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1. Introduction

Much recent academic research has focused on modeling the evolution of the
term structure of interest rates with a view to valuing interest rate claims. In
particular, the models of Ho and Lee (1986) and Heath, Jarrow, and Morton
(1991, 1992), hereafter HIM, have received considerable attention in the literature.
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In this paper, we test six specific models in the HIM class using transaction
prices of Eurodollar futures and futures options from the Chicago Mercantile
Exchange. For each model, we determine a daily time series of forward rate
volatilities most consistent with Eurodollar futures options prices and analyze
its time series properties. Using these volatility estimates, we test the ability of
the models to predict the next day’s option prices. We document systematic
discrepancies between the various model and market prices, as a function of
option type, maturity, strike, etc. Finally, we test whether the mispricings found
by each model are genuine by testing if these mispricings can be captured by
simple trading strategies. Based on these tests, we provide some recommenda-
tions regarding the type of models that should be used in research and in practice.

The HIM approach offers several advantages over the traditional term
structure models of Cox, Ingersoll, and Ross (1985), Vasicek (1977), Brennan
and Schwartz (1979), and othess. First, HIM models match the current term
structure of interest rates by construction. Second, like the Black-Scholes
model, these models require no assumptions about investor preferences. As
a result, claim prices are completely determined by a description of the variance
structure of interest rate changes. In particular, estimates of drifts or expected
rate changes are not needed. The wide popularity of the Black—Scholes equity
model can be attributed in large part to similar features.

Despite the advantages of the HIM approach, very little empirical work has
been done to test and apply these models to the prices of traded options. The
only studies of which we are aware are Flesaker (1992) and Cohen (1991).! For
compurational tractability, Flesaker tests only the path-independent Ho and
Lee (1986) model using the Generalized Method of Moments. Under the Ho and
Lee model, the volatility of each forward interest rate is constant and indepen-
dent of maturity and interest rate levels. Since Flesaker tests only the constant
volatility form of the HIM model, it is worth investigating whether other
functional forms better describe the data. Cohen (1991) applies HIM models to
assess the efficiency of the Treasury bond futures and options market. His study
uses weekly data and historically estimated volatility functions.

The lack of empirical work examining general HIM models stems from the
difficulty of efficiently implementing them. Only in special cases are closed-form
solutions available for European options. All of these special cases entail
Gaussian interest rates and have been criticized because they permit interest
rates to become negative with positive probability. Therefore, there is a need for
testing alternative specifications.

In general, however, HIM models are path-dependent. In a diffusion frame-
work, this implies that the forward rates of all maturities cannot be represented

'Bliss and Rona (1992) have studied the valuation of Treasury bond futures options using an
extension of the Ho and Lee {(1986) modei proposed in Bliss and Ronn (1989). The model used in
these studies is also an arbitrage-free m.odel. However, this model is not 1n the HIM class of models.
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as functions of a small number of state variables whose evolution is governed by
a Markov diffusion process. In particular, it is not possible to construct discrete-
time approximations in which an ‘up’ move followed by a ‘down’ move yields
the same term structure as a ‘down’ move followed by a.: ‘up’ move.2 Therefore,
the level of computational effor: grows exponentially with the number of steps.
In some cases, Monte Carlo simulation methods can be used [e.g., Cortazar and
Schwartz (1992)], but they are slow and applicable only to European options.
However, advances in compating technology and numerical techniques allow us
to value both American and European options using these models [Amin and
Bodurtha (1994) and Heath, Jarrow, Morton, and Spindel (1992)]. These numer-
ical procedures are bricily described in the appendix. This study is the first
systematic empirical study which implements and tests a broad class of path-
dependent HIM models.

We analyze prices of Eurodollar futures and futures options traded on the
Chicago Mercaitile Exchange. Besides being extremely liquid, the Eurodollar
series allows us to infer a complete initial term structure of forward interest
rates® that is contemporaneous with option prices (which, for example, the
Treasury bond futures and options would not). Given the term structure, under
HJM models, only a volatility function is needed to price and hedge options. We
infer this function from market option prices by parameterizing the functicn and
then estimating parameter values which cause model prices to best match
market prices. Based on these estimates, we test for model fit and parameter
stationarity and set up simple trading strategies designed to exploit mispriced
options.

The paper proceeds as follows. In section 2, we provide a brief description of
the HIM model. In section 3, we describe the data. We develop the concept of
implied volatility in HIM models in section 4. In sections 5 and 6, we fit the
models to the data, and document the systematic biases we find between market
and model prices. In section 7, we test whether simple trading s‘rategies can
capture the mispricings detected by each of the modzls. Section 8 concludes the
paper, and the appendix provides some details about numerical implementation
of the models.

2. The HJM approach

In the traditional models of Cox, Ingersoll, and Ross (1985), Brennan and
Schwartz (1979), Vasicek (19/ /), Dothan (1978), and others, the evolution of the

2This property holds in almost all the discrete-time models used for cqmputing option prices [for
example, Cox, Ross, and Rubinstein (1979), Amin (1991) or Boyle, Evnire, and Gibbs (1989)].

3Forward interest rates carnot be computed directly from futures prices in our framework.
Therefore, this step is not imr ediate, as we discuss in section 4.1.
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entire term structure is inferred from the evolution of the spot interest rate and
possibly another long-term interest rate. In these models, the stochastic process
for the spot interest rate [and the long-term interest rate in the Brennan and
Schwartz (1979) model] is either specified exogenously or determined endoge-
nously from assumptions on investor preferences and technologies. These
models are very useful for studying the relationship between bond prices of
different maturities and how investors determine these prices.

However, the application of these models to the pricing of interest rate options
has been disappointing. Since the models determine the term structure endoge-
nously, they have difficulty matching an observed market term structure. Hull and
White (1990) have modified some of these models to match the initial term
structure, at the price of introducing several time-varying parameters. Moreover,
the models contain several parameters that are difficult to estimate. See, for
example, the differing parameter estimates for the Cox, Ingersoll, and Ross (1985)
model reported by Gibbons and Ramaswamy (1986) and Pearson and Sun (1989).

Ho and Lee (1986) began a new approach to term structure modeling. These
authors take as given the prices of discount bond prices of all maturities and
model the subsequent evolution of this price vector to preclude arbitrage
opportunities. Viewing their bond price movements as term structure move-
ments reveals that under the model the forward interest rate curve moves up or
down in a nearly parallel manner each period. The size of this shift is indepen-
dent of the level of rates. Heath, Jarrow, ana Morton (1992) extend the work of
Ho and Lee (1986) to a continucus-time framework and permit the form of
forward rate changes to be specified almost arbitrarily. In particular, many of
the processes specified for the evolution of spot interest rates in the literature can
be treated as special cases of HIM models by appropriately specifying the
volatility of forward interest rates. For example, by <pecifying the volatility
function to be an exponential function of time to maturity, we obtain the spot
rate process assumed by Vasicek (1977).

A: = prelude to our analysis, we provide a brief description of the HIM class
of m..dels. We first remark that we only need to describe the evolution of rates
unde: the risk-neutral or martingale measure [Harrison and Pliska (1981) and
HJM]. Under complete markets, only the evolution of asset prices under this
measure is relevant for claims pricing.

Let f(¢t, T) be the forward interest rate at date ¢t for instantaneous and riskless
borrowing or lending at date 7. At each trading date t, HIM specify the

evolution of forward interest rates of every maturity T simultaneously according
to the stochastic differential equation:

df(¢, T)=oft, T,-)dt + a(t, T, f(t, T)dW(), (1)

where W(t) is a one-dimensional standard Brownian motion and a(t, 7, -) and
o(t, T, f(t, T)) are the drift and dispersion coefficients for the forward interest
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rate of maturity 7. In general, the drift coefficient for each maturity T depends
on the forward rates of all other maturities s such that t < s < T. This depen-
dence is represented by - as the third argument of a(t, T, -).

The notable feature in (1) is that the evolution of forward interest rates of all
maturities is simultaneously and exogenously specified. In the spot interest rate
models of Cox, Ingersoll, and Ross (1985) or Vasicek {1977), only the evolution
of the spot interest rate is directly modeled. The evolution of other rates is
inferred from that of the spot interest rate.

