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1. Introduction 

Much recent academic research has focused on modeling the evolution of the 
term structure of interest rates with a view to valuing interest rate claims. In 
particular, the models of Ho and Lee (1986) and Heath, Jarrow, and 
(1991,1992), hereafter HJM, have received considerable attention in the literature. 
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In this paper, we test six specific models in the HJM class using transaction 
prices of Eurodollar futures and futures options from the Chicago Mercantile 
Exchange. For each model, we determine a daily time series of forward rate 
volatilities most consistent with Eurodollar futures options prices and analyze 
its time series properties. Using these volatility estimates, we test the ability of 
the models to predict the next day’s option prices. We document systematic 
discrepancies between the various model and market prices, as a function of 
option type, maturity, strike, etc. Finally, we test whether the mispricings found 
by each model are genuine by testing if these mispricings can be captured by 
simple trading strategies. Based on these tests, we provide some recommenda- 
tions regarding the type of models that should be used in research and in practice. 

The HJM approach offers several advantages over the traditional term 
structure models of Cox, Ingersoll, and Ross (1983, Vasicek (1977), Brennan 
and Schwartz (1979), and others. First, HJM models match the current term 
structure of interest rates by construction. Second, like the Black-Scholes 
model, these models require no assumptions about investor preferences. As 
a result, claim prices are completely determined by a description of the variance 
structure of interest rate changes. In particular, estimates of drifts or expected 
rate changes are not needed. The wide popularity of the Black-Scholes equity 
model can be attributed in large part to similar features. 

Despite the advantages of the HJM approach, very little empirical work has 
been done to test and apply these models to the prices of traded options. The 
only studies of which we are aware are Flesaker (1992) and Cohen (1991).’ For 
computational tractability, Flesaker tests only the path-independent Ho and 
Lee (1986) model using the Generalized Method of Moments. Under the Ho and 
Lee model, the volatility of each forward interest rate is constant and indepen- 
dent of maturity and interest rate levels. Since Flesaker tests only the constant 
volatility form of the HJM model, it is worth investigating whether other 
functional forms better describe the data. Cohen (1991) applies HJM models to 
assess the efficiency of the Treasury bond futures and options market. His study 
uses weekly data and historically estimated volatility functions. 

The lack of empirical work examining general HJM models stems from the 
difficulty of efficiently implementing them. Only in special cases are closed-form 
solutions available for European options. All of these special cases entail 
Gaussian interest rates and have been criticized because they permit interest 
rates to become negative with positive probability. Therefore, there is a need for 
testing alternative specifications. 

In general, however, I-IJM models are path-dependent. In a diffusion frame- 
work, this implies that the forward rates of all maturities cannot be represented 

‘Bliss and Ronn (1992) have studied the valuation of Treasury bond futures options using an 
extension of the Ho and Lee (1986) modei proposed in Bliss and Ronn (1989). The model used in 
these studies is also an arbitrage-free n,odel. However, this model is not m the HJM class of models. 
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as functions of a small number of sItate variables whose evolution is governed by 
a Markov diffusion process. In particular, it is not possible to construct discrete- 
time approximations in which an ‘up’ move followed by a ‘down’ move yields 
the same term structure as a ‘down’ move followed by aAl ‘up’ move.2 Therefore, 
the level of computational eflori grows exponentially with the number of steps. 
In some cases, Monte Carlo simulation methods can be used [e.g., Cortazar and 
Schwartz (1992)-j, but they are slow and applicable only to European options. 
However, advances in comporting technology and numerical techniques allow us 
to value both American and European options using these models [Amin and 
Bodurtha (1994) and Heath, Jarrow, Morton, and Spindel(1992)]. These numer- 
ical procedures are briefly described in the appendix. This study is the first 
systematic empirical study which implements and tests a broad class of path- 
dependent HJM models. 

We analyze prices of Eurodollar futures and futures options traded on the 
Chicago Mercantile Exchange. Besides being extremely liquid, the Eurodollar 
series allows us to infer a complete initial term structure of forward interest 
rates’ that is contemporaneous with option prices (which, for example, the 
Treasury bond futures and options would not). Given the term structure, under 
HJM models, only a volatility function is needed to price and hedge options. We 
infer this function from market option prices by parameterizing the functicn and 
then estimating parameter values which cause model prices to best match 
market prices. Based on these estimates, we test for model fit and parameter 
stationarity and set up simple trading strategies designed to exploit mispriced 
options. 

The paper proceeds as follows. In section 2, we provide a brief description of 
the HJM model. In section 3, we describe the data. We develop the concept of 
implied volatility in HJM models in section 4. In sections 5 and 6, we fit the 
models to the data, and document the systematic biases we find between market 
and model prices. In section 7, we test whether simple trading s’rategies can 
capture the mispricings detected by each of the modsls. Section 8 concludes the 
paper, and the appendix provides some details about numerical implementation 
of the models. 

JM approach 

In the traditional models of Cox, Ingersoll, and Ross (1985), Brennan and 
Schwartz (1979), Vasicek (19 / I), Dothan (1978), and others, the evolution of the 

2This property holds in almost all the discrete-time models used for computing option prices [for 
example, Cox, Ross, and Rubinstein (1979), Amin (1991) or Boyle, Evnine, and Gibbs (1989)]. 

3Forward interest rates carTot be computed directly from futures prices in our framework. 
Therefore, this step is not imr ediate, as we discuss in section 4.1. 
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entire term structure is inferred from the evolution of the spot interest rate and 
possibly another long-term interest rate. In these models, the stochastic process 
for the spot interest rate [and the long-term interest rate in the Brennan and 
Schwartz (1979) model] is either specified exogenously or determined endoge- 
nously from assumptions on investor preferences and technologies. These 
models are very useful for studying the relationship between bond prices of 
different maturities and how investors deteilnine these prices. 

However, the application of these models to the pricing of interest rate options 
has been disappointing. Since the models determine the term structure endoge- 
nously, they have difficulty matching an obser arket term structure. Hull and 
White (1990) have modified some of these 1s to match the initial term 
structure, at the price of introducing several rying parameters. Moreover, 
the models contain several parameters that difficult to estimate. See, for 
example, the differing parameter estimates for Cox, Ingersoll, and Ross (1985) 
model reported by Gibbons and Ramaswamy 6) and Pearson and Sun (1989). 

Ho and Lee (1986) began a new approach term structure modeling. These 
authors take as given the prices of discount nd prices of all maturities and 
model the subsequent evolution of this price vector to preclude arbitrage 
opportunities. ‘diewing their bond price movements as term structure move- 
ments reveals that under the model the forward interest rate curve moves up or 
down in a nearly parallel manner each oeriod. The size of this shift is indepen- 
dent of the level of rates. Heath, Jarrow, and Morton (1992) extend the work of 
Ho and Lee (1986) to a continuous-time framework and permit the form of 
forward rate changes to be specified almost arbitrarily. In particular, many of 
the processes specified for the evolution of spot interest rates in the literature can 
be treated as special cases of HJM models by appropriately specifying the 
volatility of forward interest rates. For example, by Lpecifying the volatility 
function to be an exponential function of time to maturity, we obtain the spot 
rate process assumed by Vasicek (1977). 

A> 2 prelude to our analysis, we provide a brief description of the HJM class 
of rn% Idels. We first remark that we only need to describe the evolution of rates 
undei the risk-neutral or martingale measure arrison and Pliska (198 1) and 

1. Under complete markets, only the ev ion of asset prices under this 
measure is relevant for claims pricing. 

Letf(t, T) be the forward interest rate at da t for instantaneous and riskless 
borrowing or lending at date T. At each ding date t, HJM specify the 
evolution of forward interest rates of every maturity T simultaneously according 
to the stochastic differential equation: 

df 0, T) = dt, T, l ) di + g(t: T, f (t, T))d W’(t), (1) 

where W(t) is a one-dimensional standard 
o(t, T, f (t, T)) are the drift and dispersion 

nian motion and a(t, T, 9) and 
cients for the forward interest 
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rate of maturity ‘1”. In general, the drift coefficient for each maturity T depends 
on the forward rates of all other maturities s such that t 6 s < T. This depen- 
dence is represented by 9 as t re third argument of a(t7 Ty 0). 

The notable feature in (1) is that the evolution of forward interest rates of all 
maturities is simultaneously and exogenously specified. In the spot interest rate 
models of Cox, Ingersoll, arG oss (1985) or Vasicek (1977), only the evolution 
of the spot interest rate is directly modeled. The evolution of other rates is 
inferred from that of the spot interest rate. 

The function a(t, T,f(t, T)) represents the instantaneous standard deviation 
(volatility) of the forward interest rate of maturity Tat date t, and can be chosen 
rather arbitrarily. In fact, the choice of a( 0) completely determines all claim 
prices, since for each such choice, the drifts a(t, T, 0) are uniquely determined 
under the risk-neutral measure by the no-arbitrage condition: 

T 

a(t, K l ) = dt, T,f 0, 7’)) dt, u,f(t, u))du 
1 

l (2) 

In this paper, we focus on single-factor HJM models, i.e., models in which all 
interest rate changes are driven by a single source of uncertainty. Since we study 
only Eurodollar futures and their options, which generally mature in less than 
one year, there is insufficient variation in the term structure across different 
maturities to require the use of a multi-factor HJM model. Although Eurodollar 
futures options of longer maturities have been trading since early 1992, the 
trading volume in these options is quite small, and their prices are accordingly 
less reliable. As Dybvig (1990) shows, almost all of the variation in forward rates 
with maturities less than five years can be explained by a dominant single factor. 
Further, from an estimation perspective, it is not possible to reliably disentangle 
the effects of two factors in the HJM class of models with only short-term futures 
and futures options data. 

