JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 20, 341-356 (1994)

Practical Algorithms for Online Routing on Fixed and
Reconfigurable Meshes*

MARTIN C. HERBORDT,T JAMES C. CORBETT,f AND CHARLES C. WEEMS

Department of Computer Science, University of Massachusetts, Amherst, Massachusetts 01003

AND

JOHN SPALDING

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109

The critical problem in creating practical online SIMD mesh
routing algorithms is to minimize both the number of communica-
tion steps and the size and complexity of the queues required at
each PE (processing element). Currently, the best available algo-
rithms for likely array sizes require 16n routing steps with queue
size 1; if priority queues of size 2g — 1 are allowed, the number of
routing steps required is reduced to 14n/g + 2n. We present an
algorithm (the MGRA), based on wormhole routing, that has
routed a large number of communication patterns (all patterns
tried besides a synthetically constructed worst case) in 5n routing
steps with a FIFO queue of size 2. We also show that the MGRA
can be modified for meshes with broadcast buses and reconfigura-
ble broadcast buses to route in a similar number of routing steps
but with a queue size of 1. A second algorithm (the CGRA) uses
reconfigurable broadcast buses in implementing cut-through rout-
ing. Using the CGRA, sparse patterns are routed in a small con-
stant number of communication steps. We prove that the MGRA
has bad worst case performance, but also show that a randomizing
preprocessing step can improve the predictability of the original
result. Finally, we show how performance scales with changing
inter- and intra-PE path widths. ®© 1994 Academic Press, Inc.

1. INTRODUCTION

Mesh-connected array processors [7, 4, 10, 5, and
many others] have been successfully applied to a number
of domains, the foremost being image processing, matrix
operations, and other areas where most of the computa-
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tions either are local to each processing element (PE), or
involve only regular or near-by communication. One fun-
damental problem with using these processors is the diffi-
culty in routing data in communication patterns that are
neither proximate nor regular, a situation that occurs dur-
ing data dependent computation where the patterns are
not known in advance. Such communication requires
general online routing.

Much theoretical work has been done on the problem
of routing on meshes but none of the results is completely
satisfactory for practical online routing on SIMD meshes.
The previous algorithms either assume unrealistic hard-
ware (e.g., unit time priority queues) [25, 13]; require
substantial preprocessing (offline algorithms) [2]; only
route a small subset of possible patterns {20, 22]; or use
sorting for preconditioning. These last algorithms are
thus a factor of 8 removed from optimal for likely array
sizes and queues of size 1, and a factor of 4.5 removed
from optimal for priority queues of size 3 [12, 15]. Some
recent processor designs such as the Connection Ma-
chine CM-2 [24] and the MasPar MP-1 [17] have ad-
dressed this problem by adding a dedicated router net-
work; although these machines have been quite
successful, they have certain disadvantages such as cost,
a tradeoff of relatively slow nearest neighbor moves for
improved support of general routing, or lack of support
for intermediate combining. Also, communication net-
works with unbounded fanout such as Clos networks and
hypercubes face scalability problems as array sizes in-
crease.

Some of the results presented in this paper are as fol-
lows.

* A new online routing algorithm (the mesh greedy
routing algorithm or MGRA) based on wormhole routing
[6] that has the following characteristics: (1) it requires
only hardware available on a SIMD mesh with no local
indexing; (2) it has very low overhead as only queues of
size 2 need to be emulated; (3) it routes random permuta-
tions optimally to within a factor of 1.5 and other permu-
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tations tried optimally to within a factor of 2.5; and (4) it
supports intermediate combining.

« The MGRA is modified to take advantage of broad-
cast buses [10] by reducing the queue size to 1. The de-
crease in overhead more than offsets the increase in the
number of communication steps.

» The MGRA is modified to take advantage of
reconfigurable broadcast buses [16, 26]: the queue size is
1 and the number of communication steps required is
similar to the version with size 2 queues.