The function a(t, T, f(t, T)) represents the instantaneous standard deviation
(volatility) of the forward interest rate of maturity T at date ¢, and can be chosen
rather arbitrarily. In fact, the choice of () completely determines all claim
prices, since for each such choice, the drifts a(t, 7, -) are uniquely determined
under the risk-neutral measure by the no-arbitrage condition:

T

at, T,-)=a(t, T.1(t, T))[J

t

a(t,u,f(t, u))du] . (2)

In this paper, we focus on single-factor HIM models, i.e., models in which ail
interest rate changes are driven by a single source of uncertainty. Since we study
only Eurodollar futures and their options, which generally mature in less than
one year, there is insufficient variation in the term structure across different
maturities to require the use of a multi-factor HYM model. Although Eurodollar
futures options of longer maturities have been trading since early 1992, the
trading volume in these options is quite small, and their prices are accordingly
less reliable. As Dybvig (1990) shows, almost all of the variation in forward rates
with maturities less than five years can be explained by a dominant single factor.
Further, from an estimation perspective, it is not possible to reliably disentangle
the effects of two factors in the HIM class of models with only short-term futures
and futures options data.

Consider the valuation of interest rate claims under HIM models. Under the
risk-neutral measure, the instantaneous expected rate of return on every traded
security equals the spot interest rate. Therefore, the futures price for a continu-
ously-marked-to-market futures contract follows a martingale, since opening
a futures position requires no investment. If the futures price at date ¢ for
a contract that matures at date T is F(t), then

Fr() = E[Fr(T)], 3)

where F;(T) is the futures price at maturity, which equals the spot price at date
T, and E, denotes the expectation with respect to the risk-neutrai measure
conditioral on the information set at date t.



146 K.I. Amin and A.J. Merton, Implied volatility in term structure models

If the price of an European option at date ¢ is represented by C(t), and this
option matures at date 7, then

T
C(t) = E,[C(T)exp(—-f r(u)du)], “4)

where r(u) = f(u, u) is the spot interest rate at date u. Given the option value at
the maturity date as a function of the state variables, we can compute its value at
any prior date from the above equation. American options can similarly be
valued by the equation:

6
C(t)= sup E:[Ga(°)eXP(— j r(u)du)], )
0eT [t, T] t

where Gg(-) is the payoff to the option when it is exercised at date 0 and I [¢, T']
is the class of all early exercise strategies (stopping times) in [t, T]. Further, Gg(+)
can be any function of current and past realizations of the term otructure.

In practice, we need to discretize (1) under the risk-neutral measure by
building a path-dependent, binomial-type model (some details on effective
numerical procedures are provided in the appendix). Using the discrete approx-
imation, we can accurately value Eurodollar futures and futures options by
backward induction.

3. Eurodollar futures and futures options

Eurodollar futures began trading in December 1981 on the Chicago Mercan-
tile Exchange (CME). Identical futures contracts are now also traded on tl.:
London International Futures Exchange (since 1982) and the Singapore Inter-
national Monetary Exchange (since 1984). Eurodollar futures options have been
traded on the CME since March 20, 1985. The trading hours for both Euro-
dollar futures and options are 7:20 am CST to 2:00 pm CST on the CME.

Table 1 reports the annual trading volume in Eurodollar futures and Euro-
dollar futures options over the last decade. These volumes are approaching
those of Treasury bond (T-bond) futures and futures options contracts, which
are the most heavily traded interest rate futures and futures options contracts,
respectivaly. In fact, the open interest in Eurodollar futures and options is now
much higher than that for T-bond futures and options.

Besides being extremely liquid, the Eurodollar contract is well suited for our
study for two reasons. First, we can use Eurodollar futures prices to generate
a complete initial term structure as required by the HIM approach. This is not
possible with T-bond futures. Since the underlying instrument for the T-bond
contract can be any bond with at least 15 vears to maturity, while the futures
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Table 1
Annual trading volume for Eurodollar futures and futures options.

This table reports the annual trading volume in thousands of contracts for Eurodollar futures and

futures options traded on the Chicago Mercantile Exchange during 1983-1992. For comparison, the

trading volume (in thousands of contracts) for Treasury bond futures and futures options traded on
the Chicago Board of Trade are also reported.

Volume in thousands of contracts

Futures options

Futures
Eurodollar Treasury bond
Treasury
Year Eurodollar bond Calls Puts Calls + puts
1983 891 19,550 —b —b 1,664
1084 4,193 29,963 —b —>° 6,636
1985 8,901 40,448 366 377 11,901
1986 10,825 52,598 1,007 750 17,314
1987 20416 66,841 1,045 1,525 21,720
1988 21,705 70,307 1,219 1,380 19,509
1989 40,818 70,303 3,190 2,811 20,784
1990 34,696 75,499 3,878 2,982 27,315
1991 37,244 7887 4,310 3,565 21,926
1992 60,488 70,003 7,408 6,297 20,259

aSource: CBOT and CME.
®Contract was not traded in that year.

contracts mature in less than a year, a complete initial term structure cannot be
computed using only futures prices. To compute the entire term structure would
require simultaneous prices of all Treasury bills, notes, and bonds of all maturi-
ties on a frequent basis. Further, using transactions prices is clearly infeasible.
Second, the cash-settled Eurodollar contract does nct involve any complicated
delivery and timing options which are inherent in the T-bond futures contract
[see Gay and Manaster (1986) for a description of these implicit options].

Eurodollar futures trade with up to five years to maturity and with almost the
entire trading volume in contracts that expire in March, June, September, and
December. The last trading day for each contract is the second London bank
business day before the third Wednesday of the contract month. At maturity
date T, the quoted futures cash settlement price is

F4(T) = 100[1 — y(T)] . (6)

where y(T) is the three-month annualized add-on yield on Eurodollar time
deposits* (three-month LIBOR). The minimum change in the quoted futures

*The add-on yield is defined so that the actual interest payment on a three-menth Eurodcllar time
deposit based on the add-on yicld is y(T) x number of calendar days for investment/360. The LIBOR 1s
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price is 0.01 and corresponds to a basis point or tick. Each futures contract has
a $1 million notional amount. Each basis point change thus represents a price
change of $1,000,000 x $ x0.01% = $25.

The options on this contract are American with the same maturity date as the
futures. Upon exercise, the owner of a call option essentially receives the cash
difference between the current futures price and the exercise price.> The owner of
a put option receives the cash difference between the exercise price and the
current futures price. One option covers one futures contract, and like the
futures contract has a minimum quoted price change of 0.01 (one basis point or
tick), equal to $25. The dollar value of an option is equal to the quoted option
price times $2,500. The trading volume is concentrated in options with maturi-
ties of less than a year. Since January 1992, options with up to two years in
maturity have also been traded. However, the trading volume in these long-term
options is quite small.

3.1. Duta

We use the Chicago Mercantile Exchange’s (CME) time and sales database
containing transactions prices of Eurodollar futures and Eurodollar futures
options from January 1, 1987 to November 10, 1992. For each type of contract,
the database consists of a record for each transaction that occurred at a different
price from the previous price. The data also contains bid and ask quote prices if
the bid price exceeds or the ask price is smaller than the last transaction price.

For our analysis, we need to select contemporaneous options and futures
prices on each datc. Unfortunately, the CME does not record every transaction
in the database, but only transactions which took place at a different price from
the previous transaction. Therefore, it is not possible to determine at any instant
the time of the last transaction, even though the price of the last transaction is
known. To mitigate this problem, we select the last traded price as of 8:30 am
CST for each of the futures and futures options contracts. Since trading com-
mences at 7:20 am CST, this yields approximately a one-hour window from

determined as follows. The CME conducts two surveys of 12 London banks which are randomly
selected from a list of no less than 20 banks. The first survey is conducted sometime during the
hour-and-z-half just before the close of trading in the expiring contract; the second takes place right
at the close. The banks are polled on their ‘perception of the rate at which three-month Eurodollar
time deposit funds are currently offered by the market to prime banks’. The two highest and two
lowest rates are eliminated in each survey and the remaining rates are averaged and then rounded to
the nearest basis point to arrive at the current LIBOR rate used for settlement.

3The call owner actually obtains a long position in the futures contract with a futures price equal
to the exercise price. The call writer receives a short futures position. On marking-to-market, the
owner obtains the cash difference between the marked-to-market futures price and the exercise price.

For the purpose of valuation, we assume that .he owner receives the difference between tke futures
price and the exercise price.
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which the prices are determined. A second reason for using these prices is that
we can fit an implied volatility function based on these prices, and then set up
trading strategies which can be implemented based on prices later in the same
day. This approach ensures that there is no data-snooping inas and yet permits
us to trade based on up-to-date information.

Table 2 summarizes the data selected above based on strike prices and
maturities. On average, we have 9.3 calls and 9.2 puts every day. We eliminate all
futures for which there were no options of that maturity, yielding an average of
4 futures contracts per day. The last column of table 2 reports the average
trading volume per day in each category during 1989 and 1990, the middle two
years of our sample period. These volume numbers were obtained from a sepa-
rate dataset supplied by the CME, containing settlement prices and the trading
volume. The CME supplies a limited amount of data free of charge; we obtained
the Stats database only for the middle two years of our sample period. The
trading volume in each category indicates the liquidity of the options as strike
price and maturity vary.