Consider the valuation of interest rate claims under HJM models. Under the 
risk-neutral measure, the instantaneous expected rate of return on every traded 
security equals the spot interest rate. Therefore, the futures price for a continu- 
ously-marked-to-market futures contract follows a martingale, since opening 
a futures position requires no investment. If the futures price at date t for 

a contract that matures at date T is &(t), then 

h(t) = WFT(T)l 9 (3) 

where FTCT) is the futures price at maturity, which equals the spot price at date 
T, and E, denotes the expectation with respect to the risk-neutra’a measure 
conditioral on the information set at date t. 
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If the price of an European option at date t is represented by C(t), and this 
option matures at date T, then 

C(t) = E, (4) 

where r(u) =f(u, u) is the spot interest rate at date u. Given the option value at 
the maturity date as a function of the state variables, we can compute its value at 
any prior date from the above equation. American options can similarly be 
valued by the equation: 

C(t) = sup E,[GB(*bxP(- ~wq]~ (5) 
OES [t, T] 

where Ge(e ) is the payoff to the option when it is exercised at date 8 and F[t, T] 
is the class of all early exercise strategies (stopping times) in [t, T]. Further, G& ) 
can be any function of current and past realizations of the term &tructure. 

In practice, we need to discretize (1) under the risk-neutral measure by 
building a path-dependent, binomial-type model (some details on effective 
numerical procedures are provided in the appendix). Using the discrete approx- 
imation, we can accurately value Eurodollar futures and futures options by 
backward induction. 

urodollar futures and futures o 

Eurodollar futures began trading in December 1981 on the Chicago Mercan- 
tile Exchange (CME). Identical futures contracts are now also traded on t1.Z 
London International Futures Exchange (since 1982) and the Singapore Inter- 
national Monetary Exchange (since 1984). Eurodollar fu.tures options have been 
traded on the CME since March 20, 1985. The trading hours for both Euro- 
dollar futures and options are 7: 20 am CST to 2: 00 pm CST on the CME. 

Table 1 reports the annual trading volume in Eurodollar futures and Euro- 
dollar futures options over the last decade. These volumes are approaching 
those of Treasury bond (T-bond) futures and futures options contracts, which 
are the most heavily traded interest rate futures and futures options contracts, 
respectively. In fact, the open interest in Eurodollar futures and options is now 
much higher than that for T-bond futures and options. 

esides being extremely liquid, the Eurodollar contract is well suited for our 
study for two reasons, First, we can use Eurodollar futures prices to generate 
a complete initial term structure as required by the HJ approach. This is not 
possible with T-bond futures. Since the underlying instrument for the T-bond 
contract ca 5 years to maturity, while the futures 
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Table 1 

Annual trading volume for Eurodollar futures and futures options.* 

147 

This table reports the annual trading volume in thousands of contracts for Eurodollar futures and 
futures options traded on the Chicago Mercantile Exchange during 1983-1992. For comparison, the 
trading volume (in thousands of contracts) for Treasury bond futures and futures options traded on 

the Chicago Board of Trade are also reported. 

Volume in thousands of contracts 
--___-.-- --_ _ 

Fu!ures options 
Futures 

Eurodollar Treasury bond 
Treasury 

Year Eurodollar bond Calls Puts Calls + puts 
- 

1983 891 f 9,550 b - _b 1,664 
1984 4,193 29,963 b - _b 6,636 
1985 8,901 40,448 366 377 11,901 
1986 10,825 52,598 1,007 750 17,314 
1987 20,416 66,84 1 1,045 1,525 21,720 
1988 21,705 70,307 1,219 1,380 19,509 
1989 40,818 70,303 3,190 2,811 20,784 
1990 34,696 75,499 3,878 2,982 27,315 
1991 37,244 6 ‘,887 4,310 3,565 21,926 
1992 60,488 70,003 7,408 6,297 20,259 

aSource: CBOT and CME. 
bContract was not traded in that year. 

contracts mature in less than a year, a complete initial term structure cannot be 
computed using only futures prices. To compute the entire term structure would 
require simultaneous prices of all Treasury bills, notes, and bonds of all maturi- 
ties on a frequent basis. Further, using transactions prices is clearly infeasible. 
Second, the cash-settled Eurodollar contract does not involve any complicated 
delivery and timing options which are inherent in the T-bond futures contract 
[see Gay and Manaster (1986) for a description of these implicit options]. 

Eurodollar futures trade with up to five years to maturity and with almost the 
entire trading volume in contracts that expire in March, June, September, and 
December. The last trading day for each contract is the second London bank 
business day before the third Wednesday of the contract month. At maturity 
date T, the quoted futures cash settlement price is 

F,QT) = lOO[l - y(T)]. (6) 

where y(T) is the three-month annualized add-on yield on Eurodollar time 
deposits’ (three-month LIBQR). The minimum change in the quoted futures 

4Tht: add-on yield is defined so that the actual interest payment on a three-month 
deposit based on the add-on yield is y( 7) x number ~~~Q~~~~Q~ damps for inrestmenf/360. 
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price is 0.01 and corresponds to a basis point or tick. Each futures contract has 
a $1 million notional amount. Each basis point change thus represents a price 
change of $l,OOO,OOOx~xO.Ol”/, = $25. 

The options on this contract are American with the same maturity date as the 
futures. Upon exercise, the owner of a call option essentially receives the cash 
difference between the current futures price and the exercise price.’ The owner of 
a put option receives the cash difference between the exercise price and the 
current futures price. One option covers one futures contract, and like the 
futures contract has a minimum quoted price change of 0.01 (one basis point or 
tick), equal to $25. The dollar value of an option is equal to the quoted option 
price times $2,500. The trading volume is concentrated in options with maturi- 
ties of less than a year. Since January 1992, options with up to two years in 
maturity have also been traded. However, the trading volume in these long-term 
options is quite small. 

3.1. Dtita 

We use the Chicago Mercantile Exchange’s (CME) time and sales database 
containing transactions prices of Eurodollar futures and Eurodollar futures 
options from January 1, 1987 to November IO, 1992. For each type of contract, 
the database consists of a record for each transaction that occurred at a different 
price from the previous price. The data also contains bid and ask quote prices if 
the bid price exceeds or the ask price is smaller than the last transaction price. 

For our analysis, we need to select contemporaneous options and futures 
prices on each date. Unfortunately, the CME does not record every transaction 
in the database, but only transactions which took place at a different price from 
the previous transaction. Therefore, it is not possible to determine at any instant 
the time of the last transaction, even though the price of the last transaction is 
known. To mitigate this problem, we select the last traded price as of 8 : 30.am 
CST for each of the futures and futures options contracts. Since trading com- 
mences at 7 : 20 am CST, this yields approximately a one-hour window from 

_- 

determined as follows. The CME conducts two surveys of 12 London banks which are randomly 
selected from a list of no less than 20 banks. The first survey is conducred sometime during the 
hour-and-a-halfjust before the close of trading in the expiring contract; the second takes place right 
at the close. The banks are polled on their ‘perception of the rate at which three-month Eurodollar 
time deposit funds are currently offered by the market to prime banks’. The two highest and two 
lowest rates are eliminated in each :;urvey and the remaining rates are averaged and then rounded to 
the nearest basis point to arrive at the current LIBOR rate used for settlement. 

‘The caIB owner actually obtains a long position in the futures contract with a futures price equal 
to the exercise price. The call writer receives a short futures position. On marking-to-market, the 
owner obtains the cash difference between the marked-to- arket futures price and the exercise price. 
For the purpose of valuation, we a>sume that I e owner rea;eives the difference between the futures 
price a 
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which the prices are determined. r usi 
we can fit an implied volatility function based on these prices, an 
trading strategies which can prices later in the s 
day. This approach ensures t is no data-snoopin 
us to trade based on up-to-date information. 

Table 2 summarizes the ata selected above 
maturities. On average, we have 9.3 calls an 9.2 puts every 
futures for which there were no options of that matu 
4 futures contracts per day. The last colum 
trading vol.ume per day in each category duri 
years of our sample period. These volume numbers were obtained from a sepa- 
rate dataset supplied by the CME, containing settlement prices and the trading 
volume. The CME supplies a limited amount of data free of charge; we ob?ained 
the Stats database only for the middle two years of our sample period. The 
trading volume in each category indicates the liquidity of the options as strike 
price and maturity vary. 

