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1. INTRODUCTION

The representations of affine Lie algebras are one of the main tools in the
construction of conformal field theories. They underlie some of the most
important examples of rational CFT, namely the West—Zumino—Witten
models [15]. In these models the Hilbert space is built from unitary
representations of an affinie Lie algebra g at some positive integer level .
Another very useful tool is the coset construction [2]. Given an embedding
p < g of affine Lie algebras, one obtains a set of representations U(A, 1) of
the Virasoro algebra, which interwines with the action of p on L(A). More
precisely, we have

L(A)=) U(A, 2)® L(2), (1)
)

where the sum runs over all representations of p of level uk with k being
the level of L(A), u the index of p —g, and U(A, 1) the subspace of
p-highest weight vectors with weight A. The central charge of the Virasoro
algebra acting on U(A, 4) is ¢(g)— ¢(p) with

_kdimg

C(g)—’k—‘m,

g being the finite part of g, #" the dual Coxeter number, and c(g) the
central charge of the Sugawara representation of the Virasoro algebra
acting on L(A). Let h and 4 be the Cartan subalgebras of g and p, respec-
tively. One can choose them so that ic k. Let H= {te C{Im1>0} be the
upper half plane. The normalized character x, of L(A) is a holomorphic
function on H x A:

Aalt, z) =g O TrL(A)(ezm(TLU ), (2)

where as usual g = e>™. Suppose that z € 4, then from (1) we get

ZA(T’Z)=be(T)X},(T’Z)9 (3)
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where the branching function 47 is
BT =g N Ty g (4)

Let 4, be the set of positive roots of g, Q the root lattice, P the weight
lattice, and W the Weyl group, and let A denote the “finite parts” of 4, etc.;
see {6]. The modular transformation properties of characters are given
by [8]

2nmisy ,

lA(rv Z)a

1 .
xA<——-J=e“wm“ S a(A, M) g5, 2),

’
T 7T MEP(f)

ZA(T'f-l,Z):C’

t

(5)

where s, = (A4 +2p|A)/2(k+h")—c(g)/24, A€ P'¥ is the set of dominant
highest weight of level &, and

a(A, M)=i'5*'|P/L|‘1"’2(k+hv)7”2 Z e (ni,v‘1k+h\’|)l/7+;3|w(/\7!+[7)), (6)
we W

with L being the subset of Q spanned by all long roots. Using the Weyl
character formula, one can rewrite (6) as

)
dmﬂﬂ=dmkmﬂﬁﬂmp;£%ﬂA+ﬁL

where Try denotes the trace over the finite dimensional g-module with

highest weight M. One knows that a(A, M) is a unitary symmetric matrix.
Due to (3), the transformation formula for the branching function b7

was obtained from that for the affine characters and was given by [9]

bf(T+ 1) =™ Wpd(1),

: 7
b;<__)= Y a(A, M)a(A, u") b (1), "

(k) ik }
MeP pe P

where u' denotes the highest weight of the contravariant representation of
L(u) and the dot denotes the objects attached to p. Note that some of these
results were generalized to the so-called modular invariant representations,
cf. [10, 11, 12].

Consider the restriction to the Heisenberg subalgebra; the function 5 ~’47
turns out to be the string function, which counts the weight multiplicities.
It is shown that the string functions for all unitary highest weight represen-
tation for A" are the indefinite Hecke modular form, see [7, 8]. However,
it should be pointed out that the string functions for the modular invariant
modules are not necessarily in modular form even for A", see [13].
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The problem of determining the string functions of all level 1 modules for
C!" was stated as an open problem in [6]. Only recently a formula was
found in [9] and written in terms of Virasoro characters by considering
the decomposition with respect to the subalgebra C{"’, @ A4{"). In this paper
we first give a new formula for the string functions of all level 1 modules
for C{". Our formula will be expressed in terms of quadratic theta func-
tions of degree /— 1. By comparing our formula with the one obtained by
Kac and Wakimoto, we get some curious identities between theta func-
tions. Next, motivated by the recent paper [12], we find a general formula
expressing general branching functions in terms of string functions, which
generalizes one of the main results in [127] by Kac and Wakimoto on the
branching function for the winding subalgebras. An an application we
compute explicitly the branching functions for the complementary decom-
positions.

