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Abstract 

Human intuition is a rich and useful guide to uncertain events in the environment 
but suffers from probabilistic incoherence in the technical sense. Developing 
methods for extracting a coherent body of judgement that is maximally consistent 
with a person’s intuition is a challenging task for cognitive psychology, and also 
relevant to the construction of artificial expert systems. The present article motivates 
this problem, and outlines one approach to it. 

1. Introduction 

Human assessment of chances provides a guide to objective probabilities in a 

wide variety of circumstances. The survival of the species in diverse and rapidly 

evolving environments is testimony to this fact, as is the adequacy of our choices 

and judgements in most contexts encountered in daily life. At the same time, our 

assessments of chance are subject to systematic errors and biases that render them 

incompatible with the elementary axioms of probability. The character and origin 

of these errors have been the topic of intense scrutiny over several decades (for a 

partial review, see Osherson, in press). 
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How can the power and wisdom of human judgement be exploited while 

avoiding its weaknesses? One approach is to formulate principles of reasoning 

that simulate human judgement in large measure but correct it in view of 

probabilistic coherence. Such is the research program advocated and elaborated 

in our recent work (Osherson, Biolsi, Smith, Shafir, & Gualtierotti, 1994), and 

proposed in this article as a research program for cognitive psychology. The 

fundamental idea of extracting elements of human judgement for use within a 

normatively correct system of reasoning has already been articulated by Judea 

Pearl (1986, 1988). However, as explained below, our approach is different from, 

and complementary to, the tradition spawned by Pearl’s studies. In a word, 

earlier approaches are “extensional” in character, assigning probabilities to 

unanalyzed statements and their logical combinations; in contrast, our approach is 

“intensional” inasmuch as it relies on a representation of the semantic content of 

the statements to which probabilities must be attached. 

A specific implementation of our approach is presented in Osherson ct al. 

(1994) but a somewhat different one will be summarized below. The goal of the 

present article is not to insist upon the details of any one approach but rather to 

highlight a research question that we find challenging and important. The 

question is: how can orderly and plausible judgement about uncertain events be 

extracted from the turmoil of human intuition? 

We begin with general remarks on the difficulty of reasoning about prob- 

abilities in coherent fashion. 

2. Coherent reasoning 

2.1. The attraction of probabilistic reasoning 

A system that recommends action in the face of uncertainty should quantify its 

estimates of chance in conformity with the axioms of probability.’ Such is the 

burden of classical analyses of betting and prediction, which highlight the risks of 

reasoning non-probabilistically (see Cox, 1946; de Finetti, 1964, 1972; Jeffrey, 

1983; Lindley, 1982; Resnik, 1987; Savage, 1972, for extended discussion). 

Alternative principles have been proposed to govern situations in which prob- 

abilities cannot generally be determined, as in Shafer (1976, 1986) and Shortliffe 

and Buchanan (1975). However, close examination of these principles (e.g., 

Fagin Br Halpern, 1991: Heckerman, 1986) reinforces the conviction that 

‘Presentation and discussion of the elementary axioms of probability is provided in Resnik (1987, 
section 3.2). We do not rely here on the additional axiom of countable additivity (Ross, 1988. section 

1.3). which is more controversial (see Kelly, 1993, section 13.4]). 
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probabilistic reasoning remains the standard of rigorous thinking in the face of 

uncertainty. 

Although the foregoing conclusion remains the subject of lively debate and 

reflection (as in Dubois & Prade, 1991; Shafer & Pearl, 1990) it will be adopted 

without further justification in what follows. 

2.2. The computational difficulty of probabilistic reasoning 

Whatever its normative attractiveness, probabilistic reasoning poses difficult 

computational challenges. If probabilities must be distributed over the sentences 

of an expressive language, these difficulties can become insurmountable.’ How- 

ever, even when probabilities must be attributed to sentences without complex 

internal structure, certain manipulations are known to be intractable, for example 

updating Bayesian belief networks (see Cooper, 1987). 

The root difficulty is the large number of events that must be kept in view in 

order to ensure probabilistic coherence. To explain the problem we now review 

some standard terminology. The remaining discussion bears exclusively on finite 

event spaces (the domain for most probabilistic expert systems). Moreover, 

instead of the term “event” we use the equivalent terminology of “statements” 

and “propositions”. (For additional discussion, see Neapolitan, 1990, section 5.1; 

Pearl, 1988, section 2.1.) 