* We present another new online routing algorithm for
reconfigurable bus networks (the coterie greedy routing
algorithm or CGRA), based on cut-through routing {11],
that routes sparse permutations in a small constant num-
ber of routing steps.

* We prove matching upper and lower bounds for the
worst case performance of the MGRA.

* We demonstrate that a randomization preprocessing
step can improve the consistency of the MGRA routing
performance.

* We use fine grained simulation to show how these
algorithms scale as internal and external path widths are
increased. We find that the speedup in machine cycles
(over bit-wide paths) is asymptotic to 8.

This work is significant in two respects. First, it con-
tains the most practical online routing algorithms (fastest
for likely patterns and array sizes) for important classes
of processors as represented by the MPP [4], the ICL
DAP[10], and the Polymorphic Torus [16]. Second, these
results are significant from the standpoint of matching
architectures and applications. In some recent processor
designs such as the Blitzen [5] and the CAAPP [26], the
decision was made to forgo the general routing network:
this is because the potential gain with respect to the tar-
get applications was thought not to be worth the cost, or
because other hardware was considered to be more im-
portant. The question has been whether these machines
must be restricted to running only regular and window-
based operations, or whether effective means can be
found to route data through nonuniform, data dependent
communication patterns. While the answer is still depen-
dent on individual processor implementations, this work
should help users to decide on the most cost-effective
machine for their applications, and architects on which
features to add to their array processors for a given appli-
cation.

The remainder of this paper is organized as follows: the
models under consideration are presented in Section 2.
We follow in Section 3 with a summary of previous work.
In Section 4 we present the algorithms. The correctness,
freedom from deadlock, and worst case bounds are
proven in Sections 5 and 6. In Section 7 we present the
experimental results.
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2. MODELS UNDER EXAMINATION

In this paper we consider the class of architectures
known as SIMD mesh connected arrays, or meshes for
short. Many different machines of this type have actually
been built, or are in the process of being built: among
the more recent are the MPP [4], CLIP-4 [7], DAP [10],
Polymorphic Torus [16], CAAPP [26], Blitzen [5], and
MasPar MP-1 [17].

Our goal is to construct routing algorithms that run
well on the existing and proposed machines in this class,
but without making our work specific toward any one.
However, we do not want to restrict our algorithms by
using only features available to a ‘‘least common denomi-
nator,”” that is, features available on all machines.
Rather, we want to take advantage of as many of the
features available on subsets of machines as possible, but
not to exclude any other subset. To do this we use a two
part strategy.

1. Abstract those features common to all the machines
into a basic model. Algorithms developed for this model
will run on all the machines listed above with at worst a
small constant slowdown, e.g., due to a difference in the
set-up time in communication or some other minor varia-
tions.

2. Abstract those features not universally available to
the class. Again, algorithms developed for the enhanced
models will run on machines having the corresponding
features with at worst a small constant slowdown.

The Basic Model

The prototypical SIMD mesh, as exemplified by the
MPP, consists of two parts: the controller which broad-
casts instructions, constants, and memory addresses,
and the n X n array of N processing elements (PEs). The
assumptions we use in the basic SIMD mesh model are as
follows.

PE ALU and Memory. Each PE contains an ALU
with the capability of performing the basic arithmetic and
logical operations. Storage consists of a small number of
registers and local memory, some of which is on-chip,
some off-chip. The off-chip memory has substantially
greater latency (up to a factor of 10). Branching takes
place through the use of an activity register: when it is
turned off, the PE is inhibited from writing the output of
the instruction.

InterPE  Communication. Communication takes
place between neighboring PEs through a mesh con-
nected network. The nearest-neighbor move instruction
has as parameters a memory address (or register) and a
direction. We assume (torus) wraparound connections at
the edges of the mesh.
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Feedback to the Controller. Feedback from array to
controller is available through a global OR: a response
register from each PE is ORed with the response registers
from the other PEs in the array. This feature is critical for
data dependent termination of loops and takes only a few
cycles.