4. Implied volatility 

As in the Black-Scholes equity model, the HJM approach to interest rate 
modeling ensures that claim prices are determined through ‘volatility’ param- 
eters (dispersion coefficients in stochastic differential equations), not through 
drifts or risk premia. However, in the Black-Scholes model a single scalar carries 
all volatility information, whereas in HJM models the volatility function must 
describe the stochastic evolution of the entire term structure curve. We focus on 
models possessing the ‘time invariance’ property that a(t, T,f(t, T)) depends on 
t and Tonly through T - t. In other words, given a term structure at time t, the 
form of its subsequent evolution through time depends only on the term 
structure, not on the specific calendar date t. 

Even with the time invariance assumption, a rich class of volatility structure 
remains. Since our numerical procedures price under arbitrary volatility func- 
tions, we have no a priori restrictions on the class of volatility functions. We 
have chosen the following six forms: 

(1) Absolute [continuous-time o-Lee (1986)]: c7(+ = tro , 

(2) Square Root: a(*) = aoS(t, T)‘12 , 

(3) Proportional:‘j a(*) = aof(t, T) ) 

%JM require that their volatility functions be bounded. Therefore, we ca 
at crO_f*. For su ciently largef” t C%S. 
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Table 2 

Summary statistics on number of futures and futures options, average price, and standard deviations 
of prices classified by maturity and moneyness. 

All prices are reported in basis points (multiples of $25). Number of trading days = 1,483. Total 
number of observations (options only) = 27,368. Average number of futures per day = 4.001. 
Average number of calls per day = 9.3. Average number of puts per day = 9.2. Futures for which 
there were no traded options of the corresponding ?&u&y were eliminated from the sample. The 

sample period is January 1, 1987 to November 10, 1992. 

Maturity” Moneynessb NC 
Average 

price 

Standard Average 
deviation daily volume 
of price per contractd 

Futures 

Short 1,478 9,283.9 180.8 61,455 
Medium 1,456 9,274.2 175.2 65,227 
Long 3,004 9,247.s 162.4 8,561 

Calls 

Shot out 843 8.00 4.37 2,102 
Short At 2,396 17.59 9 36 2,374 
Short In 1,887 76.24 46.46 442 

Medium out 2,474 12.45 7.60 912 
Medium At 2,363 29.13 10.84 1,477 
Medium In 1,438 83.20 43.06 415 

Long out 2,224 18.19 10.32 242 
Long At 1,948 40.95 13.22 253 
Long In 1,046 101.85 48.69 234 

Puts 

Short out 1,024 8.38 4.77 1,638 
Short At 2,319 17.45 9.18 1,858 
Short In 1,259 64.54 35.9 1 370 

Medium out 2,923 12.55 7.53 664 
Medium At 2,378 29.70 11.09 1,121 
Medium In 1,009 72.28 33.53 348 

Long out 2,830 18.97 10.87 185 
Long At 1,916 41.41 13.14 243 
Long In 659 88.03 37.80 135 

- 
aShort: maturity < 90 days, medium: 90 < maturity d 180 days, long: maturity > 180 days. 
bOut (out-of-the-money options): at least 25 basis points out-of-the-money, at (at-the-money 

options): 1Strike price - Futures price] < 25 basis points, in (in-the-money options): at least 25 basis 
points in-the-monev. 

‘N = total number of observations in data sample for that classification. 
dAvernge number of contracts traded per day per contract during 1989 and 1990. 
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(4) Linear Absolute: C(O) = I30 + GO- O] 9 

(5) Exponential [Vasicek (1977)]:’ c(e) = ooexp[ - d(T- t)] , and 

(6) Linear Proportional: 06) = Cao + al(T- OlS(t, T). 

The first three functions contain one parameter, the others contain two. All 
these volatility functions are nested by the function: 

d4 qf(t, T)) = [Q + ~1 (T - t)] exp[ - A( T - t)] f(t, T)Y , 

which contains four parameters: co, cl, A, and y. Since we infer these parameters 
from the prices of options which expire in under two years, we are unable to 
isolate the individual effect of four parameters directly.* Consequently, we 
impose specific functional forms on the volatility function and test these speci- 
fications separately. Although futures contracts with maturities of up to five 
years trade, the effect of volatility on futures prices is nearly model-independent, 
and so information about volatility structure cannot be extracted from futures 
prices. 

4.1. Estimation of implied volatility functions 

Since HJM model the evolution of forward interest rates, as opposed to 
futures rates or yields,g we first need to estimate the forward interest rates. If the 
forward prices of three-month discount bonds for each of the futures maturities 
were available, we could compute three-monr:h forwa1.d interest rates easily. By 
assuming that the instantaneous forward interest rate curve is flat between 

‘This function yields an CIrnstein-Uhlenbeck process for the spot interest rate as assumed by 
Vasicek (1977). See Brenner (1989) for a proof. 

*For example, we attempted to estimate the volatility function given by 

00, T,S(t, T)) = ao_IIt, W, 

by trying to imply out both o. and y. The parameter estimates were highly unstable. The standard 
errors as measured by the inverse of the Hessian were typically of a higher order than the parameter 
value. Also, the parameter estimates were highly dependent on the initial starting point in the 
iterative procedure. 

Another possibility is to restrict the values of ‘J in a finite set (for example IO,& 11) and each date 
iterate over only these values of 1~. However, this implies that each day we will use qualitatively 
different models. For example, on date 1 we might use an absolute model, on date 2 we might use 
a proportional model, and on date 3 we might use a square root model. This kind of model switching 
seems unsatisfactory. 

‘!t is not poss ible to simply reparameterize the model in terms of the evoPution of futures yields 
(rates) obtained by inverting (6). For example, w 
date t for maturity date ;6as ydt) = I - FT(t)/ 

reparameterization poses difficulties in valuing many types of claims. For example, this futures term 
structure is not sufficient to value even a pure discount bond. 
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available maturities, we could then obtain a good approximation of the entire 
term structure. 

However, such forward bond prices cannot be readily L .~!.ited from futures 
prices due to two complicating factors. First, futures prick * ~~:8) are not equal to 
forward prices (rates) when interest rates are sto&;n&. L<c;nd, even if we 
abstract from the daily marking-to-market feature of F ?_.xts ,.~~“racts, an unam- 
biguous forward price does not exist which corresponds to $..l\e 5zrodollar futures 
price. This follows since the terminal futures price is based on a three-month yield 
and is not a linear function of the price of a traded spot asset (such as a bond). 
Therefore, the usual arbitrage arguments cannot be used to define forward bond 
prices and corresponding forward interest rates.” Thus, we compute the term 
structure of forward interest rates in an iterative fashion as described below. 

We assume that each model correctly prices all futures contracts. We estimate 
forward interest rates for each futures maturity date and linearly interpolate 
between these dates to obtain the forward interest rates for other maturities. The 
forward interest rate curve up to the first available futures maturity is assumed 
to be flat. 

Each day we carry out our estimation in two stages. In the first stage, we use 
futures prices and the previous day’s volatility function to determine a piecewise 
flat forward interest rate term structure. In the second stage, given the term 
structure determined from the first stage, we use futures option prices to 
estimate the volatility parameters. We now describe the details of this procedure. 

Let 0 = (O,, . . . , 8,) be a vector of m parameters determining the volatility 
function. At each date t, let @, = (f(t, T&Jo, T2), . . . ,f(t, Tk)) be a k-dimen- 
sional vector of forward rates for maturity dates T1, &, . . . , Tk which are thle 
maturity dates of the futures contracts available on date t. The maturity dates of 
the forward rates in @, are approximately thi.ee months apart since futures 
contracts mature approximately every three months. Our term structure at date: 
t is completely defined by the vector @, since we assume that the forward rates of 
all intermediate maturity dates are obtained by assuming that the rates are flat 
between maturity dates in @,. 

In stage one, we estimate the term structure of forward interest rates (@J by 
fixing the imphed volatility function (0) from the previous day and using the 
Levenberg--Marquardt procedure’ ’ to compute forward interest rates such that 
the sum of the squares between model futures prices [from eq. (3)] and market 
futures prices is minimized. Since we estimate as many points on the term 
structure as there are futures contracts, the model futures prices exactly match 
market futures prices. This first step is carried out without using option prices. 

“We are grateful to John Long for pointing out this second reason why futures prices do not 
equal forward prices. 

“See Press et al. (1988) for a description. The Levenberg-Marquardt procedure is simply an 
efficient numerical procedure for minimizing a weighted sum of squares. 
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In the second stage, we again use Levenberg- arquardt, but we fix the input 

forward rates (9,) determined from stage one, and vary (0). ore specifi&y, we 

minimize the sum of squared errors 

where Vj(0) is the model price of the ith option, & is the corresponding market 
price, and n is the number of options in that day’s sample. 

Other methods of implied volatility estimation are certainly possible. For 
example, a weighted sum of squares might be appropriate if information on the 
precision of a price (such as the bid-ask spread) were available. Or one could 
argue that we should weight deep-in-the-money options less, since otherwise 
their large prices will unduly affect our sum of squares. However, only a small 
part of the large price of an in-the-money option is sensitive to volatility, and 
only this pact will affect the estimation. Finally, note that our minimization 
implicitly weights options by their sensitivity to volatility: setting the derivative 
with respect to 6 of (7) to zero gives 

After the above two steps, we could reestimate the term structure using the 
new volatility function and futures prices and then, using this new term struc- 
ture, recompute (0) minimizing (7). In practice, we found this iterative procedure 
unnecessary. Although the gap between futures rates (see footnote 9 for a defini- 
tion of futures rates) and forward rates is nontrivial, the size of this gap does not 
depend on whether the previous day’s volatility function or the current day’s 
volatility function is used. 