2.3. Probability over statements 

To establish a domain of discourse for reasoning, a finite number of statements 

S, , s,, . . . , S, are fixed in advance. Each S; is a determinate claim whose truth 

value may not be known with certainty, for example: 

(1) Tulsa will accumulate more than 10 inches of rain in 1995. 

The N statements give rise to 2N state descriptions, each of the form: 

+s, A . . . A Ls, 

where ?S, means that S, may or may not be negated. A state description is the 

logically strongest claim that can be made about the domain since it consists of the 

conjunction of every statement or its negation. A proposition is a subset of state 

‘This is shown for first-order arithmetical languages in Gaifman and Snir (1982, Theorem 3.7); the 

case of weak monadic second order logic is discussed in Stockmeyer, (1974. Theorem 6.1). 
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descriptions. Propositions are often denoted by the apparatus of propositional 

logic. For example. “S, v Sz” denotes the set of state descriptions in which at 

least one of S,, S, occur positively. There are 2’W propositions. 

A distribution is an assignment of non-negative numbers to the state descrip- 

tions, whose sum is one. A given distribution induces a probability for each 

proposition, obtained by summing the numbers associated with the state descrip- 

tions that make it up. 

Let a collection C of propositions be given, and suppose that M is a mapping of 

C to real numbers. M is called coherent just in case there is some distribution P 

such that for all X E C, M(X) = P(X). Otherwise, M is incoherent. 

2.4. Muintaining coherence in Iurge domains 

Now suppose that the domain in question embraces 500 statements 

S, , S, . . . S,,,,, concerning, let us say, five meteorological events in 100 American 

cities (we assume the events to be non-exclusive, referring to different months, 

for example). Suppose as well that some human agent 3i! is asked to assign 

probabilities to a growing list W of propositions built from those statements. Each 

proposition is relatively simple in form, but the same statement may occur across 

different propositions. Thus, 3 might start off like this: 

Question: How can %Y assign coherent probabilities to the successive proposi- 

tions in .Z‘p? In other words, as % associates numbers with more and more 

propositions. what procedure can be employed to ensure that the numbers are 

always extendible to a genuine probability distribution? 

To achieve coherency, x could in principle proceed as follows 

Stage 1: Faced with the first proposition Sz v is,, 3i” writes down the four state 

descriptions based on statements S, and S,. namely: S, A S,, lS, A S,, 

S2 A +,, lS, A 1S,. Then % chooses a distribution over these state 

descriptions that reflects her beliefs about their respective probabilities. 

By summing over the first, third and fourth state descriptions she arrives 

at her probability for Sz v is,. Her probabilities are coherent at the end 

of this stage. 

Stage 2: Faced with the second proposition S,,+ (S, A S,), she writes down the 



Stage 3: 

D. Osherson et al. I Cognition 50 (1994) 299-313 303 

16 state descriptions based on statements S,, S,, S, and S,,, that is, 

based on the four statements that appear in stages 1 and 2. Then X 

chooses a distribution over these state descriptions that meet two 

conditions, namely: 

(i) it is consistent with the distribution chosen for the four state 

descriptions of stage 1 (this is possible since her probabilities are 

coherent at the end of stage 1); 

(ii) it reflects her beliefs about the 16 state descriptions now in play. 

By taking the appropriate sum, Z arrives at her probability for 

S,,-+ (S, A S,). Because of property (i) her probability for the first 

proposition S, v -rS, may be recovered by adding the relevant state 

descriptions from among the current 16; the probability assigned to 

S, v lS, will not have changed from stage 1. Consequently, the totality 

of her probability attributions are still coherent at the end of this 

stage. 

Faced with the third proposition S, A is,,, she writes down the 32 state 

descriptions based on statements S,, S,, S,, S,, S,,, . . . etc. 

The disadvantage of this procedure is that it soon requires excessive space to 

write down the list of needed state descriptions. Eventually, 2500 state descriptions 

need be written down at once, an enormous number. 

It is not immediately obvious what procedure X can substitute for this one. 

Suppose, for example, that X attempts at each stage to limit attention to just the 

state descriptions needed in the evaluation of the current proposition. Thus, in 

the first stage, 5Y would attribute probabilities only to the four state descriptions 

based on S, and S,; in the second stage, %? would attribute probabilities only to 

the eight state descriptions based on S,, S, and Si4; and so forth. Let us assume, 

furthermore, that X chooses her probabilities in coherent fashion at each stage. 

