Solutions Analytic in Time Are Not Dense ## TIMOTHY R. WAGENMAKER* The University of Michigan, Ann Arbor Michigan 48109 Received September 9, 1992 For the wave equation $$(\partial_t + a\partial_x)u = 0, (1)$$ with a(t, x) real valued, we ask whether the solutions which are real analytic with respect to the time variable t are dense. The question is motivated by the study of low frequency control by Bardos, Lebeau, and Rauch; see [1] and [2]. The answer depends on the regularity of the coefficient a. For example, if a is real analytic in t, x, the Cauchy-Kovalevsky theorem implies that the solutions real analytic in t, x are dense since it suffices to approximate the initial data by polynomials and then to solve the resulting approximate problems using the Cauchy-Kovalevsky theorem [3]. Somewhat surprisingly, the same positive result is valid when a = a(x) is only C^1 in $x \in \{4\}$. The proof is by regularization in t with a Gaussian kernel $$j_{\varepsilon} = ce^{-t^2/\varepsilon^2}.$$ We show that the hypothesis that a is independent of t cannot be replaced by the weaker assumption that a is real analytic in t, even when it is C^{∞} in x. First we present a preliminary result whose proof is particularly simple. If the coefficient a is required only to be C^{∞} in t, x, then there are smooth a for which the only C^1 solutions to (1) which are real analytic in t are the constant solutions. Take $$a := \begin{cases} 1 + e^{-1/(t+x)}, & t+x > 0, \\ 1, & t+x \le 0. \end{cases}$$ Then a is C^{∞} in t and x. * Supported by the National Needs Program of the Department of Education: DOED-G-P200A80191 and DOED-G-P200A90222. 348 0022-0396/94 \$6.00 Copyright © 1994 by Academic Press, Inc. All rights of reproduction in any form reserved. THEOREM. For T > 0, if $u \in C^1([0, T] \times [-T, T])$ satisfies (1) and is real analytic in t, then u is constant. *Proof.* For $x_0 \in]-T, 0[$, consider $u(t, x_0)$. By the uniqueness of analytic continuation, the value of u at points (t, x_0) for $t > -x_0$ is uniquely determined by $u(t, x_0)$ for $t \in]0, -x_0[$. Note that u satisfies the equation $$(\partial_x + \partial_x)u = 0 (2)$$ in the region below the line t+x=0 since here (2) is identical to (1). By considering the characteristics of (2) with speed dx/dt=1, we see that the solution below t+x=0 extends to a solution u' above t+x=0, and that this solution is analytic in time. Then by the uniqueness of analytic continuation, u'=u below t+x=0 implies that u'=u above the line t+x=0. Thus u solves both (1) and (2) in $[0,T] \times [-T,0]$. Subtracting (2) from (1) in the region above t + x = 0, we obtain $$(a-1) \partial_x u = 0.$$ Since a > 1 in this region, $\partial_x u = 0$, and then $\partial_t u = 0$, so u is constant in the portion of $]0, T[\times] - T, 0[$ above t + x = 0. Then by the uniqueness of analytic continuation, u is constant along lines $x = x_0 < 0$, and therefore in $[0, T] \times [-T, 0]$. Let C denote the value of u in this region. By tracing the characteristics of (1) into the region where x is positive, we find for each $x \in [0, T]$ a nonempty open interval in $[0, T] \times \{x\}$ on which u = C. Again using the uniqueness of analytic continuation, we see that u = C on $[0, T] \times \{x\}$. Therefore u = C in $[0, T] \times [-T, T]$. In the above example, the coefficient a is smooth but not real analytic in t. Next we give an example of an a which is real analytic in t, and for which the solutions real analytic in t are not dense. Set $$a_{\varepsilon}(t, x) := \sin t + x_{+} e^{-\varepsilon/x}, \quad \text{where} \quad x_{+} = \begin{cases} x, & x > 0, \\ 0, & x \le 0. \end{cases}$$ Then a_{ε} is analytic in t and smooth in t, x. THEOREM. There is an $\varepsilon_0 > 0$ such that for $0 < \varepsilon < \varepsilon_0$, the $C^1(\mathbf{R}^2)$ solutions which are analytic in time are 2π -periodic in time. In particular these solutions are not dense in the sense that their $\mathcal{D}'(\mathbf{R}^2)$ closure contains no nontrivial solutions with Cauchy data supported in x > e. *Proof.