4. Implied volatility

As in the Black-Scholes equity model, the HJM approach to interest rate
modeling ensures that claim prices are determined through ‘volatility’ param-
eters (dispersion coefficients in stochastic differential equations), not through
drifts or risk premia. However, in the Black—Scholes model a single scalar carries
all volatility information, whereas in HJM models the volatility function must
describe the stochastic evolution of the entire term structure curve. We focus on
models possessing the ‘time invariance’ property that a(t, T, f(t, T)) depends on
t and 7 only through T — t. In other words, given a term structure at time ¢, the
form of its subsequent evolution through time depends only on the term
structure, not on the specific calendar date ¢.

Even with the time invariance assumption, a rich class of volatility structure
remains. Since our numerical procedures price under arbitrary volatility func-
tions, we have no a priori restrictions on the class of volatility functions. We
have chosen the following six forms:

(1) Absolute [continuous-time Ho-Lee (1986)]): () = oo,
(2) Square Root: () = ao f(t, T)'?,
(3) Proportional:® a(-)=aof(t,T),

SHJM require that their volatility functions be bounded. Therefore, we cap this volatility function
at aof *. For sufficiently large f* there is no effect on prices.
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Table 2

Summary statistics on number of futures and futures options, average price, and standard deviations
of prices classified by maturity and moneyness.

All prices are reported in basis points (multiples of $25). Number of trading days = 1,483. Total

number of observations (options only) = 27,368. Average number of futures per day = 4.001.

Average number of calls per day = 9.3. Average number of puts per day = 9.2. Futures for which

there were no traded options oi the correspouding ™aturity were eliminated from the sample. The
sample period is January 1, 1987 to November 10, 1992.

Standard Average

Average deviation daily volume
Maturity® Moneyness® N¢ price of price  per contract?
Futures
Short 1,478 9,283.9 180.8 61,455
Medium 1,456 9,274.2 175.2 65,227
Long 3,004 9,247.5 1624 8,561
Calls
Sho.t Out 843 8.00 437 2,102
Short At 2,396 17.59 ¢ 36 2,374
Short In 1,887 76.24 46.46 442
Medium Cut 2,474 12.45 7.60 912
Medium At 2,363 29.13 10.84 1,477
Medium In 1,438 83.20 43.06 415
Long Out 2,224 18.19 10.32 242
Long At 1,948 40.95 13.22 253
Long In 1,046 101.85 48.69 234
Puts
Short Out 1,024 8.38 4.77 1,638
Short At 2,319 17.45 9.18 1,858
Short In 1,259 64.54 3591 370
Medium Out 2,923 12.55 7.53 664
Medium At 2,378 29.70 11.09 1,121
Medium in 1,009 72.28 33.53 348
Long Out 2,830 18.97 10.87 185
Long At 1,916 4141 13.14 243
Long In 659 88.03 37.80 135

*Short: maturity < 90 days, medium: 90 < maturity < 180 days, long: maturity > 180 days.

®Out (out-of-the-money options): at least 25 basis points out-of-the-money, at (at-the-money
options): | Strike price — Futures price| < 25 basis points, in (in-the-money options): at least 25 basis
points in-the-monev.

°N = total number of observations in data sample for that classification.

dAverage number of contracts traded per day per contract during 1989 and 1990.
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(4) Linear Absolute: a(-) = [6¢ + 6,(T —1)],
(3) Exponential [Vasicek (1977)]:" o(-) = agexp[ — A(T —t)], and
(6) Linear Proportional: o(-) = [6o+ 6,(T— 0], T).

The first three functions contain one parameter, the others contain two. All
these volatility functions are nested by the function:

o(t, T.f(t, T) = [60 + (T — t)]exp[ — (T — )] 1, T),

which contains four parameters: 6, 64, 4, and y. Since we infer these parameters
from the prices of options which expire in under two years, we are unable to
isolate the individual effect of four parameters directly.® Consequently, we
impose specific functional forms on the volatility function and test these speci-
fications separately. Although futures contracts with maturities of up to five
years trade, the effect of volatility on futures prices is nearly model-independent,
and so information about volatility structure cannot be extracted from futures
prices.

4.1. Estimation of implied volatility functions

Since HIM model the evolution of forward interest rates, as opposed to
futures rates or yields,” we first need to estimate the forward interest rates. If the
forward prices of three-month discount bonds for each of the futures maturities
were available, we could compute three-mor.th forward interest rates easily. By
assuming that the instantaneous forward interest rate curve is flat between

"This function vields an Ornstein-Uhlenbeck process for the spot interest rate as assumed by
Vasicek (1977). See Brenner (1989) for a proof.

8For example, we attempted to estimate the volatility function given by
ot, f(t, T)) = 0o f(t, T),

by trying to imply out both 6, and y. The parameter estimates were highly unstable. The standard
errors as measured by the inverse of the Hessian were typically of a higher order than the parameter
value. Also, the parameter estimates were highly dependent on the initial starting point in the
iterative procedure.

Another possibility is to restrict the values of y in a finite set (for example [0, 4, 1]) and each date
iterate over only these values of 3. However, this implies that each day we will use qualitatively
different models. For example, on date 1 we might use an absolute model, on date 2 we might use
a proportional model, and on date 3 we might use a square root model. This kind of model switching
seen1s unsatisfactory.

°'t is not possible to simply reparameterize the model in terms of the evolution of futures yields
(rates) obtained by inverting (6). For example, we could define the three-month futures yield (rates) at
date t for maturity date T as y{(t) = 1 — F{1)/100, and try to work with these yields. However, this
reparameterization poses difficulties in valuing many types of claims. For exampite, this futures term
structure is not sufficient to value even a pure discount bond.
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available maturities, we could then obtain a good approximation of the entire
term structure.

However, such forward bond prices cannot be readily «....: -uted from futures
prices due to two complicating factors. First, futures prices -+ #2s) are not equal to
forward prices (rates) when interest rates are stochis.i. >eomd, even il we
abstract from the daily marking-to-market feature of © -*-ir2s .r:*racts, an unam-
biguous forward price does not exist which corresponds o ¢:1¢ Zurodollar futures
price. This follows since the terminal futures price is based on a three-month yield
and is not a linear function of the price of a traded spot asset (such as a bond).
Therefore, the usual arbitrage arguments cannot be used to define forward bond
prices and corresponding forward interest rates.!® Thus, we compute the term
structure of forward interest rates in an iterative fashion as described below.

We assume that each model correctly prices all futures contracts. We estimate
forward interest rates for each futures maturity date and linearly interpolate
between these dates to obtain the forward interest rates for other maturities. The
forward interest rate curve up to the first available futures maturity is assumed
to be flat.

Each dayv we carry out our estimation in two stages. In the first stage, we use
futures prices and the previous day’s volatility function to determ:ne a piecewise
flat forward interest rate term structure. In the second stage, given the term
structure determined from the first stage, we use futures option prices to
estimate the volatility parameters. We now describe the details of this procedure.

Let 6 = (,,...,0,) be a vector of m parameters determining the volatility
function. At each date ¢, let @, = (f(t, T,),f(t, T2),. .., f(t, T;)) be a k-dimen-
sional vector of forward rates for maturity dates Ty, T, . . ., T, which are the
maturity dates of the futures contracts available on date t. The maturity dates of
the forward rates in @, are approximately thiee months apart since futures
contracts mature approximately every three months. Our term structure at date
t is completely defined by the vector @, since we assume that the forward rates of
all intermediate maturity dates are obtained by assuming that the rates are flat
between maturity dates in @,.

In stage one, we estimaie the term structure of forward interest rates (®,) by
fixing the imphed volatility function () from the previous day and using the
Levenberg-Marquardt procedure!! to compute forward interest rates such that
the sum of the squares between model futures prices [from eq. (3)] and market
futures prices is minimized. Since we estimate as many points on the term
structure as there are futures contracts, the model futures prices exactly match
market futures prices. This first step is carried out without using option prices.

1%We are grateful to Johr Long for pointing out this second reason why futures prices do not
equal forward prices.

1See Press et al. (1988) for a description. The Levenberg-Marquardt procedure is simply an
efficient numerical procedure for minimizing a weighted sum of squares.
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In the second stage, we again use Levenberg-Marquardt, but we fix the input
forward rates (-3,) determined from stage one, and vary (6). More specifical'y, we
minimize the sum of squared errors

Y (Vi) — Vi1, (7)
i=1

where V(60) is the model price of the ith option, V; is the corresponding market
price, and n is the number of options in that day’s sample.