This procedure is nonetheless insufficient to guarantee the coherence of X’s 

judgement since it ignores logical dependencies among propositions at different 

stages. To take the simplest example, suppose that the state descriptions of (I) 

show up in 2 at one stage, and those of (II) show up later: 
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Then overall coherence requires that the sum of the probabilities assigned to 

the first two state descriptions of (I) equal the sum of the probabilities assigned to 

the first and third state descriptions of (II). Otherwise, the two distributions imply 

different values for the statement S2, violating overall coherence. It is thus clear 

that the revised procedure suggested above is inadequate without some means of 

keeping track of the combinations of state descriptions seen in Y up to the 

current point, and this entails the same combinatorial explosion as before. 

The difficulty of maintaining coherence over large domains is widely recog- 

nized. For example, Clark Glymour (1992. p. 361) summarizes the matter this 

way: 

To represent an arbitrary probabilitv distribution. WC must specify the value of the probability 

function for each of the state descriptions. So with SO atomic sentences. for many prohahilit) 

distributions we must store 25” numbers to represent the entire distribution. We cannot keep 

2”’ parameters in our heads, let alom ’ 2 raised to the power of a few thousand. which is what would 

be required to represent B probability distribution over a realistic language. For huch a 

language. therefore. there will be cases in which our beliefs are inconsistent and our degrees of 

belief incoherent. 

Finally, note that the problem is aggravated by the expressiveness of the 

language used for ordinary thought. For example, we can easily express 100 

predicates that apply sensibly to any of 100 grammatical subjects. There result 

10,000 statements concerning which an agent might wish to reason probabilistical- 

ly. Is there any hope of carrying out such reasoning coherently‘? 

2.5. Tractability viu conditional independence 

Some distributions have special properties that allow coherent reasoning within 

modest computational bounds. For example, consider a distribution P over 

statements S,, . . , S,v such that for all subsets {S,.. S,.} of {S,. . . S,V}, 

P(S,. A ..’ As,.)=P(s,.)x... x P(S,.), that is, in which the underlying state- 

ments are mutually stochastically independent. Reasoning according to P does not 

require storing the probability of each state description. It suffices to store only 

the probabilities associated with S,, . . . S, since the probability of any needed 

state description can be recovered through multiplication (relying where needed 

on the fact that P(lS,) = 1 - P(S,)). It follows that if the beliefs of our agent % 

are mutually independent in the foregoing sense then she can confront the list Y 

with no fear of incoherence. For each proposition X of 3, %” need only carry out 

the following steps: (a) list the statement letters occurring in X; (b) decide which 

state descriptions over the foregoing list imply X; and (c) take the sum of the 

probabilities of the latter state descriptions as the final answer. Using this 

strategy, not only can X assign coherent probabilities to all the propositions that 
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might arise in 2 (assuming that each proposition remains reasonably short). In 

addition, her judgement exhibits “path independence” in the sense that reorder- 

ing 2 will not change X’s probability for any proposition. 

The mutual independence of S,, . . . S, is an unrealistic assumption in most 

situations. Weaker but still useful forms of independence can be defined (see 

Whittaker, 1990, for extended discussion). For example, if P(S, 1 S, A S,) = 

P(S, 1 S,) then S, is said to be “conditionally independent” of S, given S, 

(according to P). If P exhibits a felicitous pattern of conditional independence, 

then its underlying state descriptions can be factored in such a way as to render 

their manipulation computationally tractable. A variety of schemes for exploiting 

conditional independence have been devised (e.g., Geiger, Verma, & Pearl, 1990; 

Heckerman, 1990b; Lauritzen & Spiegelhalter, 1988; Andreassen, Woldbye, 

Falck, & Andersen, 1989; Olesen et al., 1989; Long, Naimi, Criscitiello, & Jayes, 

1987). Unfortunately, even with the right configuration of conditional indepen- 

dencies, many of these systems require manual entry of an excessive number of 

probabilities and conditional probabilities, often minute in magnitude. Usually 

the probabilities cannot be assessed in actuarial fashion, so must be based on the 

judgement of experts (e.g., doctors). It is well known that experts are apt to 

provide incoherent estimates of probability (see Casscells, Schoenberger, & 

Grayboys, 1978; Kahneman & Tversky, 1972; Tversky & Kahneman, 1983; 

Winterfeld & Edwards, 1986, Ch. 4.5), and the numbing task of making 

thousands of judgements no doubt aggravates this tendency. 

