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Abstract 

When solving the equations of structural dynamics using direct time integration meth6ds, algorithmic damping is useful in 
controlling spurious high-frequency oscillations. Ideally, an algorithm should possess asymptotic annihilation of the high- 
frequency response, i.e., spurious oscillations in the high frequencies are eliminated after one time step. In this paper, a new class 
of asymptotic annihilation algorithms for structural dynamics is presented that possesses little numerical dissipation in the 
low-frequency regime. The algorithms are based upon using finite elements in time. The displacement and velocity fields are 
interpolated independently using time-discontinuous functions. The equations of motion, displacement-velocity compatibility and 
the time continuity of displacement and velocity are satisfied weakly. Asymptotic annihilation is achieved by choosing the 
displacement and velocity fields to be of equal order. Algorithms of any desired order of temporal accuracy can be obtained by 
appropriate choice of the finite element interpolations in time. An analysis of the proposed class of algorithms is given proving the 
asymptotic annihilation property and the spectral equivalence of the algorithms to the upper diagonal of the Pad6 approximation 
table. Results from finite difference analyses are presented showing the spectral behavior of the algorithms as well as their 
dissipation and dispersion properties in the low frequency regime. 

1. Introduction 

When solving the equations of structural dynamics using direct time integration methods,  algorithmic 
damping is useful to control spurious high-frequency oscillations. Algorithmic damping also has been 
found to be helpful when solving problems that include constraints, e.g.,  contact. Typically, the physical 
high-frequency characteristics of the structure are modeled inaccurately. These inaccuracies are 
manifested in the time response as spurious high-frequency oscillations. One approach towards 
minimizing spurious oscillations in the solution is to post-process the results by applying a low-pass filter 
(see [1, p. 513] for one suggested technique). However ,  this may not be a good strategy when solving 
problems exhibiting nonlinear material behavior,  e.g.,  plasticity. For such problems,  spurious oscilla- 
tions enter  into the constitutive routines and could adversely affect the computed response. A second 
problem with post-processing strategies may result if the unfiltered response is unstable. Such 
instabilities may occur, for example,  when using the trapezoidal rule to integrate the response of a 
constrained dynamical system; see [2] for an example.  While post-processing will remove the instability 
f rom the filtered response,  the instability still remains in the unfiltered results. Because the filtered 
results are not fed back into the time integration algorithm, eventually, for long-time simulations, the 
instability of  the unfiltered response will cause instabilities in the filtered response due to round-off  and 
machine overflow. 

Ideally, any nonzero response in the spurious, high-frequency modes should be eliminated (or nearly 
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eliminated) after one time step; we refer to this attribute as annihilation of the high-frequency response. 
The challenge is to design a time integration algorithm that possesses asymptotic annihilation (i.e., in 
the high-frequency limit, the response is annihilated) without introducing excessive numerical dissipa- 
tion in the low-frequency response of interest in structural dynamics problems. 

Perhaps the best-known asymptotic annihilation algorithm is the implicit Euler method. It is also well 
known that the implicit Euler method is inappropriate for structural dynamics as it is only first-order 
accurate and is overly dissipative in the low-frequency domain. Houbolt's method is the most commonly 
used algorithm that achieves asymptotic annihilation [3]. However, its asymptotic annihilation is 
achieved at the expense of introducing too much dissipation in the low-frequency regime; to obtain the 
same accuracy as other commonly used time integration algorithms, Houbolt's method requires using a 
smaller time step. It was shown in [4] that it is not possible to improve upon the dissipation 
characteristics of Houbolt's method if attention is restricted to asymptotic annihilation algorithms that 
may be cast in three-step linear multistep (LMS) form. Three-step LMS methods are of particular 
interest because nearly all of the time integration algorithms implemented in commercial finite element 
programs have this form. Thus, to obtain a practically useful asymptotic annihilation algorithm requires 
developing four-step (or higher) LMS methods or developing algorithms that do not fall within the class 
of LMS methods. For example, a successful asymptotic annihilation algorithm is the method of Park, 
which for structural dynamics problems, is a six-step LMS method [5]. 