I thank Professor V. Kac for sending me the paper [12] which
motivated us to write a part of this paper and Professor R. Griess for some
helpful discussions.

2. ON THE LEVEL ONE STRING FuNcTIONS OF C§")

In this section we use ~ to refer to an object attached to the affine Lie
algebra A‘Z‘,L - We first prove a result on the branching function for the
embedding C{"' = 4} | by using only the modular invariance and trans-
formation formula. This result was obtained before in [3] by a complicated
calculation. We then show how to use this formula to derive the string
functions for all level 1 modulles for C{".

We have a canonical embedding C!"’ = 4}’ | induced by the involution
of a Dynkin diagram

P
NS

[ (1)
All*l CI

Namely let &,, f,, i, (0 <i<2/— 1) be the Chevalley generators of 4%} ,.
Then the elements e,, f;, A, (0<i<]) given by (x=e, [, h)

Xo= Xy, x;=%+Xy_;(I<i<i-=1), X=X,

together with the derivation d, generate a subalgebra g which can be
identified with C{'".
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Denote by A, (0<j<2/—1), A, (0<k</) the fundamental weights of
A% | and C!", respectively. Let

jRI=j) 2-1
VTR T s

L _kQIt2-k) K2U+1)
CEIAE TR0y 24U+ 2)

Then by definition we have

bl :=b(AS) |, Ci)=¢% "% Y multz(4, —nd)q" (8)
n#*7Z

Given two integers j, k so that j=k+ 1 mod 2, the indefinite Hecke
modular form is defined by

Nigy= ; U+ 2
0/3(1) = D sign(x) ¢!+ 3 ¥, (9)
MMMERZ
— x| <y < x|
(x, y)or (1/2 - x. 1,2+ Meuljik)+ Z2

where p(J, k)= (j/2({+2), k/2]). We have the following
3,(-.2 = 9,,(;[2)17 k> 9& = 9;141 b 0.

ProposiTioN 2.1. n(2)’b) =0, | if j=k (mod 2) and O otherwise.

Proof. According to the transformation formula for the Hecke from
(see [9]), we have

N2 1
() o)
nlk+1)r js

sin ————cos — n(1) ~*0"(7)

1
- S+ 2) 1<,§m [+2 [

O0<s<2/-1
r+s=1mod2

1
-~ Jl+2) osz,gl

O<s<!
r=smod 2

E(fj_l)(_rtllcos.n;jfn(r) 20(’) (T).

£, sin N
“ [+2 / +1

Here we use 0!, _ (1)=0!"(z) and

Ui 1ss<i—,
2 if s=0,L
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From the calculation of the number a(A, M) (cf. [9]), we have

e 1 [2  ar+1)k+1)
A, A)=——= il A, A= )
a4, 1,) \/—Z-le , a(A,, 4,) 71350 )

It follows from Eq. (7) that

1 ~ o~
br(=2)= LA Adata, 4 e
O<s<2

mk+1)r+1)

| .
= &, sin
ViE+T) ugsz ' [+2

0grs!
r=smod2

Tjs
cos%b_‘\_f’,(r).

Hence n 20}, | ; and b!/} have the same transformation formula. Comparing

the polar parts, we see that
n 200 =4 +ag+ag,+ )
with
0=3(k+1)2(1+2)7 =42 " —max(0, }(j— k) — &
Since A,| = A, for 0<j </, A, € P(4,) iff j=k mod 2 and
A, —max(0, 3(k —j))d € max(A4,),
we have
P =q" (1 +bg+bg>+ ),
with
b=3,— s, + max(0, 5(k — )).