Other methods of implied volatility estimation are certainly possible. For
example, a weighted sum of squares might be appropriate if information on the
precision of a price (such as the bid—ask spread) were available. Or one could
argue that we should weight deep-in-the-money options lcss, since otherwise
their large prices wiil unduly affect our sum of squares. However, only a small
part of the large price of an in-the-money option is sensitive to volatility, and
only this part will affect the estimation. Finally, note that our minimization
implicitly weights options by their sensitivity to volatility: setting the derivative
with respect to 8 of (7) to zero gives

Z P o) - 7a=0. ®)

=1

After the above two steps, we could reestimate the term structure using the
new volatility function and futures prices and then, using this new term struc-
ture, recompute (6) minimizing (7). In practice, we fcund this iterative procedure
unnecessary. Although the gap between futures rates (see footnote 9 for a defini-
tion of futures rates) and forward rates is nomntrivial, the size of this gap does not
depend on whether the previous day’s volatility function or the current day’s
volatility function is used.

Using this procedure, we compute a time series of implied volatility para-
meters on each day during our sample period.

2. Estimated implied volatility functions

We compute a daily time series of the implied volatility parameters for the six
different models described earlier. Fig. 1 shows the imputed single parameter of
the proportional and absolute models on every fifth day (because of the large
sample size). The parameter of the absolute model is scaled by ten to make the
numbers similar in magnitude.

Parameter estimates across models are not directly comparable since the
volatility functions differ in form. To compare across models, one must compute
the volatility of forward rates as implied by the instantaneous standard
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Proportional and Absolute implied
Volatility Parameters (1987-92)
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o
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The absolute implied volatility parameter is scaled by ten.

Absolute Spot Rate Volatility(1987-92)
Absolute and Proportional Models
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—— Absolute Model - Proportional Model
The negative of the absolute volatility is plotted for the proportional model.

Fig. 1. Implied volatility parameters and absolute implied volatility for absolute and proportional
models.

This figure plots the daily time series of estimated implied volatility parameters (6o) on an

annualized basis and the absolute implied volatility of the spot interest rate for the absolute

volatility [a(t, T, f(t, T)) = 6] and the proportional volatility {a(t, T, f(¢t, 7)) = oo f(t, T)] models.

For the absolute volatility graph, the negative of the absolute volatility is plotted for the propor-

tional modei to distinguish it from the absolute volat.lity from the absolute model. The data period
is January 1, 1987 to November 10, 1992.

deviation of changes in forward interest rates, a(t, T, f(t, T)), for each of the
models. For example, consider the proportional model. The volatility function is
a(t, T,f(t, T)) = 0o f(t, T). Therefore, the absolute volatility of the spot rate
equals o¢f (¢, t) and that of the one-year forward rate equals ao f(t,t + 1). Fig. 1
also shows a plot of the implied absolute volatility of the spot interest rate
obtained from the absolute and proportional models.

Fig. 1 demonstrates that implied volatilities vary significantly over the six-
year period. This is not particularly surprising, since the implied volatili'y may
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be viewed as representiag the market’s conditional expectation of future volatil-
ity, and realized volatility of rates does fluctuate significantly [Engle, Ng, and
Rothschild (1991)]. In the equity market, we know that there is significant time
series variation in realized volatility [Schwert (1989)], and Harvey and Whaley
(1992) document similar variation in the volatility implied from Standard and
Poors 100 index option prices.

Of course, our six models posit that volatility parameters (measured different-
ly in each) are constant. For this reason, a formal test of model fit would
probably reject any of our models [Flesaker (1992) rejects the Ho—Lee (1986)
model largely for this reason]. One possibility is that a second driving factor is
influencing the evolution of rates, and manifests itself in the form of time-varying
parameter estimates. However, it is unlikely that this second factor (if it exists)
appears as an additive factor in (1). As we argued earlier, with options on
short-maturity instruments, we cannot distinguish between muitiple additive
factors. After an analysis of historical forward rates with maturities of up to five
years, Dybvig (1990) states that ‘the second factor (if any) in a term structure
model should be related to the variance or other distributional features of
interest rates, not additive in levels of interest rates as is usually assumed’.

Therefore, we may want to attempt to model the random evolution of the
volatility itself, via the so-called stochastic volatility approach. Some problems
can arise, however. First, prices in stochastic volatility models are not deter-
mined solely by arbitrage; one must specify the risk premium associated with the
stochastic volatility. Moreover, such models would necessarily require more
parameters, and would therefore exacerbate the problems of stable estimation
that arise even in our two-parameter models. Finally, for options not too far
from the money, prices in stochastic volatility models [Hull and White (1987)]
are of similar form to those in a constant volatility model, with volatility terms
in the latter replaced by their conditional expected levels in the stochastic
volatility environment. Thus, using a constant volatility model with market-
implied volatility parameters achieves nearly the same effect.

Although our implied volatility parameters vary over time, they do not
appear to be unstable. A qualitative difference in the behavior of the absolute
and proportional models appears in the second half of 1992, when short-term
rates were very low. Implied proportional volatility increased dramatically,
while implied absolute volatility did not. A similar phenomenon occurs with
equity options in that (proportional) volatility rises as equity prices decline and
vice versa (the so-called leverage effect).

In table 3a, we report the mean, standard deviation, coefficient of variation,
and autocorrelations in the parameter estimates for each model tested. Notice
that the coefficients of variation are significantly higher for the two-parameter
models relative to the single-parameter models. Further, the slope parameter
(6,) for the linear absolute and linear proportional models and the exponent
parameter (1) for the exponential model have very high coefficents of variation
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and these parameter estimates are not very reliable. Finally, the standard errors
in estimating these parameters are much higher (results are not reported) than
those for the other parameters even on a day-by-day basis.

The autocorrelations and the results of the Dickey—Fuller tests demonstrate
that in each case the time series of volatility parameter estimates is stationary
and mean-reverting. The first order correlation, p,, of the first difference in the
time series of daily parameter estimates is — 0.12 for the proportional model,
— 0.19 for the square root model, and — 0.26 for the absolute model.

The autocorrelation values are similar to those found for Standard and Poor’s
100 (OEX) options. Using a dividend-adjusted Black-Scholes model, Harvey
and Whaley (1992) compute the first- and second-order autocorrelations in the
implied volatility series as — 0.18 and — 0.11 for OEX call implied volatilities
and — 0.15 and — 0.12 for OEX put implied volatilities. All the options prices
used to compute their implied volatilities are sampled from a ten-minute
window using transaction prices. Therefore, it is quite unlikely that their volatil-
ity estimates are significantly affected by asynchronous prices. Since our num-
bers are similar to those of Harvey and Whaley (1992), it is unlikely that the
asynchronous trading problem is very serious. Recall that our options and
futures prices are all obtained during the first hour of trading and the Eurodollar
futures and options market is extremely liguid.

For the two-parameter models, the first-order autocorrelations, p,, for the
daily change in the parameter values are also negative, and larger in magnitude.
For the exponential model, p, is — 0.32 and — 0.46 for changes in 6, and 4,
respectively. However, for all models, the autocorrelations beyond the second
lag are insignificant. The larger magnitudes of p, (and the coefficents of vari-
ation) are consistent with the hypothesis that the two-parameter models are, in
part, fitting to noise and bid-ask bounce. Later we shall see other evidence of
this phenomenon.

Under the absolute model, the slope of the estimated volatility function, a,, is
positive on average. Under the exponential model, A is negative on averags.
Thus, the estimated volatility of the one-year forward rate is higher than that of
the spot rate. However, we have made some ‘market snapshot’ studies of
longer-maturity caps and swaptions prices. Implied volatility functions for these
instruments exhibit a hump in the volatility structure; in the Eurodollar data we
see one side of the hump. Finally, notice that the average slope of the volatility
function under the linear proportional model is negative. Therefore, the propor-
tional volatility of the one-year forward rate is lower than the proportional
volatility of the spot interest rate. This seems to be due to the fact that the term
structure is upward sloping throughout most of our sample period.

In table 3b, we report similar statistics as in table 3a, but with absolute
volatilities of the spot rate, f(t,t), and the one-year forward interest rate,
f(¢, t + 1). The absolute volatilities are very similar across models. The one-year
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forward rate volatility is now higher on average than the spot rate volatility in
all models except the absolute (where equality of absolute volatilities across
maturity is ensured by construction). However, the absolute volatility of the
one-year forward rate is much higher for the exponential model than for the
other models. Suppose that the absolute volatility is truly increasing with
maturity. When fitting the exponential model to option prices, the fitting
procedure will choose 4 to match the majority of options which are short-term
options. The value of 4 necessary to generate the increases in volatility at the
short end of the term structure will force high volatility at the one-year maturity
because of the exponential function. This interpretation seems to argue against
a good fit to the data with the exponential model.

