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Abstract-Dawson et al. (Am. 1. Med. Genet. 7, 529-536, 1980) developed a procedure for 
constructing confidence bands for both average and individual growth curves which may be of 
considerable value in the study of growth and development. This paper describes their method 
for constructing, and provides a menu-driven GAUSS386i program for computing these confi- 
dence bands. It is demonstrated how these bands are useful for both the diagnosis and 
prognostication of growth patterns with known levels of confidence. It is assumed that the study is 
planned so that individuals will be measured at the same times, but missing data are allowed. 

Longitudinal data Growth curves Confidence bands Diagnosis 

INTRODUCTION 

The construction of growth standards has commanded much attention in the biomedical 
literature (see e.g. [l-6]). This paper describes and implements a procedure for 
constructing confidence bands both for average and individual growth curves which was 
first used in [7] in a study of the development of head circumference in achondroplastic 
children. Given longitudinal measurements on the N individuals comprising the norma- 
tive or standardizing sample, polynomials are first fitted to the individual growth profiles 
and then confidence bands are constructed for the average growth curve (AGC), and for 
the growth curve of a “new” individual. The former indicates the accuracy with which the 
AGC has been estimated; the latter can be used to assess the likelihood that an 
individual is from the same population as the one from which the standardizing sample 
was drawn, i.e. for diagnostic purposes. It is assumed that the times of measurement for 
the individuals comprising the normative sample were planned to be the same, but 
missing values are allowed. The notation established in [&12] is used. In particular, D 
denotes the degree of the polynomial fit to a sequence of repeated measurements and 
P = D + 1 the corresponding number of polynomial regression coefficients. 

THE STATISTICAL MODEL 

Consider N individuals, each being measured at times t,, fZ2, . . . , fT resulting in the 
vector of observations 

Xi= fori=l,2 ,..., N. (I) 

119 
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We consider the case where the measurements are designed to be made at a common 
set of time points. Some of the Xii may be missing, but we assume that such missing data 
points are “missing at random”, i.e. that occurrences of missing data are not related to 
the values of neighboring measurements [13]. We assume that a polynomial of some 
degree (to be determined) adequately fits the growth profile of each of the N individuals. 
Dawson et al. [7] then propose to replace the observations, xl= [Xi,, xi2, . . . , XiT] for the 
ith individual, by the estimated polynomial regression coefficients Z, = (W,lvi)-‘WlXi, 
where Wi is the within-individual (time) design matrix specific to the ith individual 

[& II]. 
Dawson et al. [7] then assume 2; -MVN(t, A), i.e. that Zi has a multivariate normal 

distribution with mean vector t (the polynomial regression coefficients for the AGC) and 
covariance matrix A. Under this assumption, following [14, pp. 124-1361, Dawson et al. 
[7] then used the fact that simultaneous (1 - a) x 100% confidence intervals for linear 
combinations of the form a’t are given by 

J 1 
a’t+T,(P,N-P) G a’S(f (2) 

where Tz(P, N-P)={(N-l)P/(N-P)}F,_,(P, N-P) and F,_,(P, N-l’) is the 
(1 - a) x 100th percentile of the F-distribution with P and N - P degrees of freedom. 

This provides confidence bands for the ACG if we take a’, in succession, equal to 

[I, t1, t:, - . . , t?] 

[I, t2, t:, . . . , Cl 

(3) 
. . . 

[I, tT, t:, . . . , t:]. 

The probability that these intervals simultaneously trap the value of a’z (the AGC) is 
l-a. 

If we wish to develop analogous bands for an individual growth curve, say for a “new” 
individual with growth curve z,, the limits in (2) need to be adjusted [7]. To compute a 
confidence interval for an individual observation, we must combine the variability that 
arises from the variation in the sample about the estimated AGC (A) with the variability 
arising from uncertainty in the AGC itself (h/N). Thus a set of (1 -a) x 100% 
confidence intervals for linear combinations a’t, are of the form 