Most time integration algorithms for structural dynamics have been developed by discretizing the 
semidiscrete equations of motion using finite difference methods for ordinary differential equations. An 
alternative approach is to discretize the equations of motion using finite elements in time. The basic 
idea is to permit the unknown fields to be discontinuous with respect to time; an appropriate variational 
formulation then involves integration over discrete time intervals. This approach, known as the 
time-discontinuous Galerkin (TDG) method, generates single-step time integration algorithms [6]. The 
resultant algorithms are not LMS methods (the one exception is the implicit Euler equivalent); thus the 
potential exists to develop useful asymptotic annihilation schemes. 

In this paper, a time-discontinuous Galerkin method is presented that generates a class of 
unconditionally stable, asymptotic annihilation algorithms. The method is based upon employing 
displacement and velocity fields as the unknowns and using equal-order interpolation for both fields. 
Any desired order of temporal accuracy can be obtained by appropriate choice of the interpolation 
functions. For example, a third-order accurate asymptotic annihilation algorithm ensues by using linear 
interpolations for displacement and velocity. We show that the TDG method presented herein is 
equivalent to the upper diagonal of the Pad6 approximation table, in the sense of identical stability 
polynomials. Since Pad6 approximations represent the highest order accuracy possible for given rational 
numerators and denominators [7], the TDG method generates nearly optimal algorithms in terms of 
balancing computational cost and accuracy while achieving asymptotic annihilation. 

The ordinary differential equations of linear structural dynamics may be written in the following 
first-order form: 

Mr) + Cv + Ku = f , ( I )  

= v ,  (2) 

u(0) = d . ,  (3) 

v(O) = v,,, (4) 

where M, C and K are the respective mass, damping, and stiffness matrices; u = u(t) and v = v( t )  are the 
vectors of unknown nodal displacements and velocities, respectively, both have length neq ; f is the 
prescribed load vector of length neq ; d o and v 0 are the initial displacement and velocity vectors, 
respectively. A superposed dot denotes differentiation with respect to time. M is assumed to be 
symmetric positive-definite while C and K are assumed to be symmetric positive-semidefinite. 
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2. A t ime-discont inuous  Galerkin formulat ion 

Equations (1 ) - (4 )  may be written in the more compact form 

At, f] + A , U  = F , (5)  

U(O) = Uo, (6) 
where 

U = , U , ,  = Lv"J , 

(7)  

(8) 

Consider a partition of the time domain, I = ]0, T[, having the form: 0 = t 0 < t t < • • • < t N = T. Let 
l,, = ]t,,_t.t,, [. Let 

(9) 
uh = [uh 1 

[vhJ 

denote the finite element approximation to U and ~k  denote the space of kth order polynomials. Then 
the finite element interpolation functions are: 

(I0) { 6 "} b ~h = U " E  ( #  (I,,))- "q 
t l  = I 

This choice of interpolation permits the displacement and velocity fields to be discontinuous between 
time intervals. Assuming the function uh(t) to be discontinuous at time t,, 

h t-* h V ( , , ) = l i m  U ( t , , + e ) .  (11) 

Particular examples of the time-discontinuous functions employed in the T D G  method are shown in 
Fig. 1; note that the functions are continuous over  each time interval but admit ' jumps '  at discrete time 
v a l u e s  t,,. 

The statement  of the time-discontinuous Galerkin method is: Find U h E b °h such that for all 
W h ~E b ~h, 

H1 

~ ,  I I I 

to tn-1 tn tn+l tn+2 

Fig. 1. Examples of time-discontinuous functions. 
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B ( W  h, h L h U ),, = ( W ) , , .  n = l , 2  . . . . .  N ,  
where 

B ( W  h, J, J, . h 
U ),, = + W ( t , ,_ , ) .AoU ( t , ,_ , ) ,  (W ,AoU )t, (Wh .A ,Uh) t ,  + h + ,, + 

(12) 

(13) 

h 11 - L ( W  ) , , = ( W " , F ) t , , + W " t t  + ~ ..  , t , ,_ t , 'Ao U (t,,_l), n = 2 , 3 ,  . N ,  (14) 

L(WJ')l = (W h , F ) g  + Wh(0 +) 'AoU o , 

in which 

(15) 

(W, U)t,, = It W. U dt .  (16) 
n 

Note that the initial conditions for each time interval are satisfied weakly, thus, WhE  S ' .  The given 
TDG method is identical to that presented in [6] with equal-order interpolation for displacement and 
velocity. With the appropriate definitions of A.  and A~ above, (12) is analogous to T D G  methods of 
other investigators (see [6] for details). 