Using this procedure, we compute a time series of implied volatility para- 
meters on each day during our sample period. 

5. Estimated implied volatility functions 

We compute a daily time series of the implied volatility parameters for the six 
different models described earlier. Fig. 1 shows the imputed single parameter of 
the proportional and absolute models on every fifth day (because of the large 
sample size). The parameter of the absolute model is scaled by ten to make the 
numbers similar in magnitude. 

Parameter estimates across models are not directly comparable since the 
volatility functions differ in form. To compare across models, one must compute 
the volatility of forward rates as implied by the insta 
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Proportional and Absolute Implied 
Volatility Parameters (1987-92) 

- Proportional Volatility 

The absolute implied volatility parameter is scaled by ten. 

Absolute Spot Rate Volatility( 1987.92) 
Absolute and Proportional Models 

- 1 

p-q 
- Absolute Model - Proportlonal Model 

The negative of the ahsolute volalility is plotted for the proportional mtdcl. 

Fig. 1. Implied volatility parameters and absolute implied volatility for absolute and proportional 
models. 

This figure plots the daily time series of estimated implied volatility parameters (6,-J on an 
annualized basis and the absolute implied volatility of the spot interest rate for the absolute 
volatility [o(t, T,f(t, T)) = oo] and the proportional volatility [o(t, T,f(t, 7)) = aof(t, T)] models. 
For the absolute volatility graph, the negative of the absolute volatility is plotted for the propor- 
tional model to distinguish it from the absolute volatility from the absolute model. The data period 

is January 1, 1987 to November 10, 1992. 

deviation of changes in forward interest rates, a@, 7’..f(t, T)), for each of the 
models. For example, consider the proportional model. The volatility function is 

a(t, KS (t, T)) = oaf (t, T). Therefore, the absolute volatility of the spot rate 
equals o&t, t) and that of the one-year forward rate equals ctO f (t, t F 1). Fig. 1 
also shows a plot of the implied absolute volatility of the spot interest rate 
obtained from the absolute and proportional models. 

strates that im ied volatilities vary nificantly over the six- 
lied volatili’v may 
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be viewed as representi;lg the market’s conditional expectation of future volatil- 
ity, and realized volatility of rates does fluctuate significantly [Engle, 
Rothschild (1991)]. In the equity market, we know that the 
series variation in realized volatility [Schwert (19$9)], and 
(1992) document similar variation in the volatility implied 
Poors 100 index option prices. 

Of course, our six models posit that volatility parameters (measured different- 
ly in each) are constant. For this reason, a formal test of model fit would 
probably reject any of our models [Flesaker (1992) rejects the Ho-Lee (1986) 
model largely for this reason]. One possibility is that a second driving factor is 
influencing the evolution of rates, and manifests itself in the form of time-varying 
parameter estimates. However, it is unlikely that this second factor (if it exists) 
appears as an additive factor in (1). As we argued earlier, with options on 
short-maturity instruments, we cannot distinguish between multiple additive 
factors. After an analysis of historical forward rates with maturities of up to five 
years, Dybvig (1990) states that ‘the second factor (if any) in a term structure 
model should be related to the variance or other distributional features of 
interest rates, not additive in levels of interest rates as is usually assumed’. 

Therefore, we may want to attempt to model the random evolution of the 
volatility itself, via the so-called stochastic volatility approach. Some problems 
can arise, however. First, prices in stochastic volatility models are not deter- 
mined solely by arbitrage; one must specify the risk premium associated with the 
stochastic volatility. Moreover, such models would necessarily require more 
parameters, and would therefore exacerbate the problems of stable estimation 
that arise even in our two-parameter models. Finally, for options not too far 
from the money, prices in stochastic volatility models [Hull and White (198711 
are of similar form to those in a constant volatility model, with volatility terms 
in the latter replaced by their conditional expected levels in the stochastic 
volatility environment. Thus, using a constant volatility model with market- 
implied volatility parameters achieves nearly the same effect. 

Although our implied volatility parameters vary over time, they do not 
appear to be unstable. A qualitative difference in the behavior of the absolute 
and proportional models appears in the second half of 1992, when short-term 
rates were very low. Implied proportional volatility increased dramatically, 
while implied absolute volatility did not. A similar phenomenon occurs with 
equity options in that (proportional) volatility rises as equity prices decline and 
vice versa (the so-called leverage effect). 

In table 3a, we report the mean, standard deviation, coefficient of variation, 
and autocorrelations in the parameter estimates for each model tested Notice 
that the coefficients of variation are significantly higher for the two-parameter 
models relative to the single-parameter models. 
(cl) for the linear absolute and line 

arameter (A) for the ex 
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and these parameter estimates are not very reliable. Finally, the standard errors 
in estimating these parameters are much higher (results are not reported) than 
those for the other parameters even on a day-by-day basis. 

The autocorrelations and the results of the Dickey-Fuller tests demonstrate 
that in each case the time series of volatility parameter estimates is stationary 
and mean-reverting. The first order correlation, pl, of the first difference in the 
time series of daily parameter estimates is - 0.12 for the proportional model, 
- 0.19 for the square root model, and - 0.26 for the absolute model. 

The autocorrelation values are similar to those found for Standard and Poor”s 
100 (OEX) options. Using a dividend-adjusted Black-Scholes model, Harvey 
and Whaley (1992) compute the first- and second-order autocorrelations in the 
implied volatility series as - 0.18 and - 0.11 for QEX call implied volatilities 
and - 0.15 and - 0.12 for OEX put implied volatilities. All the options prices 
used to compute their implied volatilities are sampled from a ten-minute 
window using transaction prices. Therefore, it is quite unlikely that their volatil- 
ity estimates are significantly affected by asynchronous prices. Since our num- 
bers are similar to those of Harvey and Whaley (1992), it is unlikely that the 
asynchronous trading problem is very serious. Recall that our options and 
futures prices are all obtained during the first hour of trading and the Eurodollar 
futures and options market is extremely liquid. 

For the two-parameter models, the first-order autocorrelations, pl, for the 
daily change in the parameter values are also negative, and larger in magnitude. 
For the exponential model, p1 is - 0.32 and - 0.46 for changes in cio and a, 
respectively. However, for all models, the autocorrelations beyond the second 
lag are insignificant. The larger magnitudes of pl (and the coefficents of vari- 
ation) are consistent with the hypothesis that the two-parameter models are, in 
part, fitting to noise and bid-ask bounce. Later we shall see other evidence off 
this phenomenon. 

Under the absolute model, the slope of the estimated volatility function, gl, is 
positive on average. Under the exponential model, ;1 is negative on average. 
Thus, the estimated volatility of the one-year forward rate is higher than that of 
the spot rate. However, we have made some ‘market snapshot’ studies of 
longer-maturity caps and swaptions prices. Implied volatility functions for these 
instruments exhibit a hump in the volatility structure; in the Eurodollar data we 
see one side of the hump. Finally, notice that the average slope of the volatility 
function under the linear proportional model is negative. Therefore, the propor- 
tional volatility of the one-year forward rate is lower than the proportional 
volatility of the spot interest rate. This seems to be due to the fact that the term 
structure is upward sloping throughout most of our sample period. 

In table 3b, we report similar statistics as in table 3a, but with absolute 
volatilities of the spot rate, S(t, t), and the one-year forward interest rate, 
f(t,t + 1). he ab so u 1 t e volatilities are very similar across models. The one-year 
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forward rate volatility is now higher on average than the spot rate volatility in 
all models except the absolute (where equality of absolute volatilities across 
maturity is ensured by construction). owever, the absolute volatility of the 
one-year forward rate is much higher for the exponential model than for the 
other models. Suppose that the absolute volatility is truly I creasing with 

maturity. When fitting the exponential model to option prices, the fitting 
procedure will choose ;1 to match the majority of options which are short-term 
options. The value of R necessary to generate the increases in volatility at the 
short end of the term structure will force high volatility at the one-year maturity 
because of the exponential function. This interpretation seems to argue against 
a good fit to the data with the exponential model. 

The autocorrelations are similar to those reported for the actual parameter 
estimates in table 3a. In conjunction with the results of the modi 
Dickey-Fuller tests, they indicate that the absolute 
strongly mean-reverting and stationary irrespective of 
compute the volatility. 

volatility time series is 
which model is used to 

6. Pricing options using lagged implied volatility 

For our predictive tests, we compute each day the term structure of forward 
rates by using the previous day’s implied volatility function and the current 
futures prices. Using this estimated term structure and the previous day’s 
implied volatility function, we then compute the model value for each option. 
This value is the simple model forecast. The forecast error is equal to rhe differ- 
ence between the true market price observed on that day anti i&e forecasted value. 

We first present some simple summary statistics. In table 4a, we summarize 
the model errors for each of the volatility functions. The average forecast error is 
close to zero, even in the out-of-sample fit. 