J N+l 
a’f T,(P, N- P) N a’S(t (4) 

reflecting the fact that the variance of a predicted value of an individual observation is 
A + A/N. The reader may be more familiar with the distinction between the standard 
errors appropriate for predicting the mean and individual values (where the same switch 
between l/N and (N+ 1)/N is made) in the context of simple linear regression analysis, 
[15, p. 301. In any event, (4) gives confidence bands for an individual growth curve, again 
identifying a’ with the values (3). The confidence bands for an individual may also be 
viewed as a set of what are known as prediction intervals in the classical regression 
literature [16, p. 701. This latter term reflects how these intervals might be used to predict 
whether a new subject is a member of the reference population. Prediction intervals 
resemble confidence intervals, but they differ conceptually. A confidence interval 
represents an inference on a parameter: a prediction interval is a statement about the 
value to be taken by a random variable. 

It will be noted in the above that while different degree polynomials for individuals are 
possible in (2), the rest of the development assumes that D(P) is the same for each 
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individual. In [7], starting with a given D, l-tests of H: rp = 0 (rp is the coefficient of tD) 
were provided for each individual. If this degree was required for one or more 
individuals, that D was used to fit each of the N growth profiles. Zerbe [17], when faced 
with the same problem, obtained Q, Dr, . . . , DN separately for each individual and used 
D,, for the common value of D, but instead of refitting, augmented for individuals 
having Di< D,, with D,,, - Di zeros. Thus, e.g. if D,,,= 3 and some Di= 1, a line was 
fit to the ith profile and two zeros appended to ti so that Zj is 4 X 1. 

The results from the two approaches can differ considerably [18]; and neither is 
guaranteed to be satisfactory in every situation, so we allow both possibilities in our 
program. More details are given in [19,20]. 

IMPLEMENTATION 

In the previous section we outlined a method for constructing confidence bands for 
both the AGC and individual growth curves which allows individual-specific time design 
matrices. In this section we briefly describe the program implementing this method. 
More detailed descriptions are given in [19,20]. Information concerning obtaining a copy 
of the program, hardware requirements, etc., is given in the Appendix. 

We ask that users of our program provide an N x T data matrix of the form (l), using 
periods (“.“) to signal missing data values. This data set may be in either ASCII or 
GAUSS format. Thus, for example, the data set considered in [7] woud be prepared as 
shown below: 

34.3 36.8 39.4 41.2 41.9 42.5 43.8 42.5 45.7 43.8 46.3 45.7 47.6 46.9 48.9 47.6 49.5 48.3 . . 56.0 
41.0 

38.7 40.0 40.0 42.0 41.2 43.1 : 44.5 45.1 45.5 45.7 

47.0 50.0 . 

. . 48.0 . 

53.0 . 

. . . . 49.8 50.2 . . . 
36.8 

40.6 38.1 
40.3 41.5 42.3 43.8 

34.3 43.8 39.4 44.4 40.6 45.7 43.2 45.7 43.2 46.3 46.9 46.9 . 47.6 48.2 48.9 49.5 49.5 

40.0 43.0 
44.0 

44.3 46.5 47.2 49.0 : 52.5 : 53.0 
40.0 42.0 45.5 . 46.5 . 

49.5 5d.l 51.4 : 52.4 

There are N = 11 rows (individuals) and T= 13 columns, the times of measurement being 
age in months from 0 to 12. While there is a substantial amount of missing data, there is 
at least reasonable overlap of the growth profiles over the interval from 0 to 12 months. 
We have corrected an apparent typographical error in [7] where the observations at 10 
and 11 months for the seventh individual are interchanged. 

The program is invoked with the command gsruni zbands. The program menu then 
appears and the user is prompted for the location of the data file, which can be on a 
different drive (floppy or hard disk) or directory than the program itself. The indicated 
directory is searched and the names of those data files in either GAUSS or ASCII format 
are displayed. The user then highlights the file of choice using the cursor arrow keys and 
selects the file with the return key. 