It is now easy to check that

sl-

S—se=30—k)+ik+ 1) (+2) =10 =
and 6 = b. Therefore have
n() 200, =64 1

k+1,j

Now we show how to use this to find a new formula for the string
functions of all level one modules for C{". Based on the embedding
CP <Al |, the formula will be obtained by using the explicit character
formula for the basic modules of 45} |.
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Let {4,/i=0,1,.,2/—1} be the set of simple roots for the affine Lie
algebra of type 4%} |. Define

3 if i=0,1,

Y+ dy ) if 1<i<i—l.

aA;
Then {«,/i=0,1, ../} forms a set of simple roots for C". Let
N 2/—1
M=y 7i,
i=1
i—1

M=Y ZQ2u)+Zo,c M.

i=1

We have from [6] that

13,=¢%0x, (10)
where the theta function is defined by
@leq‘jf‘zﬁ“2 Y PR (11)
-y

and 1,(A)=4,+7— (A7) + 31713
Now according to the Eq. (3) we have
{
1a,= 2 bixa,. (12)
k=0

Since (bjj,()osj.ksl is non-degenerate, denote by (dﬁf)og.ks/ the inverse
of (bjfk), we get from (12) by multiplying (df;l“)

L= 2 d31a, (13)

Now define

{1 -1

M=Y Zi, Q=) Za,

i=1 i=1

then M =M@ M and there is an isomorphism ~: =M defined by
putting ~(«,)=&,. Hence for 0 < j</ we have from (11)

@de,ﬁ,e‘z Z e,.,(z,)
]

vemM
— 432 ot A
= q e’
yeM xeM

=q|Z,|2/z Z Z er,1ﬁ,+a—"<|zjm+11‘,'2)\‘1\%;
veM aeM
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- Z q|2,—+a|2‘/2 Z err(ﬁ,+a)

ae M yeM

= (12004, + 212 - A4+ 21%)

= Z a'’’ / i @Al+2'
xe(

Plugging this into (10) and using the property
O4rip=04., foranyac@, feM,
Eq. (13) becomes

{

=2 A1,

ji=0
1 —~
= Z d;"cﬁJ Z ql]y‘2i(|ﬁl+&|27\A,+a|2)@/‘ s
o
iZo 7 Taco
[ -
= Z (Z djlik(,/}, Z q(l,rz)r;2,+a+ml|A,+z+ﬁ|2)) e,
. i+ x*
xe @20 \j=0 ! jﬁE2Q
Note that from [6] we have
XAk= Z C:k@uz Z C;:+u@Ak+a'
neAdp+Q+ Co xe (/20
mod(M + CJ)

Now if a e 3/2Q is fixed, then there is o’ € 0/2Q so that
A+ o' = A, +a(mod M)iff j=k mod 2),
where if this is the case, then ' =a + o, and u;, is given by

D TR L P R T if k<j,
ok P T R T otherwise.

Since the theta functions @ ,, , ,

(14)

(15)

(x e @/2Q) are linearly independent over

holomorphic functions on the upper half plane (cf. [6, Chap. 13]), by

comparing formulas (14) and (15) we get

_ Z dﬁ"Cﬁf Z q(]‘r‘z)(ljj+&j,k+&+ﬁ[27|AJ+'1,.A~+1+[Y|2D'
J
i</ ’ pe20

A
c/u+1

Choosing o =a, ; and putting

] j—i -1
=A‘—1A1+J”‘“"°‘l=/1i+(i—j)/111+< ] j_i)Al’

A
M 2

we then obtain by some direct calculations
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THEOREM 2.2. The string functions of all level 1 modules for C!" are
given by the following: if k=i (mod 2), then

RLOREND NI I (16)
0gj=<! pe2Q
Jj=imod?2

and O otherwise.

The following formula can be derived from [8].

ProprosITiON 2.3, If k=j (mod 2), then we have
d;‘z*:,rl Z (_1)(l,r2)(n+k)ql/(/+2)\J‘8)(n;’l+|k+1]\#(/+2|)~. (17)
nezZ
n= +j(mod 2/)

Proof. Let e!”. denote the right-hand side of (17). Then by Proposi-

« k'J
tion 2.1, we have

@3)=%) "=n20,, )"
But it follows from [8] that
00, '=n"(e).
Hence the proposition follows. |

EXAMPLE 2.4. Let /=2. Given a, be }Z, we define

ga,b(T)z Z qa(n+b/2a)2. (18)

ne7Z

Then 8, ,=39, _»=39424-». Formulas (16) and (17) give us
ca=n" =1 (320%0 41— 922845 i)
cak=n (=1 (322801 — 32054 )

where k=0, 2 and

gl =n"340—344)% 1.