Several responses may be envisioned to the foregoing problem. First, the 

interrogation of experts can be rationalized and simplified (as in Heckerman, 

1990a). Second, procedures can be devised to reduce the effect of judgemental 

biases that lead to incoherence (as discussed in Kahneman, Slavic, & Tversky, 

1982, Chs. 30-32; Winterfeld & Edwards, 1986). Third, techniques can be 

implemented for finding a probability distribution that is maximally close to a set 

of possibly incoherent judgements (see Osherson et al., 1994). Fourth, methods 

can be invented for constructing human-like distributions on the basis of 

judgements that are psychologically more natural than assessments of the 

probability of arbitrary propositions. 

The fourth response has been raised in Szolovits and Pauker (1978). It is the 

one advocated here, though not to the exclusion of the other three. The essential 

innovation of our approach is to attempt to derive probabilities on the basis of the 

“semantic” (really, “informational”) content of the grammatical constituents that 

compose statements. The potential benefit is reduction in the amount of 

information that must be culled from a human informant (and later stored). The 

reduction is based on the combinatorial mechanisms of grammar, which allow a 

large number of statements to be generated from a small number of constituents. 

Let us now examine this idea. 
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3. Statement semantics 

How can the meaning of statements best be represented in view of deriving 

human-like probabilities from their representations? Surely we are far from 

having the answer to this question. In the hope of stimulating discussion, the 

present section describes a simple approach that analyzes grammatical con- 

stituents along a fixed shock of dimensions. We begin by specifying the kind of 

statement to be treated. 

3.1. Subjects, predicates, objects 

A statement like 

(3) Lawyers seldom blush 

decomposes into a grammatical subject (namely, “Lawyers”) and a grammatical 

predicate (namely, “seldom blush”). Henceforth we employ the term “object” in 

place of “grammatical subject” in order to prevent confusion with the “subjects” 

participating in psychological experiments. Thus, “Lawyers” and “seldom blush” 

are the object and predicate, respectively. of statement (3). We limit attention to 

statements of this simple object-predicate form. Given object o and predicate p, 

we use [o, p] to denote the statement formed from them. 

A domain of reasoning is established by fixing a (finite) list obj of objects and a 
(finite) list pred of predicates and then considering the set of statements .S = 

{[o, p] 1 o E obj and p E pred}. For simplicity in what follows we assume that all 

the statements in S are meaningful, neither contradictory nor analytic, and 

logically independent from each other. 

3.2. Vectorial representations 

Our approach associates each object and predicate with a real vector in tz 

dimensions, for some fixed value of n. Such a vector may be conceived as a rating 

of the object or predicate along n dimensions (e.g., for n = 3. a rating of the 

object TIGER along the dimensions size, speed and ferocity). The vector is 

intended to code a given person’s knowledge (or mere belief) about the item in 

question (see Smith & Medin, 1981, for discussion). 

Vector representations might seem impoverished compared to “frames” or 

other elaborate schemes for knowledge representation (Bobrow & Winograd, 

1976; Minsky, 1981, 1986). It is thus worth noting the considerable representa- 

tional power of real vectors. Suppose that person P is chosen, and let us say that 
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predicate p “fits” object o just in case the probability of [o, p] according to P 

exceeds .5 (any other threshold would serve as well). This may be abbreviated to: 

P([o, p]) > .5. We would like to represent the fit-relation in terms of vectors. For 

this purpose, suppose that n-dimensional vectors are assigned to obj U pred, one 

per object and one per predicate. Given such an assignment, let us say that o 

“dominates” p just in case the coordinates of o’s vector are at least as great as the 

corresponding coordinates of p’s vector. We have the following fact, proved in 

Doignon, Ducamp, and Falmagne (1984): 

(4) Let P embody any fit-relation whatsoever. Then for some II, there is an 

assignment of n-dimensional vectors to obj U pred such that for all o E obj 

and all p E pred, P([o, p]) > .5 if and only if o dominates p. Moreover, n can 

be chosen to not exceed the smaller of: 

the cardinality of obj, 

the cardinality of pred. 

Intuitively, we can think of the vector assigned to a predicate as establishing 

criteria for membership in the associated category. (For example, the predicate 

“can learn a four choice-point maze in three trials” might have a requirement of 

.75 in the coordinate corresponding to intelligent.) For o to have greater than .5 

probability of possessing p, o’s values at each coordinate must exceed the 

criterion established by p. Fact (4) shows that such a scheme is perfectly general 

for representing probability thresholds and it renders plausible the idea that real 

vectors might also serve to predict continuous assessments of the probability of 

statements. 