* The characteristic curves for (1) have speed $dx/dt = a_{\varepsilon} = \sin t + x_{+}e^{-\varepsilon/x}$, and the solution u is constant along characteristics. Note that since the vector field is $(1, a_{\varepsilon})$, all characteristics can be extended for all real t, and can be expressed as $\gamma(t) = (t, x(t))$. In the entire plane the vector field is 2π -periodic in t, so translation by any multiple of 2π in t gives exactly the same characteristics. In the region x < 0, the characteristics are given by $x(t) = -\cos t + c$ with constant c. We next show that for sufficiently small ε all characteristics meet the half plane x < 0. First we find ε_0 so that for $0 < \varepsilon < \varepsilon_0$, there is an a_{ε} -characteristic γ_{ε} which crosses both x = 0 and x = e. We want γ_{ε} to cross into x > e, since for $xe^{-\varepsilon/x} > 1$, the speed a_{ε} of the characteristics is positive. If we consider only $\varepsilon < e$, then for x > e, we have $$xe^{-\varepsilon/x} > e \cdot e^{-e/e} = e \cdot e^{-1} = 1$$, so any characteristic through (t', x') for x' > e has positive speed at all later times. Then since $xe^{-\epsilon/x}$ is an increasing function of x, the speed a_{ϵ} will be bounded away from zero, so along the characteristic x increases to ∞ as t approaches ∞ . For any x > 0, as ε approaches 0, $e^{-\varepsilon/x}$ approaches 1. So as ε approaches 0, the speed a_{ε} of the characteristics approaches $$\frac{dx}{dt} = a_0 := \sin t + x_+,$$ whose characteristics in the region $x \ge 0$ are given by $$x(t) = be^{t} - \frac{1}{2}(\sin t + \cos t)$$ (3) for constants b. Now fix a point (t', x') with x' > e. For $0 \le \varepsilon < e$, let γ_{ε} denote the a_{ε} characteristic of (1) through (t', x'). For t > t' we have that x(t) > x' on any γ_{ε} . By solving (3) for b in terms of x' and t', we find an explicit formula for the connected component of γ_0 intersected with $x \ge 0$ containing (t', x'). Suppose that γ_0 lies in the region $x \ge 0$ for all t. Then (3) holds for all t and satisfies $x(t) \ge 0$. But as t approaches $-\infty$, the first term goes to 0, and the second term oscillates between plus and minus $2^{-1/2}$. This is a contradiction, so for some t, x(t) < 0. Choose a point (t'', x'') on γ_0 such that x'' < 0, and an open disk D about (t'', x'') lying in the region x < 0. Then as ε goes to 0, the a_ε -characteristics γ_ε through (t', x') will intersect the disk D. Pick ε_0 so that for $0 < \varepsilon < \varepsilon_0$, γ_ε intersects D. Thus these γ_ε cross the t axis and the line x = e. Now we use these γ_{ε} to show that all characteristics passing through points in the half plane x > 0 also pass through points in the half plane x < 0, provided $0 < \varepsilon < \varepsilon_0$. Since characteristics cannot intersect each other, a characteristic which lies to the left of a characteristic γ at some time lies to the left of γ at all times $t \in \mathbf{R}$. Suppose there is a characteristic γ' which is in the x>0 half plane for all times t. Then γ' intersects the x-axis at some $x_0>0$. Since γ_ε crosses the line x=e, beyond some time t_0 the x-coordinate of γ_ε is greater than x_0 . Let γ_ε^k denote a translate of γ_ε by an amount $2k\pi$ in t, for integer values