The user is then prompted for the type of data set: GAUSS or ASCII. We allow 
GAUSS data sets for the convenience of users who have installed GAUSS on their 
system. This is not necessary to run the program, which stands alone. Any program 
producing ASCII data sets can be used to create a file which will be accepted by our 
program. Next the values of N and Tare provided. Finally, the confidence coefficient to 
be used in constructing the confidence bands is specified. Rather than simply computing 
the traditional 95% bands, we allow the user to make this choice consistent with the aims 
of the study. For example, if an obstetrician wanted to identify pregnant women whose 
fetuses were not growing according to expectation to the extent that additional prenatal 
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care was indicated, he/she might want to set the confidence limits for the “normally 
growing population” lower (e.g. 90%) so as to err on the side of falsely diagnosing “at 
risk” rather than as “within normal limits”. This would be a particularly appropriate 
strategy if the benefit to risk ratio of the additional prenatal care was very high. One can 
also imagine situations in which one would want to set the confidence limits high. For 
example, if a manufacturer of eyeglasses for children wanted to provide broad coverage 
of frame sizes for all ages, perhaps they would choose 99% limits when doing studies on 
upper face and head dimensions. 

The data are centered and the growth profiles for each of the N individuals are plotted. 
We center the data, i.e. use the transformed time scale t* = t - i where i is the mean of 
the time points, for computational accuracy as explained in [19,20]. The plots are made 
over the interval [a, b], where a = tl and b = tT. This is for the initial plot, whose purpose 
is to allow the user to make a reasonable guess at D: The user has complete control over 
the final choice of [a, b], as is illustrated in [ 19,201. The user of this and related programs 
[19,20] may choose between fitting all subjects with a single degree, D, or fitting each 
subject with a different degree polynomial, resulting in a sequence of degrees 

D,, D2, . . . , DN which are individual-specific. After seeing the (unfitted) plots of the 
subjects’ growth profiles, the user may select a single D for all cases, and can then see 
what the fitted polynomial curves look like. If the user opts against a single D, he/she will 
then proceed to fit each case individually in an interactive fashion. With this latter 
choice, the vector of coefficients for each subject will be augmented with zeros so that 
Dj= D,,, and these will then be used in the construction of the confidence bands. The 
details regarding these choices and the operation of this aspect of the program are 
discussed in [19,20]. 

The output includes the values of the estimated polynomial regression coefficients for 
the individual growth curves, for the AGC, and plots of the corresponding confidence 
bands. Two sets of three plots each are provided: one set corresponds to the bands 
described in [12] and shown in [7]. These are occasionally called Scheffe-type bands. The 
second set is based on the use of the Bonferroni method for band construction which was 
mentioned in [7] but not considered in any detail. Seber [21, p. 831 and Timm [22], 
p. 1661 describe this approach to confidence band construction. In brief, the value 
T,(P, N-P) in (2) and (4) is replaced by the value obtained from the ordinary, 
univariate t-distribuiton, t,.(N- l), the 100 X (1 - a/2T)th percentile of the t-distribution 
with N- 1 degrees of freedom. In the example considered in [7], we would use 
a * = (1 - 0.05126) = 0.9981, i.e. the 99.81 percentile of the t-distribution with 10 degrees 
of freedom. This would provide simultaneous 95% confidence bands for the curve at 
each of the T= 13 times of measurement. The three plots for each type of confidence 
band (i.e. Scheffe and Bonferroni) are (i) the AGC with its confidence band, (ii) the 
confidence band for an individual (prediction interval), and (iii) the confidence band for 
the AGC and an individual shown together for contrast. The AGC is shown on all three 
plots to provide a frame of reference, but it should be noted that the individual 
confidence bands shown in (ii) and (iii) are for a hypothetical new member of the 
population, not the AGC. 

EXAMPLE 

Our example is based on the data considered above and in [7]. We illustrate the use of, 
and the output from, ZBANDS and compare our results with those in [7] which, as we 
have demonstrated [ 19,201, are “flawed” due to the fact that D = 2 was used for each 
individual, and this is inappropriate for case #lo. While a quadratic fits the data for #lO 
very well over the interval he was observed, it extrapolates poorly to the interval of 
interest, 0 to 12 months. We have shown [19,20] that when D = 1 is used for this 
individual, the fit is reasonable over the entire period; and the result is tighter confidence 
bands than produced in [7]. Note that if D = 1 (or some other degree) was not reasonable 
for #lo, the user has the option of deleting this case from the analysis [19,20]. 