The autocorrelations are similar to those reported for the actual parameter
estimates in table 3a. In conjunction with the results of the modified
Dickey-Fuller tests, they indicate that the absolute volatility time series is

strongly mean-reverting and stationary irrespective of which model is used to
compute the volatility.

6. Pricing options using lagged implied volatility

For our predictive tests, we compute each day the term structure of forward
rates by using the previous day’s implied volatility function and the current
futures prices. Using this estimated ierm structure and the previous day’s
implied volatility function, we then compute the model value for each option.
This value is the simple model forecast. The forecast error is cqual tc :he differ-
ence between the true market price observed on that day anc ii:e forecasted value.

We first present some simple summary statistics. In table 4a, we summarize
the model errors for each of the volatility functions. The average forecast error is
close to zero, even in the cut-of-sample fit.

In the third column of the table, we report the average abs::iirte error in basis
points (ticks) for each of the volatility functions for the enti;¢ pooled dataset.
Recall that 2 basis point represents the minimum price change of $25. Notice
that the average absolute error for the absolute madei is significantly higher
than that for any of the other models. The averag:: aksol:ie error is of the order
of one-and-a-half basis points for the linear proportizizi model and approxi-
mately one-and-a-half to two basis points for the other models. Since the
bid-ask spread in this market is roughly one basis point (both for the futures
and ior the futures options), the fit of the models is good. Recall that these
models use one or two parameters (estimated out of sample) to simultaneousiy
generate an average of 18.5 option prices each day.

In the fourth column of table 4a, we report the corresponding average
absolute fractional errors. The fractionai error is computed as ihe error divided
by the market price. The average absolute fractional error is fairly high (15.2%
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Table 4a
Summary error measures with six different volatility functions.

This table reports measures of model forecast error (measured in basis points) for six different

volatility functions. The previous day’s implied volatility function is used to obtain out-of-sampic

model forecast prices for the next day. The in-sample model prices (errors) are based on fitting an

implied volatility function to the current day’s option prices. The implied vclatility function is

computed based on minimizing the sum of squares of errors between market prices and model

prices. The sample period is January 1, 1987 to Novemeber 10, 1992 and there are 13,743 calls and
13,625 puts in the data sample.

Out-of-sample forecast®

In-sample®
Av. abs. err. av. abs. err.
Av. abs.  Av. frac.

Volatility function Av. err. err. abs. err. Calls Puts All options
Absolute - 013 2.23 0.211 2.13 2.32 1.95
Square root - 0.12 1.94 0.188 1.88 201 1.71
Proportional — 0.06 1.76 0.173 1.76 1.77 1.55
Linear absolute 0.01 1.76 0.171 1.63 1.90 1.36
Exponential - 0.11 1.85 0.176 1.73 1.98 1.36
Linear proportional® — 0.06 1.57 0.152 1.56 1.59 1.17

*Forecast error = [Market price — Model forecast price] in basis points (or multiples of $25).
Av. err. = average forecast error in basis points. Av. abs. err. = average absolute forecast error in
basis points. Av. abs. frac. err. = average of (Forecast error/Market price).

bBased on the signs test, we can reject the hypothesis with probability at least 0.99 in each case
that any of the other models has a lower absolute error than the linear proportional model.

Tatle 4b
Correlations between forecast errors across six volatility functions.

This table reports the correlations between the out-of-sample forecast errors in option prices with six
different volatility functions for the period January 1, 1987 to November 10, 1992.

Square Linear Linear
Volatility function Absolute  root  Proportional absolute Exponential proportional

Absolute 1.0

Square root 0.97 1.0

Proportional 0.86 095 1.0

Linear absolute 0.49 0.51 0.50 1.0

Exponential 033 0.35 0.35 0.87 i.0

Linear proportional 0.38 046 0.53 0.87 0.86 1.0

for the linear proportional model). However, these numbers are driven by the
large fractional errors for options that are well out-of-the-money. The small
prices of these options magnify even small pricing errors into large iractional
errors. However, since these options also have very low volume, the average
absolute fractional errors are less meaningful than the average absolute errors.

Because the two-parameter models nest the single-parameter models, ilicy
will always provide better in-sample fits. But, they may not perform as well
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out-of-sample, due to the possibility of overfitting to noise. In our case, however,
the linear absolute and exponential models fit better than the absolute model
which they nest, and the linear proportional model fits beiter than the propo«-
tional model. This is true with one-day-ahead forecasts. In section 7, we will also
compare the ability of the models to explain option prices over longer periods
and compare models based on their ability to detect genuine pricing errors
which can be exploited using trading strategies. A given model may not be able
to uncover genuine pricing errors that persist over time if they are simply
incorporated into misestimated parameter values. Our tests in section 7 will
disiinguish the models based on this yardstick.

Table 4b demonstrates the importance of the number of parameters in
determining the behavior of a model. In both the one- and two-parameter
groups, the lowest correlation between models is 0.86. Although the errors in all
six models contain a common component due to noiss in prices, bid-ask
bounce, presence of a possible second interest rate factor, etc., the large correla-
tion within the one-parameter and two-parameter classes implies that the choice
of the number of parameters has as great an imipact on Eurodollar options
prices as the form of the model.

In figs. 2 and 3 we plot the average forecast error as a function of time to
maturity and option moneyness, where moneyness is defined as the futures price
less the strike price for calls and strike price less the futures price for puts. For
puts and calls separately, the options are grouped into eight categories contain-
ing an equal number of options, with the average value of the maturity/money-
ness for each group shown on the X-axis. Fig. 2 shows that all models tend to
overprice short-dated options of both types. The one-parameter models
compensate by underpricing the longer-dated options, particularly puts.
The two-parameter models overprice medium-term options, and in fact end
up underpricing the long-term options, particularly calis. However, the two-
parameter models are a better fit for long-dated puts. This is one reason why the
two-parameter models produce lower fitting errors than the one-parameter
models.

Fig. 3 exhibits the pattern of mispricing as a function of moneyness. The linear
absolute and exponential models overprice almost all calls, except far-in-the-
money ones. The other models underprice out-of-the-money calls and overprice
nearer-to-the-money calls. For puts, the pattern is stronger and similar across
models. All models seem to overprice in-the-money puts and underprice out-
of-the-money puts. However, notice that the average error for at-the-money
calls {puts) is smaller than that for other calls (puts). In trader parlance, there
seems to be a ‘smile effect’ for both calls and puts.

To study possible systematic biases in more detail, we run the following
cross-sectional regression separately for calls and puts:

0=o0o+a,0+e¢, (S)
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Fig. 2. Forecast error as a function of maturity.

This figure plots the forecast error as a function of the option maturity separately for calls and puts.

All the options are sorted by maturity and grouped into eight categories containing an equal number

of options. The average maturity for each of the eight groups is plotted on the X-axis. The units for

all prices are basis points (multiples of $25). The sample period is January 1, 1987 to November 10,
1992

where O is the market price, O is the model price, and ¢ is the error. The results
are summarized in table 5. The average prediction error is quite small, except for
puts under the exponential and linear absolute modeis. The high R-square is not
very surprising. It is also evident in implied volatility tests of equity options
[Whaley (1986)]. The F-statistic of the joint test that o; =1 and oy =0 is
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Average Forecast Error with Moneyness
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Fig. 3. Forecast error as a function of moneyness.

This figure plots the forecast error for calls and puts separately as a function of moneyness (futures
price less strike price for calls and strike price less futures price for puts). All the options are sorted by
moneyness and grouped into eight categories containing an equal number of observations. The
average moneyness for each of the eight groups is plotted on the X-axis. The units for all prices are
basis points (multiples of $25). The sample period is January 1, 1987 to November 10, 1992.

overwhelmingly rejected for all models. The large size of the data sample implies
that even small mispricings are evident from the regression. [See Melino and
Turnbull (1990) for a similar observation in the context of foreign currency
options.] However, if we take the view that ‘it takes a model to beat a model’,
then we are only concerned about relative performance. Correspondingly, our
objective is to study which model is the most consistent with the data.
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Table 5
Overview of mode! performance.
Regression results for
Market price of option = ag + oy Model forecast price + ¢,

for six different volatility functions. The T-statistics [adjusted for heteroskedasticity using White

(1985)] for p = 0 and a; = 1, respectively, are reported in parentheses below each coefficient. The

previous day’s implied volatility function is used to forecast the current day’s prices using the current

forward interest rates. The model and market prices are expressed in basis points. The sample period
is January 1, 1987 to Movember 10, 1992.