of k. Note that the periodicity in t of the vector field makes γ_ε^k an a_ε -characteristic as well. Then there is a γ_ε^k such that γ_ε^k intersects the x-axis at a point $(0, x_1)$ with $x_0 < x_1$. Since γ' lies to the left of γ_{ε}^k at time t=0, it does so at all times. However, since γ_{ε} crosses the t-axis, so does γ_{ε}^k ; since γ' lies to the left of γ_{ε}^k , it must cross the t-axis also. Thus all a_{ε} -characteristics of (1) intersect the region x<0. Since u is constant along characteristics and all characteristics in the region x > 0 cross into the region x < 0, if u vanishes for x < 0 it vanishes everywhere. Now consider a solution u of (1) (with coefficient a_{ε}) which is real analytic in time and C^1 in t, x. In the left half plane, the characteristics of (1) are $$\gamma(t) = (t, x(t)) = (t, -\cos t + c)$$ with constants c, and u is constant along characteristics. So any γ which remains entirely in the left half plane, i.e., for which c < -1, gives us $$u(t, -\cos t + c) = u(\gamma(t))$$ $$= u(\gamma(t + 2\pi))$$ $$= u(t + 2\pi, -\cos(t + 2\pi) + c)$$ $$= u(t + 2\pi, -\cos t + c),$$ so that $$u(t, x) = u(t + 2\pi, x)$$ wherever (t, x) lies on a characteristic γ which is contained in the left half plane. If u(t, x) is a solution, then so is $w(t, x) = u(t, x) - u(t + 2\pi, x)$, and u analytic in t implies that w is as well. We note that w vanishes on every characteristic which remains entirely in the $x \le 0$ half plane. The characteristic given by $x(t) = -\cos t - 1$ remains in $x \le 0$, and every characteristic to its left (given by $x(t) = -\cos t + c$ for c < -1) remains in x < 0. Thus for every $x_0 < 0$, there is a nonempty interval] T, T'[such that for all $t \in$] T, T'[, (t, x_0) lies on a characteristic on which w vanishes (see Fig. 1). Then by the uniqueness of analytic continuation, $w(t, x_0)$ vanishes for all time t. Thus w vanishes for x < 0 and therefore everywhere. So u is everywhere 2π -periodic in time. To prove the last statement of the theorem, first note that any element of the $\mathcal{D}'(\mathbf{R}^2)$ -closure of such solutions is a solution of (1) and is also 2π -periodic in time. It suffices to show that if u is a 2π -periodic solution with Cauchy data v supported in x > e, then $u \equiv 0$. For such a v there is a $\delta > 0$ such that the support of v is contained in $x > e + \delta$. Let u be the solution of (1) with Cauchy data v. Then the support of u lies on the characteristics which intersect the support of v. So the support of u lies to the right of the characteristic $\gamma = (t, x(t))$ through $e + \delta$. However, x(t) increases to ∞ as t increases to ∞ , and for any $x \in \mathbb{R}$, there is a T(x) such that for t > T(x), (t, x) does not lie in the support of u. Since u is 2π periodic in t, this implies that u = 0 in \mathbb{R}^2 . FIGURE 1 Remark. It is easy to construct second order wave equations, e.g., $(\partial_t + a\partial_x) \partial_t u = 0$, whose solutions real analytic in time are not dense. ## ACKNOWLEDGMENT I thank Jeffrey Rauch for his aid in the preparation of the manuscript. ## REFERENCES - C. Bardos, Contrôlabilité exacte approchée pour des problèmes hyperboliques, Optimisation et Contrôle Actes du Colloque organisé en l'honneur du 60 Anniversaire de Jean Cea. (J.-A. Desideri, L. Fezoui, B. Larrouturou, and B. Rousselet, Eds.), Edition Cepadues, Toulouse, pp. 31-45. - 2. G. LEBEAU, Contrôle analytique 1: estimations à priori, Duke Math. J. 68 (1992), 1-30. - 3. F. John, "Partial Differential Equations," fourth ed., Springer-Verlag, New York, 1981. - 4. E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615.