Comparing our formula with the Kac-Wakimoto formula given in [9],
we get

‘92.034,1 — 85945 = ’1(912,1 - 312,7),
F2230 1 —8208s3=0(3 25— %20
(‘94,0 - 34,4)92,1 = '1(912.2 - l912,10)-



50 SHIRONG LU

Note that only the last identity can be derived by using the Euler and
Jacobi triple product identity (cf. [14]). Since in this case we have by

either formula
1+4”
(//1':2’7 : I—.[ <1_ n)'

nenN q

However, the first two given non-trivial identities.

3. A FORMULA ON BRANCHING FUNCTIONS

Let g be a affine Lie algebra of type X%’ and rank /, and let 4 be its
Cartan subalgebra generated by {d, oy, ), .., 2, }. The dual h* is then
generated by {Ag, oy, %, .., %,}. We define a symmetric non-degenerate
invariant bilinear form on A* by (cf. [6])

1, v

(xlx)=a, 'a’a

i i L
—1
(A[]Jaj)zao 5()_}’

(A0|A0)=0,

where (q; ;) denotes the Cartan matrix of g, and «; and a;” (i=0,1,..,/)
are the numerical invariants defined in [6].

We identify # with its dual 4* by using the above bilinear form. By this
identification we have agAo=ay d, a,x;=a; a,".

Given Aeh*, let L(A) be the irreducible highest weight module with
highest weight A. Let

ch,(h)=Y mult (i)e“!", heh*, (19)

be the character of L(A). Define the modular anomaly of 4 € h* by

A+p® o>
= — th k= A(c 20
A=y ne) 2pe Wb k=Al) (20)
and the normalized character by
xa=e€ *°ch,. (21)

Note that y, depends only on A (mod Cd).
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- k -3
For ie P, keN, let (g=e"°)

A, =g" S g(w)er, (22)

we W
Then we have by the Weyl-Kac character formula (A€ P, )

AA+p
=Ate 23
XA 4 (23)

»

Recall that, given A€ h*, the string function ¢f of the g-module L(A) is
defined by

ety =g Y mult (4 —nd)g", (24)
ne”Z
where as usual g=e"° Note that ¢/ depends only on imod C3, that
¢! =0 implies A —4ieQ, and that ¢, =c7 for any we W.
Let g and g be affine Lie algebras associated to simple finite-dimensional
Lie algebras. Suppose there is a embedding i1 g 5 § which preserves the
triangular decompositions and satisfies

(@) dq)=u"Ao,  3)=ud,
(b) (@")=0v,
() @A) uh=_(Alp) for A peh*

The natural injective homorphism Wa W is also denoted by 1. We then
have

iw) - u(A) =1(w- 1) for weW, Aieh*

It follows from the complete reducibility theorem [6, Chap. 10] that any
integrable g-module can be decomposed into a sum of (usually infinite
many) irreducible highest weight modules of level uk as a g-module.

If A€ P let L(A) be the irreducible highest weight module of highest
weight A. Then the character of L(A) can be rewritten as (cf. [6])

1= Y qml*‘zk e‘gcg. (25)
Eeh*(mod C5)
Now let /* be the orthogonal complement of /£* in 7* with respect to the

bilinear form (-|-). Since (-[-) is non-degenerate, we have R =1(h*)® h*.
Note that (W) leaves #* invariant. If £ e h* write

-~

E=1&)+n,  with Eeh* neh*

607/1051-5
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Then as a function on A* we have (g=¢" %)

. — qulpli2h 181202k 01y &+ wip) oA
134,=¢ Yo X g eyt ee;
we W £eh*(mod C4)
— ulpline 18122k ooy ot E+wip) A
- (] Z Z q 8(M ) € CI(H'):

we W Feh*(mod €'3)

:qumﬂ,“zhv Z q\é‘\?uk Z e(w) eu(u~)5+ M'(/))C?