Volatility Function o ax R? F-stat.®

Call options (13,743 observations)

Absolutr —0.908 1.015 0.9885 4014
(—27.2) (—132)
Square root — 0.586 1.0087 0.9907 2253
(— 19.6) (— 8.0)
Proportional - 0.174 1.0010 09916 30.6
(—6.1) (—09)
Linear absolute — 0425 0.99994 0.9892 2570
(—12.8) (0.04)
Exponential - 0.192 0.9860 0.9765 228.1
(- LD (1.8)
Linear proportional 0.204 0.9857 0.9897 340
(5.7) (1.9)
Put options (13,625 observations)
Absolute 0.505 0.9890 09793 108.1
(14.6) (8.1)
Square root 0.232 0.9950 0.9848 30.1
(7.6) 4?)
Proportional 0.0706 0.9985 0.9877 35
(2.5) (1.2)
Linear absolute 1.342 0.9596 0.9644 730.8
(30.4) (16.9)
Exponential 1.50 0.948 09774 427.8
(17.1) (11.0)
Linear proportional 0.706 0.9708 0.9867 167.3
(16.9) (12.7)

F-statistic for joint test of ay = 0 and &, = 1.

For calls, the &, coefficient in table 5 is always greater than one for the single-
parameter models, and always less than one for the two-parameter models.
Thus, the single-parameter models tend to underprice high-priced calls and
overprice low-priced calls, while the opposite holds for t—7o-parameter models.
On the other hand, a similar examination of the &, coefficient for puts demon-
strates that all six models overprice high-priced puts and underprice low-priced
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puts. The last result is exactly the opposite of that found bv Whaley (1982) for
equity options.

Note that « is negative for calls (except in the case of the linear proportional
model) and positive for puts. A similar result obtains if we restrict «; to be unity
(for conciseness, these results are not reported in the table). Thus, the models
tend to overprice call options and underprice puts. Put another way, the implied
volatility of calls is lower than that of puts, on average. A similar phenomenon
has been observed in Standard and Poor’s 500 futures options [ Whaley (1986)]
and in Standard and Poor’s 100 index options [Harvey and Whaley (1992)].

We next regressed the prediction error on the amount by which the option
was in-the-money, the maturity of the option, the forward yield iniplicit in the
underlying futures contract on which the option is based, and the TED spread
defined as the spread between three-month Treasury bill (T-bill) and three-
month Eurodollar yields. The three-month Eurodollar yield is computed from
the term structure estimated in section 4.1. We obtained daily bid and ask prices
on T-bills from Data Resources (DRI), and computed the three-month Treasury
yield by linearly interpolating between the average of bid and ask yields of
available T-bills. The reason for including the TED spread is that our model
assumes that the forward interest rates are default-free. However, the Eurodollar
rates contain some element of default risk. If the difference between Eurodollar
rates and Treasury rates follows systematic time series patterns, then it is
possible that this variation itself may be responsible for some of the pricing
errors that we find. The regression equation is:

Market — Model = Bo + B[ Futures — Strike] + B, Maturity
+ B3ED + B,TED + ¢,

where ED is the three-month forward yield for maturity equal to the option
maturity and TED is the TED spread defined earlier. The results are summarized
in table 6.

Table 6 shows that, when significant, the estimate of 5, is negative for calis
and positive for puts. Thus, out-of-the-money options are underpriced by the
models. Since these options have low prices and low sensitivity to the volatility,
our fitting procedures give them less weight. Therefore, their errors will tend to
be larger in general. It is also possible that market-makers and speculators
demand a premium to supply these options to investors to compensate for low
trading volume (see table 2).

The B, estimate is significantly positive for puts and calls for all single-
parameter models and significantly negative for puts and calls for all two-
parameter models. Therefore, the single-parameter models underprice
long-maturity options and overprice short-maturity options. These facts are
also apparent from fig. 2. From table 3a, we know that, in our data, the volatility
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Table 6

Systematic biases in each model for call and put options.

Regression results for

Market price — Model price = By + P, [Futures price — Strike price] + p,Matu-ity + B;ED + B,TED -+ ¢,

where ED is the three-month forward yield corresponding to option maturity, and TED is the spread between
the three-month Treasury yield and the three-month Eurodollar yield. All prices are in basis points, all the
yields are continuously-compounded yields expressed as fraction per year, and the option maturity is in days.
The T-statistics of the regression coefficients, adjusted for heteroskedasticity using White (1985), are reported in
parentheses below each coefficient value. The sample period is January 1, 1987 to November 10, 1992.

Volatility function Bo B B B Ba R*  F-stat®
Call options (13,743 observations)
Absolute - 3.8 0.003 0.015 17.96 11.71 0.21 718
(—33.77) (5.70) (43.07) (12.4) (1.8)
Square root - 277 — 0.0014 0.011 11.44 8.65 0.17 557
(—279) (—2.387) (37.7) (8.8) (1.37)
Proportional - 1.54 — 0.0057 0.0076 2.63 7.11 0.13 342
(=167 (—-11.3) (26.4) (2.13) (1.13)
Linear absolute 0.73 0.0012 — 0.0045 -70 — 238 0.03 92
(4.64) (2.03) (=179 (—405) (—-039
Exponential 1.23 0.0011 - 0.0073 - 9.66 - 9.96 0.03 92
(3.92) (1.46) (— 6.05) (—3.1) (- 1.02)
Lingar proportional 1.2 — 0.0092 — 0.0048 — 12.54 — 141 0.04 51
(7.2) (—15.5) (—17.38) (—-170 (—0.21)
Put options (13,625 observations)
Absolute —4.51 0.016 0.019 18.15 62.4 0.37 665
(— 39.5) (32.1) 43.3) (13.51) (11.39)
Square root — 347 0.013 0.014 13.8 44.77 0.29 569
(— 35.06) (30.3) (39.0) (11.5) (8.6)
Proportional - 215 0.009 0.0094 6.58 26.65 0.17 298
(—234) (23.4) (26.1) (5.54) (5.11)
Linear absolute 0474 0.018 — 0.0015 — .46 36.52 0.13 522
(3.11) (34.8) (-2.17) (-6.43) (5.67)
Exponential 0.86 0.019 — 0.004 — 11.65 279 0.10 442
4.17) (31.0) (— 3.96) (—-59) 4.02)
Linear proportional 0.845 0.011 — 0.0057 - 6.06 3N 0.08 192
(5.56) (25.6) (—84) (— 3.98) (0.66)

F-statistic for the joint test of B; =0 fori =0, 1, 2, 3, 4.

of longer-term forward rates is higher than that of short-term rates. Since the
single-parameter models cannot capture this feature, the volatility of longe-
term futures prices is too low in these models. Since option values are increasing
functions of volatility, longer-term options are underpriced.

The sign of the biases induced by the variable ED is identical to those due to
maturity for every model and for both calls and puts. Recall that ED is the
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three-month Eurodollar forward yield corresponding to the option maturity.
Since the term structure is usually upward-sloping in our data, the variable ED
and the option maturity are positively correlated, so the pricing biases for both
variables are similar.

Finally, the coefficient for the TED spread is iasignificant for call options. For
puts, it is significant and positive for all models except the linear proportional,
possibly explaining why the put valuation errors are larger than for calls. Calls
are not affected by variations in the TED spread, whereas puts are. It may be
worthwhile to model the systematic variation in the TED spread when valuing
puts. However, the problems of parameter estimation in any model involving
both Treasury and Eurodollar rates are likely to be severe.

7. Trading strategies based on mispriced options

In this section, we compare model performance based on whether simple
trading strategies can exploit the deviations between model and market prices.
Roughly speaking, our trading strategies will be of the following form: each day
fit to the market as well as possible, then buy underpriced options ard sell
overpriced options, and finally hedge these options using their underlying
futures contract. In an efficient market, no such strategy should earn abnormal
returns, after accounting for transaction costs and rick.

Since we are studying models that posit particular forms of term structure
evolution, we can develop a hedging method that is consistent with the pricing
model. To that end, for a given choice of model and its parameters, define an
instrument’s delta as the change in its model price induced by an instantaneous
shift in the term structure, of the form implied by the model, and with magnitude
equal to one day’s standard deviation. This delta is clearly a linear operator, and
a portfolio is delta-neutral if and only if its delta is zero. Such a portfolio is
immunized against term structure movements of the form dictated by the model.

Notice that the form of term structure movements hedged by delta can vary
significantly from model to model. For example, under the absolute model, delta
hedging amounts to hedging against flat parallel shifts in forward rates. How-
ever, under a linear absolute model with nonzero slope o,, delta hedging means
hedging against a term structure twist.

Finally, note that we do not hedge against changes in the environment which
are ‘outside the model’ (such as changes in the level of volatility, changes in
parameter values, etc.).