As a specific example, let Pj denote the TDG algorithm obtained using j th-order interpolation 
functions. From (12)-(15),  the P1 algorithm can be written explicitly as 

1 h - ~-Ao+-3-AI - ½ A o + - 6 A I  [ U (t,,) = 
h + U½a, ' At , At [U (t,,_,)J 

+'-~-A I 5 a .  + ~ - a t  

0] 
h - + ] ~ n  U (t,,_,) 

(17) 

u h -  + 

where (t,, t) and Uh(t~, ) are the solution vectors at the respective beginning and end of time interval 
I,, and 

rf",  ( t - t , ,  ~)fdt- 
S/," ~ (t,, - t ) f  dt L 

(18) 

There are essentially two sets of displacement and velocity vectors for each discrete time t,,. The set that 
corresponds to solutions obtained from standard time integration methods is that at the end of a time 

11 - 11 - interval, i.e., U (t,,). For the P1 formulation, h - U (t,,) can be expressed directly in terms of U (t,,_ ~) and 
h + F,, by eliminating U (t,,_~) from (17); the resultant equations have the form 

7 ~ h h - - ( M  - MAt-K)  M - ~At2K]  [Ato (t,,)J = At/~'' + [ - ( M  + ¼At2K) LAw (t,,_t)J 
(19) 

where At= t , , - t , , _~ .  From (19), it is clear that the P1 formulation results in a system of coupled 
equations having twice the bandwidth and twice the number of unknowns as commonly used time 
integration algorithms. 

3. Stability analysis 

In this section, we derive the stability polynomial expression of (12) for arbitrary-order interpolation 
functions. This stability polynomial is in a form identical to the upper diagonal of the Pad6 table (Pad6 
methods of type (k - 1, k)) for approximating exp(iwhAt); thus (12) engenders a class of asymptotic 
annihilation methods for structural dynamics. 
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For purposes of analysis, it is convenient to work with the undamped, single degree-of-freedom 
model problem, 

/ /+  ~o2u = 0 ,  (20) 

where u(0) = u 0 and ti(0) = v o. For the system of first-order equations (1)-(4),  the corresponding scalar 
equation is 

+ Ay = 0 ,  (21) 

y(0) = y~,, (22) 

where A = _+iw. See, e.g., [1] for the steps required to reduce (1)-(4) to (21)-(22). The TDG method 
for (21) is given by: Find yh E 5 eh such that for all w h ~ 5 eh, 

b(w h, yh),, = l(wh),,, n = 1,2 . . . . .  N ,  (23) 
where 

b(w h, yh),, (w h, .h I, I,. + h + = y ),,, + (W h, Ay ),,, + W (t,,_ I)Y (t , ,_i)  , (24) 
h l ( w  ) , ,  h + h - = w  (t , ,_,)y (t,,_,), n 2 2 , 3  . . . . .  N ,  (25) 

l (wh),  = wh(0 +)y,,, (26) 

and the interpolation function space, 5e h is given by 

5 eh= y " E  (~  (I,,)) . (27) 

It is convenient to express the value at the end of a time interval, yh(t~, ), in terms of the value at the 
end of the previous time interval. This can be written in the form 

yh(t,-, ) = Ayh(t~,_~) , (28) 

where A is the amplification factor. An algorithm achieves asymptotic annihilation provided that 

lim I A I = 0 ,  (29) 

where A = )tAt. In the numerical analysis literature, this property is also referred to as L-stability [8]. 
To derive a general expression for A, yh, restricted to I,,, is expressed as the Taylor series 

n - l )  (i)+ ,~ (t - t i 
yh(t) i=o2--' i! Y , , - l ,  t,,_~<~t<<-t,,, (30) 

(i) + 
where y,,_t denotes the approximation to the ith derivative of y at t,,_2 and k is the order of the 
interpolation polynomial (for notational simplicity, the h-superscript has been dropped from the 
approximations of the derivatives). For an arbitrary time step n, the matrix form of (23) is obtained 
using (30) and a similar expression for w h. Noting that 

h - '~. At i (i) + 
y ( t , , ) = ~  ~ y , , _ t ,  (31) 

i=0 

the matrix form can be written as 



6 G.M.  Hulbert / Comput.  Methods Appl .  Mech. Engrg. 113 (1994) I - 9  

,'tY,, = R,,, (32) 

where ,4 is a k x k matrix, 

and 
v;=(+ ,,,+ ,,,+ } Y,,- t, At y ,,_ t . . . . .  At~ Y ,,- 

t , h , t -  " R,, = / y  t ,,_,), O'}. 