Confidence bands for growth curves 123 

AGC with Prediction Intervals (Scheffe bands) 

-4 -2 0 2 

Centered Time Points 
3 6 12 

Ongmal Time Points 

El..... Ave Craw Cr 

Fig. 1. Confidence bands for the individuai, where D=2 for all subjects except #lo, where 
D = 1. The original time points are at l-month intervals over the first year of life. 

In any case, we obtain the following estimated polynomial regression coefficients 
(these are expressed in terms of the centered time points) as in [19]: 

1 ,. 

44:;7* I.%3 
46.906 1.251 
47.280 1.213 
46.836 1.013 
46.911 1.066 
44.437 0.719 
46.609 0.743 
46.114 1.550 
47.370 1.196 
47.270 1.311 
47.036 1.322 

,. 

- OTtJO 
- 0.128 
- 0.010 
- 0.065 
- 0.059 
- 0.091 
- 0.046 
- 0.050 
- 0.034 

0 
- 0.070 

We next obtain the plots of the confidence bands. To conserve space we show only the 
plot for the Scheffe bands for individual growth curves in Fig. 1. 

One might expect these bands to be somewhat narrower than those produced in [7], 
reflecting the reduced variability achieved by allowing case #lO to be fit by a linear 
equation. This plot is shown in Fig. 2 (produced by our program, but using D = 2 for case 
#lO). 

The bands produced using D = 1 for #lO (Fig. 1) are somewhat narrower than when 
D = 2 is used (Fig. 2); however, the difference is not dramatic, and is not uniform over 
the interval of observation. The band is narrower over approximately 69% of its length. 
Our program also produces tables like that shown below which can be used to compare 
the results in greater detail. Shown are the half-lengths of the confidence bands at each 
time of measurement. Again, as in Figs 1 and 2, we limit consideration to the 
Scheffe-type bands for the individual curves; but we add the results obtained when #lO is 
omitted from the analysis for comparison. 

It is seen that the results for all three scenarios are broadly comparable, the most 
dramatic differences being between D = 1 and D = 2 for the later time points. It would 
appear that little is lost by omitting an individual from the analysis. These last two 
options may be preferable to “forcing” each subject to be fit by polynomials of the same 
degree. 



124 E. D. SCHNEIDERMAN etal. 

AGC with Prediction Intervals (Scheffe bands) 

N 
-6 -4 -2 0 2 4 6 

0 
Centered Time Points 
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Fig. 2. Confidence bands for the individual where D = 2 for all subjects. Note that the bands are 
at most times broader than those in Fig. 1. 

DISCUSSION 

We have outlined a method for constructing confidence bands for both the AGC and 
individual growth curves which allows individual-specific time design matrices. This 
method was implemented so as to accept data sets of the form (1) which contain missing 
observations. 

The method and program were illustrated using data for which common times of 
measurement were planned, but a substantial amount of missing data ensued. It was 
noted, in this example, that somewhat tighter confidence bands resulted when indivi- 
duals were allowed to have differing degrees of polynomials fit to their growth profiles, 
since this mitigated a problem with extraneous variability arising when one of the curves 
was extrapolated beyond the corresponding observation period. The confidence bands 
for the AGC generated by this method are analogous to those yielded by our programs 
that implement Rao’s one-sample polynomial growth curve model [8,12] and the two- 
stage model [ll] in that they reflect the precision with which the AGC was estimated. For 
example, a 99% confidence band has the explicit interpretation that one is 99% confident 
that the true (population) AGC is within these bands. The difference between the 
current approach and [8,11,12] is that these earlier methods are more structured, 
requiring complete data, and/or making specific assumptions about the covariance 

Table 1. Half-lengths of Scheffe-type confidence bands under 
different strategies for dealing with individual #lo. 

Time point 
Length when Length when Length when 
D=2 for #lO D=l for #lO #lO is omitted 

0 7.334 7.606 8.101 
1 6.044 6.246 6.683 
2 5.230 5.215 5.606 
3 4.756 4.527 4.889 
4 4.469 4.178 4.524 
5 4.287 4.124 4.466 
6 4.250 4.306 4.647 
7 4.532 4.677 5.009 
8 5.351 5.220 5.527 
9 6.813 5.944 6.206 

10 8.904 6.873 7.067 
11 11.57 8.030 8.138 
12 14.77 9.436 9.445 
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structure of the repeated measurements. The approach we outline here is much less 
stringent in these regards. 