Eeﬂ‘lmod 8) we W

— qulpid2ny §() + 0122k Wy (E) + wip) A

=q 2, g Y elw)e €t
neh* Zeh*imod C§) we W

— gelpl2ny [MEY+ nl2i2k ) ot + wip) A

=q Z > q 2 elw)e™e Cn+ug
neh* Eeh*(mod () we W

gl {0+ nl22k N E+py A

=q 2, 2 4 2 elw)e el
neh* Eeh*imod ) we W

~

Note that cfﬂ(f, =0 unless 7+ 1(¢) e A+ J + C3. Since HQY)cQVY, we
may assume that if {+ p is integral and also regular with respect to W,
then there is a unique i€ P'“* and o€ W such that

E+p=o(l+p)(mod CH).

Therefore we have &+ p=a(l+ p)+ ad for some ae C and

. — gulpli2ny 1+ 1(a(A +p) - p)¥2k + au
2id,=9 2 X g
ix oo pl
neh* ;.ePf’
ce W

wold+py+ad A
x Z 8(W)€ Cﬂ+l(ri(}t+p)——p)
we W
:qulplzﬂh" Z Z q|q+lia(/1+;))fp)f2/‘2k
neh* )_EP‘:‘“
oce W

wal(d+p) A
X Z S(H")e cn+x{a(}.+;}) »)
we W

]

§ 8(0') q|n+l(a(i+p)- P2k + ulp220Y —uli + p)}2uk + hY)
Ae P r]el;‘ age W
N

A
x Aﬂo"nwnuwvm'

Using the identity
a(i+p) o |?
uk+h> hY

la(i+p)—plz+ulplz_ uli+pl®> h¥(uk+h")
2%k 207 Auk + h°) 2k

3

we have obtained.
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THeOREM 3.1, If Ae P, ie P, then the branching function for the
embedding 1. g G § is given by

A__ 1ni3/2k BY (uk + kY )2Kk lo(A+ p)uk +hY —pth¥ |2 3
b/'- - Z q9 z E(U)q Cr,+l(c().+[))~p)’
neh* ceW

(26)

where g=e¢ °.

One of the special case is when ((h*)=/%* Then we call g a regular sub-
algebra of g due to the definition in the finite-dimensional case. We have
the following simple formula.

CorOLLARY 3.2, If g is a regular subalgebra of §, then

i_ (B (ak + B UG+ pYitak + by~ pik |2 1
b= Z e(o)q Woli+pr—p)° (27)
age W

Remark 3.3. Given an affine Lie algebra §, there may exist many
regular subalgebras, for example, E{"' > 4", E{"" o D{", etc.

ExaMmpLE 34. Fix ue N relatively prime to d,. Then
a=a; (u—1)6+x,e A%,

and I, = {0, 2, =&, (0<i</)} forms a set of simple roots for the
so-called winding subalgebra g =g,y of g which is isomorphic to §. For
example, if

§=g®C[tt ']+ Cc+Cd,
which g being the finite parts of g, then
1 1=8RC[t", 7“1+ Cc+ Cd.

Note that the canonical embedding 1 g g ¢ satisfies conditions (a)-(c)
and that if A=Y mA,e P}%, then «(A)=Y m,A;+ (1 —u)kA,. Denote
t=3mA, and 6=§,5,---5, € Wif =3 m,A, and a=s5,58,"5,€WI(s,

§, are simple reflections). Then it is easy to see that
(o(h+p)—p)=6(7+p)—p)+ (1 —u) kdq.

Therefore we recover the following formula due to Kac and Wakimoto

[12].

a_ BV (uk + RV )2K jo(2 + )ik + B ) — pLAvIE A _
b= 3 elo)q Coiap—p+-wiiy  (28)
ae W
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EXAMPLE 3.5. Letg=X%, X=4-D-Eand Ae P}, 1e P Assume in
addition that 1(Q)<= 0. Then e otien_p#0 if and only if n+1(d)e
A+Q+Cé.