In the third column of the table, we report the average ab!G>!e error in basis 
points (ticks) for each of the volatility functions for the e~~%~i~ pooled dataset. 
Recall that a basis point represents the minimum t>rice change of $25. Notice 
that the avertige absolute error for the absolute &dei is significantly higher 
than that for any of the other models. The averag?: ~+b~ol.:t~ error is of the order 
of one-and-a-half basis points for the linear ~~oport:+r~~:~ model and approxi- 
mately one-and-a-half to two basis points for the other models. Since the 
bid-ask spread in this market is roughly one basis point (both for the futures 
and for the futures options), the fit of the models is good. Recall that these 
models use one or two parameters (estimated out of sample) to simultaneously 
generate an average of 18.5 option prices each day. 

In the fourth column of table 4a, we report the corresponding average 

absolute fractional errors. The fractional error is computed as the error divided 
by the market price. The average absolute fractional error is fairly high (15.2% 
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Table 4a 

Summary error measures with six different volatility functions. 

This table reports measures of model forecast error (measured in basis points) for six different 
volatility functions. The previous day’s implied volatility function is used to obtain out-of-sampls 
model forecast prices for the next day. The in-sample model prices (errors) are based on fitting an 
implied volatility function to the current day’s option prices. The implied volatility function is 
computed based on minimizing the sum of squares of errors between market prices and model 
prices. The sample period is January I,1987 to Novemeber 10, 1992 and there are 13,743 calls and 

13,625 puts in the data sample. 
-~ 

Out-of-sample forecasta 
In-sample’ 

Av. abs. err. av. abs. err. 
Av. abs. Av. frac. 

Volatility function Av. err. err. abs. err. Calls Puts All options 

Absolute - 0.13 2.23 0.211 2.13 2.32 1.95 
Square root - 0.12 1.94 0.188 1.88 2.01 1.71 
Proportional - 0.06 1.76 0.173 1.76 1.77 1.55 
Linear absolute 0.01 1.76 0.171 1.63 1.90 1.36 
Exponential - 0.11 1.85 0.176 1.73 1.98 1.36 
Linear proportionalb - 0.06 1.57 0.152 1.56 1.59 1.17 

‘Forecast error = [Market price - Model forecast price] in basis points (or multiples of $25). 
Av. err. = average forecast error in basis points. Av. abs. err. = average absolute forecast error in 
basis points. Av. abs. frac. err. = average of (Forecast error/Market price). 

bBased on the ‘g sr ns test, we can reject the hypothesis with probability at !east 0.99 in each case 
that any of the other models has a lower absolute error than the linear proportional model. 

TaF!e 4b 

Correlations between forecast errors across six volatility functions. 

This table reports the correlations between the out-of-sample forecast errors in option prices with six 
different volatility functions for the period January 1, 1987 to November 10, 1992. 

---~~- ______ -___ ~~___ 

Square Linear Linear 
Volatility function Absolute root Proportional absolute Exponential proportional 

Absolute 1.0 
Square root 0.97 1.0 
Proportional 0.86 0.95 1.0 
Linear absolute 0.49 0.51 0.50 1.0 
Exponential 0.33 0.35 0.35 0.87 5.9 
Linear proportional 0.38 0.46 0.53 0.87 0.86 1.0 
___ ._.___~. -- - -. --___ 

for the linear proportional model). However, these numbers are driven by the 
large fractional errors for options that are well out-of-the-money. The small 
prices of these options magnify even small pricing errors into large fractional 
errors. However, since these options also have very low volume, the average 
absolute fractional errors are less meaningful than the average absolute errors. 

ecause the two-parameter models nest the single-parameter models, thq 
will always provide better in-sample fits. But, they may not perform as well 
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out-of-sample, due to the possibility of overfitting to noise. ur case, however, 
the linear absolute and exponential models fit better t solute model 
which they nest, and the linear proportional model fits than the propor- 
tional model. This is true with one-day-ahead forecasts. ion 7, we will also 
compare the ability of the models to explain option pri 
and compare models based on their ability to detect 
which can be exploited using trading strategies. A given 
to uncover genuine pricing errors that persist over t 
incorporated into misestimated parameter values. Our in section 7 will 
distinguish the models based on this yardstick. 

Table 4b demonstrates the importance of the num of parameters in 
determining the behavior of a model. In both the on nd two-parameter 
groups, the lowest correlation between models is 0.86. Al gh the errors in all 
six models contain a common component due to n * in prices, bid-ask 
bounce, presence of a possible second interest rate factor, ge correla- 
tion within the one-parameter and two-parameter classes ies that the choice 
of the number of parameters has as great an impact ar options 
prices as the form of the model. 

In figs. 2 and 3 we plot the average forecast error nction of time to 
maturity and option moneyness, where moneyness is defi as the futures price 
less the strike price for calls and strike price less the rice for puts= For 
puts and calls separately, the options are grouped into e categories contain- 
ing an equal number of options, with the average value the maturity/money- 
ness for each group shown on the X-axis. Fig. 2 shows at all models tend to 
overprice short-dated options of both types. The e-parameter models 
compensate by underpricing the longer-dated opti , particularly puts. 
The two-parameter models overprice medium-term o ns, and in fact end 
up underpricing the long-term options, particularly c However, the two- 
parameter models are a better fit for long-dated puts. This is one reason why the 
two-parameter models produce lower fitting errors than the one-parameter 
models. 

Fig. 3 exhibits the pattern of mispricing as a function of moneyness. The linear 
absolute and exponential models overprice almost all calls, except far-in-the- 
money ones. The other models underprice out-of-the-money calls and overprice 
nearer-to-the-money calls. For puts, the pattern is stronger and similar across 
models. All models seem to overprice in-the-money puts and underprice out- 
of-the-money puts. However, notice that the average error for at-the-money 
calls (puts) is smaller than that for other calls (puts). In 
seems to be a ‘smile effect’ for both calls and puts. 

To study possible systematic biases in more detail, 
cross-sectional regression separately for calls and puts: 

trader parlance, there 

we run the following 
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Fig. 2. Forecast error as a function of maturity. 

This figure plots the forecast error as a function of the option maturity separately for calls and puts. 
All the options are sorted by maturity and grouped into eight categories containing an equal number 
of options. The average maturity for each of the eight groups is plotted on the X-axis. The units for 
all prices are basis points (multiples of $25). The sample period is January 1, 1987 to November 10, 

1992. 

where is the market price, 6 is the mo el price, and E is the error. The results 
are summarized in table 5. The average prediction error is quite small, except for 

1 and linear absolute models. The high R-square is not 
t is also evident i tests of equity options 

torl==4a 
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Puts 
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Fig. 3. Forecast error as a function of moneyness. 

This figure plots the forecast error for calls and puts separately as a function of moneyness (futures 
price less strike price for calls and strike price less futures price for puts). All the options are sorted by 
moneyness and grouped into eight categories containing an equal number of observations. The 
average moneyness for each of the eight groups is plotted on the X-axis. The units for all prices are 

basis points (multiples of $25). The sample period is January 1, 1987 to November 10, 1992. 

overwhelmingly rejected for all models. The lar size of the data sa 

that even small mispricings are evident from e regression. [See 

Turnbull (1990) for a similar observation in the context of foreign currency 

owever, if we take the view that ‘it takes a model to beat a model’, 
then we are only concerned about relative 
objective is to study which model is the most 
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Table 5 

Overview of model performance. 

Regression results for 

Market price of option = a0 + a1 Model forecast price + E , 

for six different volatility functions. The T-statistics [adjusted for heteroskedasticity using White 
(1985)] for a0 = 0 and al = 1, respectively, are reported in parentheses below each coefficient. The 
previous day’s implied volatility function is used to forecast the current day’s prices using the current 
forward interest rates. The model and market prices are expressed in basis points. The sample period 

is January 1, 1987 to Yovember 10, 1992. 

Volatility Function 010 R2 F-stat.a 

Call options (13,743 observatiorrs) 

Absolute 

Square root 

Proportional 

Linear absolute 

Exponential 

Linear proportional 

- 0.908 1.015 0.9885 401.4 
( - 27.2) ( - 13.2) 

- 0.586 1.0087 0.9907 225.3 
( - 19.6) ( - 8.0) 

- 0.174 1.0010 0.99 16 30.6 
( - 6.1) ( - 0.9) 

- 0.425 0.99994 0.9892 257.0 
( - 12.8) (0.04) 

- 0.192 0.9860 0.9765 228.1 
( - 1.1) (1.8) 

0.204 0.9857 0.9897 34.0 
(5.7) (7.9) 

Absolute 

Square root 

Proportional 

Linear absolute 

Exponential 

Linear proportional 

Put options (13,625 observations) 

0.505 0.9890 
(14.6) (8.1) 

0.232 0.9950 
(7.6) (4 ‘,) 

0.0706 0.9985 
(2.5) (1.2) 
1.342 0.9596 

(30.4) (16.9) 

1.50 0.948 
(17.1) (11.0) 

0.706 0.9708 
(16.9) (12.7) 

0.9793 108.1 

0.9848 30.1 

0.9877 3.5 

0.9844 730.8 

0.9774 427.8 

0.9867 167.3 

aF-statistic for joint test of a0 = 0 and a1 = 1. 