The confidence bands for an individual curve can be used to make an explicit 
statement, with a known level of confidence, as to whether the individual is a member of 
a reference population with regard to growth pattern. For example, a clinical investigator 
may wish to know whether mandibular growth is “normal” in a 7-year-old girl who has 
juvenile rheumatoid arthritis (JRA); this disease often affects the temporomandibular 
joint, leading to deficient lower facial growth. Using a longitudinal sample of healthy 
girls from 5 to 15 one can construct a 95% confidence band for individual “normal” 
children. If one or more measurements of the child with JRA were below this band, one 
might reasonably conclude that this child is not a part of the normal population. With this 
knowledge of disturbed mandibular growth, the clinician might consider initiating 
therapeutic intervention in which the afflicted joint is targeted, rather than waiting for 
the facial deformity to fully manifest itself several years later. 

Two different kinds of bands are produced for each of the curves: Scheff&type and 
Bonferroni. For a given N, widths of the former depend on the degree of the 
polynomial(s) fit (through P= D + 1 in equation 2); the higher the degree, the wider the 
confidence bands. (For fixed N, in equation (2), F’_,(P, N-P) decreases with increasing 
P but (N - l)PI(N- P) increases at a faster rate.) The widths of the Bonferroni bands 
depend on T, the number of points at which the bands are constructed. The larger the 
value of T, the wider the bands. We should also note that while Dawson et al. [7] found 
the Scheff&type confidence bands to be narrower for their data, the Bonferroni-based 
bands can be narrower, especially in situations where the degree of the polynomial fit is 
closer to the number of time points studied. For example, if the data in [7] were based on 
T=5 time points, the Bonferroni bands would be considerably narrower. We include 
both in our program for the convenience of potential users. 

SUMMARY 

Dawson et al. [7] developed a method for constructng confidence bands for both 
average and individual growth curves which may be of considerable value in the study of 
growth and development. We describe their method for constructing, and provide a 
GAUSS386i program for computing these confidence bands. In particular, given 
assumed multivariate normally distributed longitudinal observations on each of a sample 
of individuals from a given population, we show how to derive a prediction region with 
the property that one has a given confidence that the next observation from that 
population will fall into it. The times of measurement of the longitudinal observations for 
the standardizing sample need not be equally spaced and missing data are allowed. We 
assume that the study was planned to have common times of measurement, but allow 
some measurement sequences to be incomplete. 

The method and the use of the program were illustrated using an example with a 
substantial amount of missing data. We discussed how these confidence intervals might 
be used by biomedical investigators and clinicians to diagnose and prognosticate, i.e. 
determine an individual’s current growth status (e.g. is he/she growing normally?) as 
well as anticipate his/her future growth pattern with a known level of confidence. 
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APPENDIX: COMPUTER IMPLEMENTATION 

The full set of PC programs for longitudinal data analysis can be obtained on 5.25” or 3.5” diskettes (please 
request type) by sending-$25 to defraythe cost of handling and licensing fees. These programs require a-80386 
or 80486 based oersonal cornouter (PC) running the MS-DOS ooeratine: system (version 5.0 or higher is 
recommended, aithough versions as low’ as 3.3 will suffice). 80386 compiters must‘also be equipped-with a 
80387 math coprocessor. At least 4 mb of memory is required, and must be available to GAUSS386i, i.e. not in 
use by memory resident programs such as Windows. Five mb of hard disk space are required to display the 
color graphics; VGA or SVGA is suggested to display optimally the graphic results. Runtime modules are 
supplied with the programs so that no additional software (i.e. compiler or interpreter) is required to run these 
programs. One can create and edit ASCII data sets for use by these programs using the full-screen editor 
supplied with MS-DOS version 5.0. The programs are written and compiled using GAUSS386i (version 3.01, 
release 14), require no additional installation or modification, and are run with a single command. When 
requesting the programs, address inquiries to the corresponding author and makes checks payable to Baylor 
College of Dentistry. 