Note that we do not assume that g is of type A-D-E. Since for any
ce W,
N _ A
T~ tetivp) - o) = Cntuay
by Theorem 3.1 we get
b1=( X storgrrrrm s o) 3 guint
ceW neh*
Let P(1, 2)= (A —u(2)+ O+ C5 mod C8) n i*. Since we have for 1e P
(cf. [127),

Z g(o.)quhv‘,e‘?_lrt(/t)/‘u*mh\d?:quhV,«ZM,ﬂu«p/'hvyl H (l_q(,ﬂp))mulla’ (29)

ge W xed,

C;‘z — qm— (A1%2 n (1 _ qn)—mult n5, (30)

ne N

we get

- (|22~ (4])32 [ — gli+eip)ymults
Z mUItz(i—né)q,’:q Haed+ ( ql - ) Z q',”Z/Zk.
nez [Thew (1—g"y™" e POLAL

(31)

One notes that if g is a winding subalgebra of g, this result gives
Theorem 2.2 in [12], which was originally conjectured in [5] for the
simply laced A-D-E type. Note also that we may use this to obtain an
explicit formula for the branching function for the decomposition with
respect to the regular subalgebras. Many such examples were carried out
for small levels in [9] by using the asymptotics of the branching functions.

EXAMPLE 3.6. Let § be an affine Lie algebra of type B, A* =0, and
Ae PV =1{A,, A,, A}, e P! Assume also that 1(Q)c (. Since we have
from [8]

chreh=ciren=TL (=g 'U+q '),

neN

=11 A=g")y (1 +4").

nenN
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Then we have by the same argument as used in [127 that either
mult ;(A—nd)=0, for all ne Z or (A)e Ay+ @ (resp., (A)e A, + Q)

Z multﬁo(i,—ng)q"+ Z mUltjl(i——ng} qn+1x2

neZ nez

=q]),|2,,l2 H (1 _ql).+p);)))mulla I_[ (1 —q")ﬂl(l +qnvl,f‘2)’ (32)

aedy neN

and respectively,

Y multz(i—nd)q"

neZ

:q(|)~|3—»|Alkl)e"2 ]—[ (l _q1).+p|p))mulloz H (1 _qn)IU _qn). (33)

xed, neN

Note that one can generalize most of the results in this section to the
general branching functions for the pair g = g such that g is a semisimple
Lie algebra. As an example, we look at complementary decomposition in
the next section.

4. ON COMPLEMENTARY DECOMPOSITIONS

Recall that the affine Lie algebra g associated to a semisimple finite-
dimensional Lie algebra g is constructed as follows. Let g=g, ® ¢, P -- @ g,
be the decomposition into the simple Lie algeb ras, then

g=8®g® - - ®g, +Cd

where g/ =g,® C[t,t7'] — Cc; with ¢, being the central element of g; and

d the common derivation which acts as #(d/dt) on all gi. Let h, be the
Cartan subalgebra of g;, then the Abelian subalgebra

h=Y (Ch;+ Ce;)+Cd
is called the Cartan subalgebra of g. Put
g, =g/+Cd  and h,=h,— Ce,+ Cd.

Now assumed that s=2. In the following, we consider only the com-
plementary decomposition even though the result can be stated under
sopme general assumptions. Note that the complementary decompositions
were studied in [4] for finding certain duality between branching functions.
From now on we denote g, by g, g, by g, and so on for the corresponding
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objects. Let us ﬁrs~t consider the pair (g, §). Assume that there exists an
embedding i: h* G h* satisfying

(1 ’(A0)=/~10’ 1(5)2&
(2) €@")=0%,  wA)ed,
3y (D) {p))=(Al) for 1, ueh*.