The focus of the remainder of our study will be the relationship between the
original mispricing of an option and the eventual profit realized by managing
a position in that option. We use the term allocated profit to refer to this realized
profit for that option. In calculating allocated profits, we charge or earn the
short-term interest rate each day depending on whether capital is needed or
generated by the position.
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Each day and for each model, we fit (as described in section 3) a term structure
and a volatility tunc ion to those futures and options prices observed by 8:30 am
CST. We randomly decide (independently, with probability 0.2) to take a posi-
tion in each mispriced option not already in the portfolio. We do not initially
impose any filter rules. The price charged (or earned) for every option traded is
its first recorded price after 8:45 .m, thus guaranteeing a minimum lag of 15
minutes from fitting to trading time. Since our database contains only a record
of trades at new prices, the price we record for an option might not be its first
traded price after 8:45. If the option’s price does not appear that day after 8:45,
its order is canceled.

We randomly choose option positions to trade because if we traded every
option not already found in the portfolio, we would necessarily trade every
option on the first day it appears, perhaps inducing a bias. Selecting options
randomly reduces this bias, and yet leaves us with many trading opportunities.

We also impose a position limit of one on each option. This rather severe
constraint helps give some independence between different trades (although
complete independence between two positions held at the same time cannot be
assured). It will be evident from table 7 and our later discussion that the model
pricing errors persist over many days. Therefore, in the absence of a position
limit, we would purchase the same underpriced option (sell an overpriced
option) again and again on many consecutive days. Consequently, our sample of
trades would contain highly-correlated observations. Our position limit con-
straint prevents us from accruing profits from large positions in a single opiion
and alleviates this problem.

Each day that an option position is maintained, we delta hedge it with its
underlying futures contract. That is, we determine the delia of the option and of
its underlying futures contract, and take a position in the futures contract so that
the combined delta is zero. We close out the position when any of the following
conditions occur:

1. the mispricing disappears (e.g., an option which was originally underpriced
becomes overpriced, or vice versa),

2. the option expires, or
3. the option goes in or out of the money by 150 basis points.

The reasons for conditions 1 and 2 are obvious. Condition 3 is imposed since
options this far out of the money or in the money trade extremely infrequently.

It is possible that conditions 2 or 3 could occur without observing a price for
the option on the final day the position is held. In this case, we mark the contract
at its model price plus its ‘gap’, where the gap is the most recently observed
difference between the market and model price. The reason for this choice is that
when an option in our portfolio does not trade, it is usually because a market
movement has caused the cption to no longer be near the money. Thus, marking
it at an earlier price could be quite misleading. On the other hand, marking at
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Table 7
Trading strategies based on mispriced options: Summary results.

This table reports the results of a trading strategy of buying (selling) underpriced (overpriced)
options and hedging them with the underlying futures contract until the mispricing disappears for
each of the six models for the sample period January 1, 1987 to November 10, 1992. The numbers in
parentheses denote T-statistics, adjusted for heteroskedasticity using White (1985). The profit is
measured in basis points.
The average investment per trade does not vary significantly by option type (calls or puts) or
according to the model used. It is approximately 28 to 30 basis points.

Average Average Gap Market
Option days profit in coefficient® coeflicient®
Model type N? held basis points o B
Absolute All 3,131 23.1 1.74(6.41) 0.71(3.66) —0.13(— 0.86)
Calls 1,648 209 1.53(3.95) 0.57(1.91) —0.75(— 348)
Puts 1,483 25.7 1.96(5.22) 0.82(3.23) 0.38(1.94)
Square All 3,154 22.7 1.30(4.67) 0.65(2.26) 0.02(0.16)
root Calls 1,633 213 0.41(0.98) 0.10(0.22) —046(—1.99)
Puts 1,521 24.2 2.26(6.28) 1.15(4.23) 043(2.37)
Proportional All 3,433 20.6 1.154.41) 0.45(1.48) 0.04(0.27)
Calls 1,767 199 043(1.10) —034(—-083) —044(—197)
Puts 1,666 21.2 1.92(5.56) 1.29(4.43) 0.44(2.15)
Linear All 3,564 19.5 0.37(1.58) 0.49(2.20) —0.25(— 1.32)
absolute Calls 1,932 17.6 0.18(0.53) —006(—020) —0.24(—0.59)
Puts 1,632 21.7 0.59(1.93) 0.88(3.05) —0.26( — 1.74)
Exponential  All 3,568 19.2 0.45(2.06) 0.41(1.72) —0.35( — 2.68)
Calls 1,873 18.1 0.29(0.89) 0.16(6.58) —0.55(—2.52)
Puts 1,695 20.5 0.64(2.16) 0.62(1.71) - 0.20( — 1.27)
Linear All 3,850 17.9 0.45(1.99) 0.10(0.37) —0.20( — 1.26)
proportional  Calls 2,039 16.8 —-0067(—-0.22) —028(—0.73) —0.26(—0.94)
Puts 1,811 19.1 1.03(3.53) 0.51(1.40) —0.15(—0.84)

®Number of individual futures options purchased or sold.

®Coefficient of the initial gap (= | Market price — Model price |) when regressed against the
realized allocated profit from the regression: Realized allocated profit = Constant + a(Initial gap)
+ error.

“Coefficient of the market return (return on the value-weighted returns of all firms on the
NASDAQ, NYSE, and AMEX measured as a fraction per year) when regressed against the allocated
profit (in basis points) to the hedged trade from the regression: Allocated profit = Constant +
f(Market return) -+ error.

the model price can be too optimistic, given that we are trading on discrepancies
between the model and the market. Our procedure seems to be a reasonable
compromise. Finally, we note that the estimated parameters and model prices
are determined only from prior data. Therefore, our results are not subject to
data-snooping biases.

The results of these trading siraiegies are summarized in table 7. The most
basic result is that, with no transaction costs, all m« lels produce positive and
significant abnormal profits.
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As a group, the one-parameter models substantially outperform the two-
parameter models, producing profits that are roughly one basis point higher per
position taken. This finding is consistent with the two-parameter models overfit-
ting to spurious noise in the data. If the pricing errors persist over even a few
days, it is plausible that systematic pricing errors over time will simply be
incorporzted into misestimated parameter values. One can think of an extreme
case in which there might exist a large number of options mispriced with respect
to the ‘true model’, but by fitting a large number of parameters, we exactly fit all
the option prices on a given day. If the pricing errors persist over time, the model
with these parameters will not be able to detect the mispriced options on the
subsequent day.

Notice that the average holding period for the hedged position varies
between 17 and 25 days. If the pricing error for a given option was random
from one day to the next, we would expect very short holding periods.
Therefore, the pricing errors are persistent over time. We also note that the
average holding period is larger for single-parameter models relative to two-
parameter models. Therefore, the pricing errors are more persistent for the
single-parameter models and provide some evidence of overfitting in the case
of the two-parameter models.

We now study the allocated profits as a function of the initial mispricing. If
the models can detect true mispricing, then one would expect a positive
relationship between anticipated profit (as measured by the initial mispricing
or gap) and the realized profit of the hedged trade. Fig. 4 and table 8 display
the realized profits as a function Jf initial mispricing, broken down by option
type and direction of position taken. Several facts emerge. The largest profits
are obtained by selling options, and this profit is generally a monotonic
function of the initial gap. Buying mispriced puts is also profitable, although
the levels of profits are not as large. Again, the initial gap provides a strong
signal about the profit expected. Finally, buying mispriced calls seems to
generate losses in many cases.

Recall from fig. 2 that the major qualitative difference between the behavior of
the one- and two-parameter models is the latter’s ability to better fit market
prices of long-dated puts. However, the trading results shown in fig. 4 indicate
that, in fact, the one-parameter models are correctly pricing the puts. These
models are able to extract from the market, by trading, nearly the entire amount
of the apparent mispricing.

To make these observations more precise, we regressed realized profit
against the initial gap for all the trades irrespective of the initial gap. The
results are also reported in table 7. As expected, the gap coefficient is positive
in all models, and statistically significant at the 95% level in the absolute,
linear absolute, and square root models. In the absolute model, for example,
the average realized profit is 82% and 57% of the initial gap for calls and puts,
respectively. The initial gap is a strong predictor of the final realized profit.
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Fig. 4. Profits from trading strategies to exploit mispriced options.

This figure plots the average allocated profit from a trading strategy of buying (selling) underpriced
(overpriced) options and hedging them with the underlying futures contract until the mispricing
reverses. Trades are classified by the initial gap ( = | Market price — Model price |), and we plot the
average realized profit pzr trade separately for puts and calls and separately for positions in which
the options are bought and sold. The profit per trade and the initial gap are iz basis points {multiples
of $25). The sample period is January 1, 1987 to November 10, 1992. The six bars in each group in
the figures are, from left to right: absolute, square root, proportional, linear absolute, exponential,
and linear proportional models.

This seems to be an indication that the model is picking up and exploiting
genuine mispricings.