For calls, the & coefficient in table 5 is always greater than one for the single- 
parameter models, and always less than one for the two-parameter models. 
Thus, the single-parameter models tend to underprice high-priced calls and 
overprice low-priced calls, while the opposite holds for t*.lo-parameter models. 
On the other hand, a similar examination of the &r coefficient for puts demon- 
strates that all six models overprice high-priced puts and underprice low-priced 
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puts. The last result is exactly the opposite of that found bv Whaley (1982) for 
D 

equity options. 
Note that 010 is negative for calls (except in the case of the linear proportional 

model) and positive for puts. A similar result obtains if we restrict al to be unity 
(for conciseness, these results are not reported in the table). Thus, the models 
tend to overprice call options and underprice puts. Put another way, the implied 
volatility of calls is lower than that of puts, on average. A similar phenomenon 
has been observed in Standard and Poor’s 500 futures options [Whaley (1986)] 
and in Standard and Poor’s 100 index options [Harvey and Whaley (193211. 

We next regressed the prediction error on the amount by which the option 
was in-the-money, the maturity of the option, the forward yield implicit in the 
underlying futures contract on which the option is based, and the TED spread 
defined as the spread between three-month Treasury bill (T-bill) and three- 
month Eurodollar yields. The three-month Eurodollar yield is computed from 
the term structure estimated in section 4.1. We obtained daily bid and ask prices 
on T-bills from Data Resources (DRI), and computed the three-month Treasury 
yield by linearly interpolating between the average of bid and ask yields of 
available T-bills. The reason for including the TED spread is that our model 
assumes that the forward interest rates are default-free. However, the Eurodollar 
rates contain some element of default risk. If the difference between Eurodollar 
rates and Treasury rates follows systematic time series patterns, then it is 
possible that this variation itself may be responsible for some of the pricing 
errors that we find. The regression equation is: 

Market - Model = PO + /I1 [Futures - Strike] + /&Maturity 

+ &&D + B4TED + E, 

where ED is the three-month forward yield for maturity equal to the option 
maturity and TED is the TED spread defined earlier. The results are summarized 
in table 6. 

Table 6 shows that, when significant, the estimate of p1 is negative for calls 
and positive for puts. Thus, out-of-the-money options are underpriced by the 
models. Since these options have low prices and low sensitivity to the volatility, 
our fitting procedures give them less weight. Therefore, their errors will tend to 
be larger in general. It is also possible that market-makers and speculators 
demand a premium to supply these options to investors to compensate for low 
trading volume (see table 2). 

The pZ estimate is significantly positive for puts and calls for all single- 
parameter models and significantly negative for puts and calls for all two- 
parameter models. Therefore, the single-parameter models underprice 
long-maturity options and overprice short-maturity options. These facts are 
also apparent from fig. 2. From table 3a, we know that, in our data, the volatility 
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Table 6 

Systematic biases in each model for call and put options. 

Regression results for 

Market price - Model price = PO + PI [F;crtures price - Strike price] + f12Matu.-ity + &ED + f14TE5 -t_ E , 

where ED is the three-month forward yield corresponding to option maturity, and TED is the spread between 
the three-month Treasury yield and the three-month Eurodollar yield. All prices are in basis points, all the 
yields are continuously-compounded yields expressed as fraction per year, and the option maturity is in days. 
The T-statistics of the regression coefficients, adjusted for heteroskedasticity using White (1985), are reported in 

pzentheses below each coefficient value. The sample period is January 1, 1987 to November 10, 1992. 

Volatility function Bl B3 84 R2 F-stat? 

Absolute 

Square root 

Proportional 

Linear absolute 

Exponential 

Linear proportional 

- 3.8 
( - 33.77) 

- 2.77 
( - 27.9) 

- 1.54 
( - 16.7) 

0.73 
(464) 
1.23 

(3.92) 

1.2 
(7.2) 

Call options (13,743 observations) 

0.003 
(5.70) 

- 0.0014 
( - 2.87) 

- 0.0057 
( - 11.3) 

0.0012 
(2.03) 

Q.0011 
(1.46) 

- 0.0092 
( - 15.5) 

0.015 
(43.07) 

0.011 
(37.7) 

0.0076 
(26.4) 

- 0.0045 
( - 7.91) 

- 0.0073 
( - 6.05) 

- 0.0048 
( - 7.8) 

17.96 
(12.4) 

11.44 
(8.8) 
2.63 

(2.13) 

- 7.0 
( - 4.05) 

- 9.66 
( - 3.1) 

- 12.54 
( - 7.0) 

11.71 0.21 718 
(1.8) 

8.65 0.17 557 
(1.37) 

7.11 0.13 342 
(1.13) 

- 2.38 0.03 92 
( - 0.34) 

- 9.96 0.03 92 
( - 1.02) 

- 1.41 0.04 51 
( - 0.21) 

Absolute 

Square root 

Proportional 

Linear absolute 

Exponential 

Linear proportional 

- 4.51 
( - 39.5) 

- 3.47 
( - 35.06) 

- 2.15 
( - 23.4) 

0.474 
(3.11) 

0.86 
(4.17) 

0.845 
(5.56) 

Put options (13,625 observations) 

0.016 
(32.1) 

0.013 
(30.3) 

0.009 
(23.4) 

0.018 
(34.8) 

0.019 
(31.0) 

0.011 
(25.6) 

0.019 
(43.3) 

0.014 
(39.0) 

0.0094 
(26.1) 

- 0.0015 
(-2.17) 

- 0.004 
( - 3.96) 

- 0.0057 
( - 8.4) 

18.15 
(13.51) 

13.8 
(11.5) 

6.58 
(5.54) 

- ‘,.66 
(-6.43) 

- 11.65 
( - 5.9) 

- 6.06 
( - 3.98) 

62.4 0.37 665 
(11.39) 

44.77 0.29 569 
(8.6) 
26.65 0.17 298 
(5.11) 

36.52 0.13 522 
(5.67) 

27.9 0.10 442 
j4.02) 

3.71 0.08 192 
(0.66) 

aF-statistic for the joint test of fli = 0 for i = 0, 1,2,3,4. 

of longer-term forward rates is higher than that of short-term rates. Since the 
single-parameter models cannot capture this feature, the volatility of longer- 
term futures prices is too low in these models. Since option values are increasing 
functions of volatility, longer-term options are underpriced. 

The sign of the biases induced by the variable ED is identical to those due to 
maturity for ever model and for both calls and puts. Recall that ED is the 
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three-month Eurodollar forward yield corresponding to the option maturity. 
Since the term structure is usually upward-sloping in our data, the variable ED 
and the option maturity are positively correlated, so the pricing biases for both 
variables are similar. 

Finally, the coefficient for the TED spread is insignificant for call options. For 
puts, it is significant and positive for all models except the linear proportional, 
possibly explaining why the put valuation errors are larger than for calls. Calls 
are not affected by variations in the TED spread, whereas puts are. It may be 
worthwhile to model the systematic variation in the TED spread when valuing 
puts. However, the problems of parameter estimation in any model involving 
both Treasury and Eurodollar rates are likely to be severe. 

7. Trading strategies based on mispriced o 

In this section, we compare model performance based on whether simple 
trading strategies can exploit the deviations between model and market prices. 
Roughly speaking, our trading strategies will be of the following form: each day 
fit to the market as well as possible, then buy underpriced options and sell 
overpriced options, and finally hedge these options using their underlying 
futures contract. In an efficient market, no such strategy should earn abnormal 
returns, after accounting for transaction costs and risk. 

Since we are studying models that posit particular forms of term structure 
evolution, we can develop a hedging method that is consistent with the pricing 
model. To that end, for a given choice of model and its parameters, define an 
instrument’s delta as the change in its model price induced by an instantaneous 
shift in the term structure, of the form implied by the model, and with magnitude 
ecgual to one day’s standard deviation. This delta is clearly a linear operator, and 
a portfolio is delta-neutral if and only if its delta is zero. Such a portfolio is 
immunized against term structure movements of the form dictated by the model. 

Notice that the form of term structure movements hedged by delta can vary 
significantly from model to model. For example, under the absolute model, delta 
hedging amounts to hedging against Rat parallel shifts in forward rates. How- 
ever, under a linear absolute model with nonzero slope Q, delta hedging means 
hedging against a term structure twist. 

Finally, note that we do not hedge against changes in the environment which 
are ‘outside the model’ (such as changes in the level of volatility, changes in 
parameter values, etc.). 

The focus of the remainder of our study will be the relationship between the 
original mispricing of an option and the eventual profit realize 
a position in that option. e use the term allocated prc$t to refe 
profit for that option. In calculating allocated profits, we charge or earn the 
short-term interest rate each day dependin on whether ca 
generated by the position. 
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Each day and for each model, we fit (as described in section 3) a term structure 
and a volatility Amt. -iron to those futures and options prices observed by 8:30 am 

. We randomly decide (independently, with probability 0.2) to take a posi- 
tion in each mispriced ?>ption not already in the portfolio. We do not initially 
impose any filter rules. The price charged (or earned) for every option traded is 
its first recorded price after 8:45 ‘m, thus guaranteeing a minimum lag of 15 
minutes from fitting to trading time. Since our database contains only a record 
of trades at new prices, the price we record for an option might not be its first 
traded price after 8:45. If the option’s price does not appear that day after 8:45, 
its order is canceled. 