3.3. To and from statement representations 

Recall that our goal is to capture the coherent core of a person’s judgement 

about chances. Call the person at issue 2. Having decided to use vectors to 

represent obj U pred, two questions remain to be answered. These are: 

(a) Which particular object and predicate are attributed to X? 

(b) How are object and predicate vectors translated into a probability dis- 

tribution? 

Once answers are offered to (a) and (b), a third question may be addressed, 

namely: 

(c) If X’s vectors are fixed in accordance with the answer to (a), and if 



probabilities are subsequently assigned to propositions in accordance with the 

answer to (b), how well do the resulting probabilities accord with Z’s 

judgement about chances? Does the processed and regimented output of our 

system retain any of the insight that characterizes X’s understanding about 

probabilities in the environment? 

Let us now briefly consider (a)-(c). 

3.4. Fixing object and predicate vectors 

One means of obtaining vectors is to request the needed information directly 

from :X via feature ratings (as in Osherson, Stern, Wilkie, Stob, & Smith, IYYI). 

A less direct approach is to infer the vectors from similarity ratings among objects 

and predicates. In this case. we work backwards from a suitable vector-based 

model of similarity (e.g.. those discussed in Osherson, 1987; Suppes, Krantz. 

Lute, bi Tversky, 1989; Tversky. lY77). looking for vectors that best predict .iy”s 

similarity data. Another strategy is to postulate a model of simple probability 

judgements based on the needed vectorial representations, and then work 

backwards to vectors from such judgements. In this case, our system carries out 

“extrapolation”, extending a small set of probability judgements to a more 

complete set (see Osherson, Smith. Meyers. Shafir, & Stob, in press). 

3.5. Vectors to probabilities 

Turning to question (b) above. we describe one procedure for synthesizing 

probabilities from the vectors underlying obj and pred. It rests upon a scheme for 

constructing three-dimensional Venn diagrams. Specifically, the pair of vectors 

associated with object o and predicate p is translated into a subregion 9 of the 

unit cube.’ The volume of 9? represents the probability of [o, p]. The position of 

9? determines its intersection with subregions assigned to other statements. The 

probability of a complex proposition (e.g.. the intersection or the union of two 

statements) may then be determined by calculating the volume of the corre- 

sponding region. It is easy to see that use of the diagram guarantees probabilistic 

coherence.’ 

Let us now outline a simple scheme for selecting the particular region assigned 

‘The unit cube has sides of length I. It is used for convenience in what follows: various other kinds 

of solids would serve as well. 

‘There is no mathematical reason to limit the diagram to three dimensions. Volumes in the 

tz-dimensional unit cube for any positive II yield how fitlr distributions. So far our experiments 

indicate that three dimensions arc enough. 
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to a given statement [o, p]. Let 0, P be the vectors underlying o, p, respectively, 

and suppose them to be suitably normalized so that all coordinates fall into the 

interval [0, 11. Define the “0, P-box” to be the (unique) rectangular solid 9? with 

the following properties: 

(5) (a) 0 falls within %!n; 

(b) for i 4 3 the length of the ith side of 9 is 1 minus the absolute difference 

between 0, and P,; 
(c) within the foregoing constraints, P is as close as possible to the 

geometrical center of .%. 

It may be seen that the volume of %! varies directly with the match of P’s 
coordinates to those of 0; statements based on compatible objects and predicates 

are accorded higher probability thereby. Moreover, g’s position in the cube 

represents aspects of the semantics of [o, p]. For example, if p and q are 

complementary predicates with contrasting vectors then (5) assigns [o, p] and 

[o, q] boxes with little or no intersection. This reflects the low probability that 

must sensibly be assigned to [o, p] A [o, q] in view of the incompatible contents of 

p and q. 

Many alternatives to (5) are possible. To serve as a computationally tractable 

means of coherent reasoning in large domains it suffices to meet the following 

condition: 

(C) Given a point x in the unit cube, and vectors 0, P underlying object o and 

predicate p, it must be computationally easy to determine whether x lies in 

the region associated with [o, p]. 

In this case it is straightforward to calculate the volumes associated with any 

Boolean combination of statements, hence with any proposition.” It is clear that 

(5) satisfies C. 