As fig. 4 and table 8 demonstrate, the profit opportunities in puts and calls
differ markedly. The gap coefficients seem to support the hypothesis that all
models, but particularly the one-parameter ones, can detect and exploit mis-
priced puts. Moreover, the size of the original mispricing is very significant in
predicting the eventual profits. For calls, the story is mixed — the models perform
well in detecting opportunities to sell calls, but their signals to buy calls are not
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reliable. Even though fig. 4 and table 8 document large losses for purchased
calls, the losses are not statistically significant for any of the models or filter rule
as therc i1s a wide dispersion in the allocated profits. However, the profits
generated from selling both puts and calls with each of the individual filter rules
are individually significant for all the models.

The fact that the gap coefficients are less than one indicates that large pricing
errors are perhaps not as reliable. Recall taat both the futures price and the
option price are subject to the bid—ask spre-.d, which is typically one basis point.
Perhaps the larger pricing errors that we detect reflect a larger component due
to these bid-ask effects.

Since our trading strategies are not riskless, the abnormal profits that they
generate could be due to ‘systematic risk’. Even though it is difficult to measure
systematic risk in our context, regressing the realized profits against a market
return can provide some rough guidelines. To test if systematic risk is the cause
of the excess returns, we regress the realized profit on each position against the
value-weighted returns of all firms on the NASDAQ, NYSE, and AMEX, over
the period that the position is held. The market coefficients are predominantly
negative, except in the case of put trades under one-factor models. Since these
types of trades are quite profitable, systematic risk is the cause of some of the
profits. However, the average profit seems too large and over too short an
interval to be due to systematic risk alone. Still, in the absence of an equilibrium
model, it is difficult to quantify the excess proiit.

In sum, the trading results indicate that the market systematically contains
mispricings, particularly in long-dated puts, which appear overpriced. The
one-parameter models are able to detect and exploit this mispricing. Moreover,
the initial gap predicts the realized profits well.

Whether our results are evidence of market inefficiency depends on the
transaction costs involved in implementing our strategy. The bid-ask spread in
the Eurodollar futures options market is of the order of one basis point and
there is a brokerage fee as well. However, market makers on the floor of the
exchange are subject to only a small clearing fee and by timing the trade, they
can avoid paying the bid-ask spread as liquidity providers. Therefore, the
transaction costs of setting up the initial trade are probably significantly smaller
than one basis point. However, one must also incur the costs associated with
daily hedging (a position is typically held for about 20 days). Clearly, if a cost of
one basis point must be paid each day to hedge, then the profits we see for puts
(two basis points on average, higher if a “filter rule’ is used to sclect trades based
on nitial gap) are insignificant. On the other hand, cur strategy was deliberately
simple. Perhaps hedging every day is not required, or perhaps one can hedge
with other mispriced options t5 generate even higher profits. We do not pursue
these issues here. Our primary objective is to compare the ability of the models

to value and hedge options correctly and not to formally test for market
efficiency.
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8. Conclusions

We implement and test six HIM interest rate models using an implied
volatility technique. We apply our models, which contain either one or two
parameters, to Eurodollar futures and options prices between 1987 aad 1992.
Each day, we fit the parameter(s) to all traded options, after using the futures
prices to determine the term structure.

We characterize the implied volatility of interest rates from each of the
models. The implied volatility series is stationary and mean-reverting irrespec-
tive of the model used. The mean absolute volatility estimates are similar across
models, although the single-parameter models produce significantly more stable
estimates of implied volatility. On average, the absolute volatility of the one-
year forward rate is larger than the absolute volatility of the spot interest rate.
However, since forward interest rates are typically increasing with maturity, the
proportional volatility of the one-year forward interest rate is lower than the
proportional volaiility of the spot rate on average.

We compare the models based on three criteria: (1) stability of parameter
values, (2) fit hetween model and market prices, and (3) ability of the model to
earn profits when it trades on perceived mispricings. We find that the number of
parameters used in the modei has a strong effect on the behavior of the model -
in fact stronger than the form of the model used (proportional, absolute, etc.).
Two-parameter models tend to fit prices better (even one day out of the sample),
but their parameter estimates are less stabic and they earn less from their
perceived mispricings. Although the one-parameter models fit slightly less well,
their implied parameter values are more stable over time and they are able to
earn significantly larger and more consistent abnormal profits from the mispric-
ings they detect.

As with equity options, put options are overpriced relative to call options and
there are significant biases as a function of strike price and maturity for all the
modeis. All models, particularly the one-parameter models, suggest that long-
dated puts are overpriced in the Eurodollar market. The poor fit of the single-
parameter models is attributable in large part to the mispricing of these puts.
Together with the observation that the one-parameter models earn larger and
more consistent profits, there are strong reasons to conciude that one-parameter
models are preferable for valuing options with maturities of less than a year.
Among the one-paramete. models, the absolute mode! seems to be preferable
since its parameter estimates are the most stable and it earns the largest profits.

Appendix

For completeness, we outline a numerical implementation of single-factor
HJM models as described in Amin and Bodurtha (1994) and Heath, Jarrow,
Morton, and Spindel (1992).



178 K.I. Amin and A.J. Morion, Implied volatility in term structure models

At date 0, we wish to value an option maturing at 7. Discretize the interval
[0, T] into M subintervals of width h,, for m=1,..., M, such that

M_,hm = T. The choice of subintervals will have some effect on the rate of
convergence of the discrete approximations. One satisfactory scheme is to
choose linearly increasing (or decreasing) subinterval lengths so that the largest
is twice the size of the smallest [Amin an¢ Bodurtha (1994)]. Under the HIM
approach, with the entire term structure as a state variable, we need to track the
evoiution of rates only up to time T to value such an option. We construct
a binary (non-recombining) tree under which the mth step induces volatility
corresponding to the passage of h, time units. In general, one cannot use the
recombining lattice approach [Cox, Ross, and Rubinstein (1979) or Amin
(1991)] to approximate path-dependent HIM models.

Let ¢ be the date at the beginning of the ith time interval, that is t = Y &', by
We track k forward rates f (¢, t + ¢;) with times to maturity t;forj=1,. ..,k at
each of the 2' ! nodes in the binary tree representing the term structure at date ¢.
It is sufficient to choose forward rates approximately one month apart. Other
forward rates can be obtained as needed by linear interpolation.

Assume that all the forward rates at a given node at date ¢t have already been
computed, and that we have to generate rates at time t + h;. The stochastic
differential equation (1) can be discretized by the equation:

S+ h,t+t)—f(tt+1¢)
=, t +tj, - )h + o(t,t + t;, f(t, t + t;))/h; with probability },
=alt,t + t, ) — a(t,t + t;, f(t, t + t;))/h; with probability §,

for j=1,...,k. The increment to the forward rate of maturity ¢ + t; over the
interval (t,t+ h) has mean ot t+ tj+)h; and standard deviation

alt,t + [ (6, t + )\ /.
Initially, suppose that the drift «(-) is computed using eq. (2). Let

T
P(t, T)= exp[ - J f, u)du] (10)

be the price at time ¢ of a pure discount bond paying one dollar at 7. The
martingale condition, applied to the discrete time framework, requires that

E.[P(t + h;, T)P(t,t + h))] = P(t, T). (11)
In our discrete-time approximation, if we use the drifts from eq. (2), this

condition will be satisfied only in the limit as inf; — h; » 0. Better numerical
performance is obtained if we ensure that the martingale condition holds exactly



K.I. Amin and A.J. Morton, Implied volatility in term structure nodels 179

under the discrete time framework. From (9), the martingale cendition (10) holds
only when

T
%exp[ - (h.- Jf o(t, u, - )du + \/;1: jr o(t,u,f(t, u))du)]

T
+ %exp[ — (h,- [ o(t, u, <)du — \/ﬁ, jra(t, u, ft, u))du)] =1. (12)

Given the volatility function, the drift coefficients can be computed from the
above equation. They differ from those in (2) by terms of order o(h) .

We found that very few time steps (ten or less) were required to achieve
accurate option prices. This number appears small at first, but observe that
a ten-step binary (non-recombining) tree contains 1,024 final nodes and thus
should sample the true continuous distribution well. In contrast, a 100-step Cox,
Ross, and Rubinstein (1979) binomial tree contains 101 final nodes. Moreover,
the options in our sample have maturities of less than one year, making their
valuation relatively easy. The absolute model yields closed-form solutions for
European Eurodollar options. It is also amenable to a path-independent discre-
tization (with a recombining lattice) which can be used to compute accurate
American option values with 200 time steps. We tested our discretization using
these solutions. For detailed benchmarking results, see Amin and Bodurtha
(1994) and Heath, Jarrow, Morton, and Spindel (1992).
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