We randomly choose option positions to trade because if we traded every 
option not already found in the portfolio, we would necessarily trade every 
option on the first day it appears, perhaps inducing a bias. Selecting options 
randomly reduces this bias, and yet leaves us with many trading opportunities. 

We also impose a position limit of one on each option. This rather severe 
constraint helps give some independence between different trades (although 
complete independence between two positions held at the same time cannot be 
assured). It will be evident from table 7 and our later discussion that the model 
pricing errors persist over many days. Therefore, in the absence of a position 
limit, we would purchase the same underpriced option (sell an overpriced 
option) again and again on many consecutive days. Consequently, our sample of 
trades would contain highly-correlated observations. Our position limit con- 
straint prevents us from accruing profits from large positions in a single option 
and alleviates this problem. 

Each day that an option position is maintained, we delta hedge it with its 
underlying futures contract. That is, we determine the delta of the option and of 
its underlying futures contract, and take a position in the futures contract so that 
the combined delta is zero. We close out the position when any of the following 
conditions occur: 

the mispricing disappears (e.g., an option which was originally underpriced 
becomes overpriced, or vice versa), 
the option expires, or 
the option goes in or out of the money by 150 basis points. 

The reasons for conditions 1 and 2 are obvious. Condition 3 is imposed since 

1. 

2. 
3. 

options this far out of the money or in the money trade extremely infrequently. 
It is possible that conditions 2 or 3 could occur without observing a price for 

the option on the final day the position is held. In this case, we mark the contract 
at its model price plus its ‘gap’, where the gap is the most recently observed 
difference between the market and model price. The reason for this choice is that 
when an option in our portfolio does not trade, it is usually because a market 
movement has caused the option to no longer be near the money. Thus, marking 
it at an earlier price could be quite misleading. n the other hand, marking at 
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Table 7 

Trading strategies based on m&priced options: Summary results. 

This table reports the results of a trading strategy of buying (selling) underpriced 
. .a __ __ _ (overpriced) 

options and hedging them with the underlying futures contract until the mispricing disappears for 
each of the six models for the sample period January 1,1987 to November 10,1992. The numbers in 
parentheses denote T-statistics, adjusted for heteroskedasticity using White (1985). The profit is 

measured in basis points. 
The average investment per trade does not vary significantly by option type (calls or puts) or 

according to the model used. It is approximately 28 to 30 basis points. 

Model 
Option 

type N” 

Average 
days 
held 

Average 
profit in 

basis points 

Gap 
coefficientb 

a 

Market 
coefficient ’ 

B 

Absolute 

Square 
root 

Proportional 

Linear 
absolute 

Exponential 

Linear 
proportional 

All 
Calls 
Puts 

All 
Calls 
Puts 

All 
Calls 
Puts 

All 
Calls 
Puts 

All 
Calls 
Puts 

All 
Calls 
Puts 

3,131 23.1 
1,648 20.9 
1,483 25.7 

3,154 22.7 
1,633 21.3 
1,521 24.2 

3,433 20.6 
1,767 19.9 
1,666 21.2 

3,564 19.5 
1,932 17.6 
1,632 21.7 

3,568 19.2 
1,873 18.1 
1,695 20.5 

3,850 17.9 
2,039 16.8 
1,811 19.1 

1.74(6.41) 0.7 l(3.66) 
1.53 (3.95) 0.57(1.91) 
1.96(5.22) 0.82 (3.23) 

1.30 (4.67) 0.65 (2.26) 
0.41(0.98) O.lO(O.22) 
2.26 (6.28) 1.15 (4.23) 

1.15(4.41) 0.45 (1.48) 
0.43(1.10) - 0.34( - 0.83) 
1.92 (5.56) 1.29 (4.43) 

0.37 (1.58) 0.49 (2.20) 
0.18 (0.53) - 0.06( - 0.20) 
0.59 (1.93) 0.88 (3.05) 

0.45 (2.06) 0.41(1.72) 
0.29 (0.89) 0.16(6.58) 
0.64(2.16) 0.62(1.71) 

0.45 (1.99) 0.10 (0.37) 
- 0.07( 0.22) - - 0.28( 0.73) - 

1.03(3.53) 0.51(1.40) 

- 0.131 - 0.86) 
- 0.75 ( - 3.48) 

0.38 ( 1.94) 

0.02(0.16) 
- 0.46( - 1.99) 

0.43 (2.37) 

0.04 (0.27) 
- 0.44( - 1.97) 

O&(2.15) 

- 0.25( - 1.32) 
- 0.24( - 0.59) 
- 0.26( - 1.74) 

- 0.35( - 2.68) 
- 0.55( - 2.52) 
- 0.20( - 1.27) 

- 0.20( - 1.26) 
- 0.26( - 0.94) 
- 0.15( - 0.84) 

‘Number of individual futures options purchased or sold. 
bCoefficient of the initial gap ( = 1 Market price - Model price 1) when regressed against the 

realized allocated profit from the regression: Realized allocated profit = Constant + a(Initia1 gap) 
+ error. 

“Coefficient of the market return (return on the value-weighted returns of all firms on the 
NASDAQ, NYSE, and AMEX measured as a fraction per year) when regressed against the allocated 
profit (in basis points) to the hedged trade from the regression: Allocated profit = Constant + 
/3(Market return) -t error. 

the model price can be too optimistic, given that we are trading on discrepancies 
between the model and the market. Our procedure seems to be a reasonable 
compromise. Finally, we note that the estimated parameters and model prices 
are determined only from prior data. Therefore, our results are not subject to 
data-snooping biases. 

The results of these trading strategies are summarized in table 7. The most 
basic result is that, with no transaction costs, all rnc .!els produce 
significant abnormal profits. 
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As a group, the one-parameter models substantially outperform the two- 
parameter models, producing profits that are roughly one basis point higher per 
position taken. This finding is consistent with the t meter models overfit- 
ting to spurious noise in the data. If the pricing rsist over even a few 
days, it is plausible that systematic pricing errors er time will simply be 
incorporated into misestimated parameter values think of an extreme 
case in which there might exist a large number of ispriced with respect 
to the ‘true model’, but by fitting a large number of parameters, we exactly fit all 
the option prices on a given day. If the pricing errors persist over time, the model 
with these parameters will not be able to detect the mispriced options on the 
subsequent day. 

Notice that the average holding period for the hedged position varies 
between 17 and 25 days. If the pricing error for a given option was random 
from one day to the next, we would expect very short holding periods. 
Therefore, the pricing errors are persistent over time. We also note that the 
average holding period is larger for single-parameter models relative to two- 
parameter models. Therefore, the pricing errors are more persistent for the 
single-parameter models and provide some evidence of overfitting in the case 
of the two-parameter models. 

We now study the allocated profits as a function of the initial mispricing. If 
the models can detect true mispricing, then one would expect a positive 
relationship between anticipated profit (as measured by the initial mispricing 
or gap) and the realized profit of the hedged trade. Fig. 4 and table 8 display 
the realized profits as a function Jf initial mispricing, broken down by option 
type and direction of position taken. Several facts emerge. The largest profits 
are obtained by selling options, and this profit is generally a monotonic 
function of the initial gap. Buying mispriced puts is also profitable, although 
the levels of profits are not as large. Again, the initial gap provides a strong 
signal about the profit expected. Finally, buying mispriced calls seems to 
generate losses in many cases. 

Recall from fig. 2 th;;t the major qualitative difference between the behavior of 
the one- and two-parameter models is the latter’s ability to better fit market 
prices of long-dated puts. However, the trading results shown in fig. 4 indicate 
that, in fact, the one-parameter models are correctly pricing the puts. These 
models are able to extract from the market, by trading, nearly the entire amount 
of the apparent mispricing. 

To make these observations more precise, we regressed realized profit 
against the initial gap for all the trades irrespective of the initial gap. The 
results are also reported in table 7. As expected, the gap coeficient is positive 
in all models, and statistically significant at the 95% level in the absolute, 
linear absolute, and square root models. In the absolute model, for example, 
the average realized profit is 82% and 57% of the initial gap for calls and puts, 

he initial gap is a strong predictor of the final realized profit. 
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Allocated Profit versus Initial Gap 

-, - ’ * ’ 1 to 2 Bans Points 2 to 3 Bask Points B 3 Bask Point; 
Initial Gap 

Allocated Profit versus Initial Gap 
Sold Puts 

. ’ . 1 10 2 Bass Poms 2 lo 3 Basis Pmts s 3 Basrs Pmnts 
Inmal Gap 

Allocated Profit versus Initial Gap 
Bought Puts 

lnitiil Gap 
> 3 Basis Pods 1 to 2 Basis Points 2 to 3 Base Poms 

Initial Gap 

Fig. 4. Profits from trading strategies to exploit mispriced options. 

This figure plots the average allocated profit from a trading strategy of buying (selling) underpriced 
(overpriced) options and hedging them with the underlying futures contract until the mispricing 
reverses. Trades are classified by the initial gap ( = 1 Market price - Model price I), and we plot the 
average realized profit per trade separately for puts and calls and separately for positions in which 
the options are bought and sold. The profit per trade and the initial gap are in basis points (multiples 
of $25). The sample period is January 1,1987 to November 10, 1992. The six bars in each group in 
the figures are, from left to right: absolute, square root, proportional, linear absolute, exponential, 

and linear proportional models. 