The natural injective homorphisms of Weyl groups W< W is also
denoted by 1. Then i satisfies 1(w)- (1) =1(w-2) for we W, Aeh*

Now we may assume that there exists another embedding i: h*  h*
satisfying conditions (1)—(3) with 1, 4,, J, etc., replaced by i, A,, 4, etc. We
may also assume that

((A) i) =0, for Aeh* ueh*. (34)

Then it is easy to show that i(W), i(W) commutes. N i
Let 4* be the orthogonal complement of 1(h*)+1(h*) in h*. Then A* is
a (W) i(W) invariant subspace of A*. According to the remark in the last
section, we have
THEOREM 4.1. If Ae P, Ae PY, and A e P'Y), then the branching

4 2
Sfunction for the complementary decomposition is given by

bla= Y, 4" Y Y elo)ed)

neh* ceW de b
Rk +hY )2k lo(A+pytk+hY) pibY P+ iy (k+ R )2k 16(A+ p)itk+ kY ) — pihv |2

xXq
x ¢l (35)

n+ua(Ad+p) -pl+ild(A+p)- p)- kg
Proof. From (34) we have
Ww) iOp) Ay = 1(w) Ay + i(w) Ay —kA,.
Then we complete the proof by following the proof of Theorem 3.1.

The following pairs are examples of classical complementary pairs.

EXAMPLE 4.2.
(1) AV®AD <Al

{+m
(2) B"®B. =B,
(3) C;“(—BC“)CC“)'

m I+m

(4) D@D D!

{+m
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{2) {2) (2)
(5) AZI @AZmCA2(/+m]
2) (2) (2)
(6) A%, @A, . < Al my—1
2 2 2
(") DR, @D, <D

I+m+1"

COROLLARY 4.3. Assume that h* = 0 and that g is of A-D-E type
and AeP'), AePV, A e PV, Then either all branching coefficients
mult {(A® A—nd)=0 or UM +i(A)e A+ Ao+ 0 and we have a product
expansion

Y mult {(A®A—nd)q"

nesd P P .
_ A+ plohymult « . _ gl +p | grymult %
(A2 + (412 14022 [Lea, (1—¢ ) Zied* (I—¢ )

=4 H' 3 (1_q12+ﬁjﬁ))mulli
ded,

(36)

Proof. Use formulas (29) and (30) and Theorem 4.1.

Remark 44. U the pair is A]"@® A <4 | then dimh*=1. Put
d=(/+1, m), one has that l(A,)+i(/i,)+neZq+/TD+Q for some 5 e h* if
and only s =i+ j(mod d). By Theorem 4.1 and formula (30) we have either
all mult ;(4,® A, —n8)=0 or s=i+ j(mod d) for which

2, multz(A4,®4,—nd)q"

ned
_ I_IMA+ (1 _q(4.+pip))mulu I—Ided+ (1 _q(A,+ﬁ|p;)munj

B Tlies. (1—g'Ataiprymuz
ded,

(1442 + [Aj12 - |2J|2w2( Z qm1/+1](1+m+1),"d2(n+((l+|)j—mi)d/m(l+l)(l+m+1lh2)

xq

neZz

(37)

Remark 4.5. 1f the pair is B{"'® B, = By}, , Ae P}), Ae P, Ac P},
then either mult (A ® 4 —n8)=0 for all ne Z or y(A)+ i(A)e A+ A, + O
for which an explicit formula can be found from the formula on the string
functions. We have for i(A4) +i(A)e 24, + 0,

Y mult;(A®A—nd)g"+ Y multz(A®A—nd) g2

neZ neZ

A 1 (A+p1p) It

(g iaiy: aea, (L—gUmPIOymIa T, (1= gt dlonymuts
T+ 213 N
[Taca, (1—q! s ioyms

[T (=g "1 +g"7'7), (38)

ne N

=49
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and for (A)+i(A)e A, + A+ O,

Z mult 3 (A ®A—nd) q"

ne”zZ

1 _q(A-+-p|p))mulla 1'—[0_(621+ (] _q(/i+p'|fz))mulld
l—l_ 3 (1 _q(2+5|5))mun&
5ed,

< [T (1=¢") " "(1+4"). (39)

neN

Remark 4.6. If the pair is CV®C <) . we have the following

I+ m?

duality by Kac-Wakimoto [9]: if s=7/+ jmod 2, then
b3 ACHan CPROC) =L (V@ AP AT, (40)

f+m>

(141241417 — 1 44%)2 ILcs,

=q

where A, ,=(n—r)A,+rA, denotes the weight for A{". Note that the
branching functions for the tensor product decomposition have been
expressed in terms of string functions, see [1] and (12).
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