(33) 

(34) 

The elements of ,4 are given by 

I + X ,  

2 
j ( j  - 2)! ' 

A,, = 2 
i ! '  

' ( 
( i - 1 ) ! ( j - 2 ) !  ( i - l )  

1 

+ (j  - 1) i(i+ ( 7 -  1)) ' 

if i = j =  1, 

if i =  1, j > l ,  

if i > 1 ,  j = l ,  

otherwise.  

(35) 

For the P1 algorithm, 

- I _ _  1 - ' ~A _~ gAJ 
(36) 

The amplification factor is then determined by employing Cramer's rule. The denominator of A is 
given by det,4 while the numerator is computed from det A where ,4 is obtained by replacing the first 
column of ,,~ by R,,. The resultant stability polynomial is identical to the upper diagonal of the Pad6 
approximation table in which the numerator, P, and the denominator, Q, may be expressed as [8] 

P = I + ~  2 k +  l - j  i! (37) 
i =  I j=() 

Q : ! + ]7j (38) 
2k + l - j / J  i, " i= I j=O 

Since the power on ,( is one order higher for Q than for P, 

P 
lim A = lim - :  = 0. (39) 

I,(I--~ IXl--= 

Thus, the TDG method is asymptotically annihilating. For example, for the P1 algorithm, 

1 - ± , (  
3 

A -  1 + ~ ) ~ + ~ ( 2 ) ; "  (40) 

REMARK.  The TDG method generates optimal asymptotic annihilation schemes in terms of balancing 
computational expense and accuracy. Pad6 approximations are rational functions (of ,() such that for a 
given degree of numerator and denominator the resultant approximation has the highest order of 
accuracy [7] (the order of accuracy is j +  k, where j and k are the degrees of the numerator and 
denominator,  respectively). All Pad6 methods of type (j,  k), with j <  k, correspond to asymptotic 
annihilation methods. Because computational cost increases as the degree increases, the upper diagonal 
of the Pad6 approximation table represents an optimal balance between computational cost, accuracy 
and attaining asymptotic annihilation. 
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4. Comparison of asymptotic annihilation algorithms 

In this section, we compare the spectral radii and numerical dissipation and dispersion characteristics 
of previously developed asymptotic annihilation algorithms and several of the TDG-based algorithms. 
These analytical measures for the TDG algorithm are obtained by working dii'ectly with (20) and the 
single degree-of-freedom implementation of the undamped, unforced form of (12) rather than (21). 

I !  - -  

Following the approach used to derive (19), the values at the end of a time interval, e.g., u ( t , , )  and 
h v (t,,), may be expressed in terms of the values at the end of the previous time interval by 

= A /  ,, (41) 
/ i  - Lato (t,,) Lato 

where A is the amplification matrix of dimension 2 x 2. For example, for the PI method, 

A = D -  l 1 - - T ~ -  1 - -  ~ " 
_ / 2 2 ( 1 _ 1 ~ 2 )  1 ~ - ' ]  (42) 

in which 

D = 1 + ~ -  + ~ 4  (43) 

and where /2 = Atco. 
The spectral radius, p ( A ) ,  is defined by 

p(A) = maxl •, (A), ,~2(A)I, (44) 

where hi(A ) denotes the ith eigenvalue of A. 
Provided that the eigenvalues of A remain complex (At.2(A) = A - iB, B # 0), 

u (t,,) = e-e"'"(cl cos(cat,,) + c 2 sin(cat,,)), (45) 

in which 

ca=At  ' t a n - t ( B ) ,  (46) 

In p (47) 
~ -  A/ca' 

where ~ is the algorithmic damping ratio, ca is the approximate frequency and the coefficients c~ and c z 

are determined from the initial conditions. The algorithmic damping ratio provides a measure of the 
numerical dissipation while the relative frequency error, calculated using 

O.) 