Observe that within any Venn diagram scheme that conforms to C, coherent 

probabilistic reasoning can proceed without storing an entire distribution. It is 

enough to store the vectors underlying objects and predicates since the volume 

associated with any given proposition (of reasonable length) can be easily 

retrieved from the vectors. Thus, given 10 objects and 10 predicates, only 20 

vectors need be stored. This is easily achieved even for vectors of considerable 

size. In contrast, 10 objects and 10 predicates give rise to 100 statements and thus 

to a distribution with 2”“’ state descriptions. A potential solution to the problem 

of coherent reasoning, posed in section 2.4, is offered thereby. 

It must be emphasized that not every distribution can be represented by a Venn 

‘A more careful formulation of C would refer to e-spheres in place of points x. etc 



diagram that meets C (just as not every distribution manifests conditional 

independencies of a computationally convenient kind). The question thus arises: 

do distributions that conform to C approximate human intuition about chance in a 

wide variety of domains? We are thus led to question (c) above, namely, whether 

the distribution delivered by our method resembles the original intuitions of 

subject 2. Sticking with the simple scheme in (5) - henceforth called the “Venn 

model” - let us now address this matter. 

3.6. Accuracy of the method 

We summarize one experimental test of our method. By an elementary 

argument (over obj U pred) is meant a non-empty set of statements, one of which 

is designated as “conclusion”, the remainder (if any) as “premises”. Statements 

are considered special cases of elementary arguments, in which the premise set is 

empty. An argument may be conceived as an invitation to evaluate the probability 

of its conclusion while assuming the truth of its premises. Thirty college students 

evaluated 80 elementary arguments based on four mammals (which served as 

objects) and two predicates (e.g., “are more likely to exhibit fight’ than ‘flight’ 

posture when startled”). For each subject, an individually randomized selection 

of 30 arguments was used to fix vectors representing his objects and predicates. 

This was achieved by working backwards from the Venn model, seeking vectors 

that maximize its fit to the subject’s judgement about the 30 input arguments. The 

Venn model was then applied to the resulting vectors to produce probabilities for 

the remaining 50 arguments. For each subject we calculated the average, absolute 

deviation between the Venn model’s predictions for the SO arguments and the 

probabilities offered directly by the subject. Pearson correlations between the two 

sets of numbers were also calculated. 

The median, average absolute deviation between the observed probabilities 

assigned to a subject’s 50 predicted arguments and the probabilities generated by 

the Venn model is .ll.’ The correlation between the two sets of numbers is .7X. 

The results suggest that the Venn method can extrapolate a coherent set of 

probabilities from a small input set, and do this in such a way that the 

extrapolated distribution provides a reasonable approximation to the judgement 

of the person providing input. The input set of probabilities need not be coherent. 

“This deviation can be compared to the following statistic. Consider the mean of the probabilities 

assigned to the 30 arguments used to fix the object and predicate vectors of a given subject. We may 

use this single number as a predictor of the probabilities assigned to the remaining SO arguments. In 

this case the median. average absolute deviation between the observed and predicted probabilities is 
.20. 
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4. Concluding remarks 

The problem of recovering the coherent core of human probability judgement 

strikes us as an important project for cognitive psychology. It unites theorizing 

about the mental mechanisms of reasoning with a practical problem for expert 

systems, namely, finding an exploitable source of Bayesian priors. The system 

sketched above is preliminary in character, and serves merely to suggest the 

feasibility of the research program we advocate. 

Psychological research in recent years has produced considerable understand- 

ing of the character and causes of incoherent reasoning, even if debate continues 

about its scope and interpretation (see Gigerenzer & Murray, 1987; Osherson, 

1990; Shafir & Tversky, 1992; Tversky & Shafir, 1992, and references cited there). 

It was noted in section 2.1 that probabilistic coherence has non-trivial justification 

as a standard - however incomplete - of normatively acceptable reasoning. We 

thus take there to be good empirical evidence, plus great computational plausibili- 

ty, in favor of the thesis that human judgement is imperfect from the normative 

point of view. This thesis does not, however, impugn every aspect of ordinary 

reasoning. Indeed, the merits of human judgement have often been emphasized 

by the very researchers who investigate its drawbacks (e.g., Nisbett & Ross, 1980, 

p. 14). A challenge is posed thereby, namely, to devise methods that distill the 

rational component of human thought, isolating it from the faulty intuition that 

sometimes clouds our reason. Such appears to have been the goal of early inquiry 

into probability and utility (Gigerenzer et al,, 1989, Ch. 1). It remains a worthy 

aim today. 
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