I indication that the model is picking up and exploiting This seems to be an 
genuine mispricings. 

As fig. 4 and table 
differ markedly. The 

8 demonstrate, the profit opportunities in puts and calls 
gap coefficients seem to support the hypothesis that all 

models, but particularly the one-parameter ones, can detect and exploit mis- 
priced puts. Moreover, the size of the original mispricing is very significant in 
predicting the eventual profits. For calls, the story is mixed - the models perfor 
well in detecting opportunities to sell calls, t their signals to buy calls are not 
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reliable. Even though fig. 4 and table 8 document large losses for purchased 
calls, the losses are not statistically significant for any of the models or filter rule 
as there is a wide dispersion in the allocated profits. However, the profits 
generated from selling both puts and calls with each of the individual filter rules 
are individually significant for all the models. 

The fact that the gap coefficients are less than one indicates that large pricing 
errors are perhaps not as reliable. Recall t&t both the futures price and the 
option price are subject to the bid-ask spre:.J, which is typically one basis point. 
Perhaps the larger pricing errors that we detect reflect a larger component due 
to these bid-ask effects. 

Since our trading strategies are not riskless, the abnormal profits that they 
generate could be due to ‘systematic risk’. Even though it is difficult to measure 
systematic risk in our context, regressing the realized profits against a market 
return can provide some rough guidelines. To test if systematic risk is the cause 
of the excess returns, we regress the realized profit on each position against the 
value-weighted returns of all firms on the NASDAQ, NYSE, and AMEX, over 
the period that the position is held. The market coefficients are predominantly 
negative, except in the case of put trades under one-factor models. Since these 
types of trades are quite profitable, systematic risk is the cause of some of the 
profits. However, the average profit seems too large and over too short an 
interval to be due to systematic risk alone. Still, in the absence of an equilibrium 
model, it is difficult to quantify the excess profit. 

In sum, the trading results indicate that the market systematically contains 
mispricings, particularly in long-dated puts, which appear overpriced. The 
one-parameter models are able to detect and exploit this mispricing. Moreover, 
the initial gap predicts the realized profits well. 

Whether our results are evidence of market inefficiency depends on the 
transaction costs involved in implementing our strategy. The bid-ask spread in 
the Eurodollar futures options market is of the order of one basis point and 
there is a brokerage fee as well. However, market makers on the floor of the 
exchange are subject to only a small clearing fee and by timing the trade, they 
can avoid paying the bid-ask sprtsd as liquidity providers. Therefore, the 
transaction costs of setting up the initial trade are probably significantly smaller 
than one basis point. However, one must also incur the costs associated with 
daily hedging (a position is typically held for about 20 days). Clearly, if a cost of 
one basis point must be paid each day to hedge, then the profits we see for puts 
(two basis points on average, higher if a ‘silter rule’ is used to select trades based 
on initial gap) are insignificant. bn the other hand, our strategy was deliberately 
simple. Perhaps hedging every day is not required, or perhaps one can hedge 
with other mispriced options +I- So generate even higher profits. We do not pursue 
these issues here. Our primary objective is to compare the ability of the models 
to value and hedge options correctly and not to formally test for market 
efficiency. 
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8. Conclusions 

We implement and test six HJM interest rate models u an implied 
volatility technique. We apply our models, which contain ei one or two 
parameters, to Eurodollar futures and options rices between 11987 aged 1992. 
Each day, we fit the parameter(s) to all traded options, after using the futures 
prices to determine the term structure. 

We characterize the implied volatility of interest rates from each of the 
models. The implied volatility series is stationary and mean-reverting irrespec- 
tive of the model used. The mean absolute volatility estimates are similar across 
models, although the single-parameter models produce significantly more stable 
estimates of implied volatility. On average, the absolute volatility of the one- 
year forward rate is larger than the absolute volatility of the spot interest rate. 
However, since forward interest rates are typically increasing with maturity, the 
proportional volatility of the one-year forward interest rate is lower than the 
proportional volatility of the spot rate on average. 

We compare the models based on three criteria: (1) stability of parameter 
values, (2) fit between model and market prices, and (3) ability of the model to 
earn profits when it trades on perceived mispricings. We find that the number of 
parameters used in the modeI has a strong effect on the behavior of the model - 
in fact stronger than the form of the model used (proportional, absolute, etc.). 
Two-parameter models tend to fit prices better (even one day out of the sample), 
but their parameter estimates are less stabie and thev earn less from their 
perceivlei: mispricings. Although the one-parameter models fit slightly less well, 
their implied parameter values are more stable over time and they are able to 
earn significantly larger and more consistent abnormal profits from the mispric- 
ings they detect. 

As with equity options, put options are overpriced relative to call options and 
there are significant biases as a function of strike price and maturity for all the 
models. All models, particularly the one-parameter models, suggest that long- 
dated puts are overpriced in the Eurodollar market. The poor fit of the single- 
parameter models is attributable in large part to the mispricing of these puts. 
Together with the observation that the one-parameter models earn larger and 
more consistent profits, there are strong reasons to conc’lude that one-parameter 
models are preferable for valuing options with maturities of less than a year. 
Among the one-paramete; models, the absolute model seems to be preferable 
since its parameter estimates are the most stable and it earns the largest profits. 

A ix 

For completeness, we outline a nu.merical irllplementation of single-factor 
models as described in 

orton, and Spindel (1992). 
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At date 0, we wish to value an option maturing at T. Discretize the interval 
[0, T] into M subintervals of width h,, for m = 1,. . . , M, such that 
c,“=,hm = T. The choice of subintervals will have some effect on the rate of 
convergence of the discrete approximations. One satisfactory scheme is to 
choose linearly increasing (or decreasing) subinterval lengths so that the largest 
is twice the size of the smallest [Amin and Rodurtha (1994)]. Under the HJM 
approach, with the entire term structure as a state variable, we need to track the 
evolution of rates only up to time T to value such an option. We construct 
a binary (non-recombihg) tree under which the mth step induces volatility 
corresponding to the passage of h, time units. In general, one cannot use the 
recombining lattice approach [Cox, Ross, and Rubinstein (1979) or Amin 
(1991)] to approximate path-dependent HJM models. 

Let t be the date at the beginning of the ith time interval, that is t = ct& h,. 
We track k forward ratesf(t, t + tj) with times to maturity tj for j = 1,. . . , k at 
each of the 2’- ’ nodes in the binary tree representing the term structure at date t. 
It is suficient to choose forward rates approximately one month apart. Other 
forward rates can be obtained as needed by linear interpolation. 

Assume that all the forward rates at a given node at date t have already been 
computed, and that we have Ito generate rates at time t + hi. The stochastic 
differential equation (1) can be discretized by the equation: 

f(t + hi, t + tj) -f(t, t -t tj) 

= a(& t + tj, . )hi + a(t, t + tj,_/‘(t, t + ti,)J& with probability 3, 

= Ct(t, t + tj, .)hi - a(t, t + tj,f(t, t + tj))Jhi with probability 4, 

forj= 1,. . . , k. The increment to the forward rate of maturity t + tj over the 
interval (t, t + hi) has mean 
O(t, t + tj,f(t, t + tjj)J&* 

v(t, t + tjv . )hi and standard deviation 

Initially, suppose that the drift a(a) is computed using eq. (2). Let 

P(ZT)=exp[ -[f(t,u)du] (10) 

be the price at time t of a pure discount bond paying one dollar at T. The 
martingale condition, applied to the discrete time framework, requires that 

t[P(t + hi, T)P(t, t + hi)] = P(t, T). (11) 

In our discrete-time 
will be satis 

erforma~ce is 0 

if’ we use the drifts from eq. (2), this 
e limit as i etter numerical 

that the martIngale condition olds exactly 
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under the discrete time framework. From (9) the martingale cundition (10) holds 
only when 

‘~(t, U, e)du + fi 
s 

T 
dt, u9f (4 @Mu 

t >3 
T Ct(tv U, l )du - Jhi 

s 

T 
o(t, u,f (t, u))du >3 = 1 . (12) t 

Given the volatility function, the drift coefficients can be computed from the 
above equation. They differ from those in (2) by terms of order o(h) . 

We found that very few time steps (ten or less) were required to achieve 
accurate option prices. This number appears small at first, but observe that 
a ten-step binary (non-recombining) tree contains 1,024 final nodes and thus 
should sample the true continuous distribution well. In contrast, a NO-step Cox, 
Ross, and Rubinstein (1979) binomial tree contains 101 final nodes. Moreover, 
the options in our sample have maturities of less than one year, making their 
valuation relatively easy. The absolute model yields closed-form solutions for 
European Eurodollar options. It is also amenable to a path-independent discre- 
tization (with a recombining lattice) which can be used to compute accurate 
American option values with 200 time steps. We tested our discretization using 
these solutions. For detailed benchmarking results, see Amin and Bodurtha 
(1994) and Heath, Jarrow, Morton, and Spindel (1992). 
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