- = -  1, (48) 
O )  

is a measure of numerical dispersion. The relative frequency error may also be expressed as 

O 
--=-  1, (49) 
O 

where /2  = Ato~ and ,0 = At& For details on the derivation of the above analytical measures, see [1,9]. 
Spectral radii are shown in Fie. 2 for the P0, P1, P2 and P3 TDG methods as well as the Houbolt 
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1 .{) 

0.8 

0.6 \~'~\ ~: / _ ~  P3 
~" 0.4 Houbolt ~ 

\x\ ~ \ X ~ f ' f ~  Park 

. . . .  :], ........ i . . . . .  10 100 .000 

n/(2~) 
Fig. 2. Comparison of spectral radii for asymptotic annihilation algorithms. 

and Park methods. All algorithms achieve asymptotic annihilation; the smaller values of spectral radius 
for the Houbolt and P0 methods in the low frequency region reflect the overly dissipative properties of 
these methods. This may be seen more clearly in Fig. 3 in which the numerical damping ratio is shown. 
In the region of low-frequency accuracy (/2 < ~r/5), the P1 and Park algorithms have nearly identical 
numerical dissipation. The P3 algorithm has virtually no numerical dissipation in the low-frequency 
regime. Figure 4 depicts the frequency errors of the various algorithms. The third-order accuracy of the 

0 . 1 0 ~  

0.08 

ooo[i / --__~bo V ..  
I ~  1 '  / • 00,l/ / 

l ~ / 7 . / /  "~-P1 

0.02 . .""" / "  

o ~  0.05 0.10 0.20 0.25 0.30 0.35 0.40 

~/(2~) 
Fig. 3. Comparison of algorithmic damping for asymptotic annihilation algorithms. 

0.4 , . . / , /  . /  . . - 

"~ 0.3 Houbolt ~ A 

,~ 0.2 . /  / ~ - P a r k  

/ /  
P2 

j $ . . -  . . . .  x. ...... \ 
~ . . . . . .  ~ - - - : - - Z  __k . . . .  

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

~/(2,~) 
Fig. 4. Comparison of frequency error for asymptotic annihilation algorithms. 
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P1 method is evident in this plot (the Houbolt  and Park algorithms are second-order accurate); the 
frequency error of the P2 algorithm is virtually negligible in the low-frequency regime which reflects its 
fifth-order accuracy. The P3 method has been omitted from the plot as its numerical dispersion is nearly 
zero for the given range o f /2 .  

The spectral properties of an algorithm depict long-term stability behavior. However,  large 
amplitude oscillations in the first time step of a computation have been observed in algorithms that have 
good spectral properties. This anomalous behaviour is referred to as overshoot [11]. None of the T D G  
algorithms presented exhibits overshoot since the T D G  algorithms do not require calculating an initial 
acceleration vector. 

5. Conclusions 

A class of time integration algorithms for structural dynamics has been presented that asymptotically 
annihilates spurious high-frequency behavior without introducing excessive dissipation in the low- 
frequency regime. These algorithms are based upon the time-discontinuous Galerkin method in which 
equal-order interpolation is employed for displacement and velocity. It was shown that the algorithm 
stability polynomial is identical to the upper diagonal of the Pad6 approximation table; thus, the T D G  
method achieves the asymptotic annihilation property with a nearly optimal balance of computational 
expense and accuracy. Results from analyses of the algorithms obtained by several interpolation choices 
were compared with commonly used asymptotic annihilation algorithms. These results demonstrate the 
improved accuracy characteristics of the T D G  method. 

Because the higher-order accurate T D G  methods belong to the class of high-order implicit methods, 
they have the disadvantage of increased computational expense due to the larger system of coupled 
equations to be solved. One approach towards developing a useful family of algorithms is to recast the 
algorithms as a hierarchy of methods in which the matrices and solution variables from the lower-order 
schemes may be employed without modification in the higher-order schemes. This strategy can be 
coupled with reducing algorithmic expense by casting the methods in predictor-multicorrector form. 
Predictor-multicorrector algorithms based upon time finite element methods were presented in [10]; 
however,  the emphasis was not on retaining asymptotic annihilation characteristics. Further study is 
needed to extend the predictor-multicorrector approach to the algorithms presented in this paper to 
develop a general class of computationally efficient, high-order accurate asymptotic annihilation 
methods for structural dynamics. 
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