > 0 half plane for all
times ¢. Then 7’ intersects the x-axis at some x, > 0. Since y, crosses the line
x =e, beyond some time ¢, the x-coordinate of y, is greater than x,. Let y*
denote a translate of y, by an amount 27 in ¢, for integer values of k. Note
that the periodicity in r of the vector field makes y* an a,-characteristic as
well. Then there is a y¥ such that y* intersects the x-axis at a point (0, x,)
with x, < x,.

Since y’ lies to the left of y* at time =0, it does so at all times. However,
since y, crosses the r-axis, so does y%; since y’ lies to the left of y*, it must
cross the t-axis also. Thus all a,-characteristics of (1) intersect the region
x<0.

Since u is constant along characteristics and all characteristics in the
region x >0 cross into the region x <0, if u vanishes for x <0 it vanishes
everywhere.

Now consider a solution u of (1) (with coefficient a.) which is real
analytic in time and C' in 1, x. In the left half plane, the characteristics of
(1) are

y(t)= (1, x(1))=(t, —cost+c)

with constants ¢, and u is constant along characteristics. So any y which
remains entirely in the left half plane, i.c., for which ¢ < —1, gives us

u(t, —cos t+c)=u(y(1))
=u(y(t+2n))
=u(t+2n, —cos(t+2n)+¢c)
=u(t+2n, —cost+c),
so that
u(t, x)=u(t + 27, x)

wherever (7, x) lies on a characteristic y which is contained in the left half
plane.

If u(t, x) is a solution, then so is w(t, x)=u(t, x) —u(t+ 2%, x), and u
analytic in ¢ implies that w is as well. We note that w vanishes on every
characteristic which remains entirely in the x <0 half plane.
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The characteristic given by x(f)= —cos t — | remains in x <0, and every
characteristic to its left (given by x(¢)= —cos ¢+ ¢ for c < — 1) remains in
x<0.

Thus for every x, <0, there is a nonempty interval ]7, T'[ such that for
all re]7, T'[, (t, x,) lies on a characteristic on which w vanishes (see
Fig. 1). Then by the uniqueness of analytic continuation, w(¢, x4) vanishes
for all time z.

Thus w vanishes for x <0 and therefore everywhere. So u is everywhere
2n-periodic in time.

To prove the last statement of the theorem, first note that any element
of the Z'(R?)-closure of such solutions is a solution of (1) and is also
2zn-periodic in time. It suffices to show that if u is a 2n-periodic solution
with Cauchy data v supported in x> ¢, then u=0.

For such a v there is a 6 >0 such that the support of v is contained in
x>e+0d. Let u be the solution of (1) with Cauchy data ». Then the support
of u lies on the characteristics which intersect the support of v. So the sup-
port of u lies to the right of the characteristic y = (¢, x(¢)) through e + é.

However, x(?) increases to oo as ¢ increases to oo, and for any xeR,
there is a 7'(x) such that for 1> T'(x), (r, x) does not lie in the support of
u. Since u is 2n periodic in ¢, this implies that ¥=0 in R% ||

\t

‘ >

-cost-1

FIGURE 1
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Remark. 1Tt is easy to construct second order wave equations, e.g.,
(0, +ad,) d,u=0, whose solutions real analytic in time are not dense.
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