Enhanced Models

Recent SIMD processors have become more complex:
as VLSI component sizes have gotten smaller, new fea-
tures have been added. Some of those that can optionally
be used in the routing algorithms are presented here, to-
gether with their costs.

Local Indexing. Because of the cost in VLSI area of
implementing address circuitry between PE and on-chip
memory, current implementations only allow local index-
ing when off-chip memory is accessed.

Broadcast Buses. The ability of PEs to transmit data
through direct electrical connections over long distances
has been included in many architectures, starting perhaps
with the ILLIAC-III [18]. One version is row and column
broadcast buses: PEs initiate a broadcast by writing to a
communication register, and the signal then propagates
along either the rows or the columns for some small,
predetermined number of cycles. PEs then acquire the
signal broadcast on their own row or column bus by read-
ing the communication register. If multiple PEs write to
the same bus simultaneously, the OR of those signals will
be propagated. The cost of the broadcast instruction is
dependent on the implementation and the size of the ar-
ray. However, when we use broadcast buses for trans-
mitting single bits of handshaking information, we as-
sume a number of cycles less than that of an arithmetic
instruction.

Reconfigurable Buses. In this variation, PEs also
control switches that, when open, prevent a signal from
propagating further down the bus. In this way the broad-
cast buses can be partitioned. Switches can be loaded like
local storage, either from patterns stored in memory, or
from data dependent calculations. The cost of broadcast
in this model is linear with respect to the distance the
signal propagates; however, the constant is very small
and the size of each mesh dimension bounded. Experi-
mental evidence on the CAAPP suggests that assuming a
propagation of 50 PEs per machine cycle is more than
adequate. For simplicity we always assume that the sig-
nal is propagating through the entire array: we therefore
count a broadcast instruction as about 10 nearest neigh-
bor moves.

343

3. REVIEW OF ROUTING ON A MESH

By routing we mean the selection of paths packets
must travel in order to implement communication among
PEs. If these paths are selected before the start of the
packet transfer, then we are routing offline. In online
routing, decisions of where to send packets next are
made locally after the packet has been received by an
intermediate PE; therefore the destination address must
be carried along in the packet. When online routing algo-
rithms are analyzed, the convention dictates that only
packet transfer steps be counted, even though the packet
size varies with the size of the network (the destination
tag must have log N bits). The reasoning is that the tag is
of similar size to the data portion of the packet for likely
array sizes. This assumption is similar to that allowing a
memory access to be counted as a unit time operation,
even though the circuit depth required to decode an ad-
dress is proportional to the log of the memory size.

Mesh routing algorithms have been developed for two
models: one corresponds to our basic SIMD architecture,
the other to a more complex MIMD model. In both
models, at most one packet can be transferred from a PE
to a neighbor on a communication step. There are two
major differences: the first is that in the SIMD model,
PEs can only transfer packets in the direction specified
by the controller on that communication step, whereas in
the MIMD model the direction can be determined by
each PE. As a consequence, the trivial lower bound for
mesh routing is 2n — 2 communication steps on the
MIMD model and 4n — 4 communication steps on the
SIMD model; these are the minimum numbers of routing
steps needed for processors in opposite corners to ex-
change packets. When the model has wraparound con-
nections, the lower bounds are halved. The second major
difference between the SIMD and MIMD models is the
complexity of queueing/dequeueing operations. In the
MIMD model, unit time priority queues are assumed,
while in the SIMD model these queues must be simulated
at a cost proportional to the length of the longest queue.

Online MIMD Routing Algorithms

One way to route is to use a simple greedy algorithm:
First send each packet along the column to the correct
row, then along the row to the correct column. Packets
arriving at the correct rows are ordered in the queues so
that the ones that need to travel the furthest are given
priority. This algorithm takes 2n — 2 steps with no wrapa-
round, but requires queues of size 6(n). Leighton has
shown, however, that for random permutations the re-
quired queue size is no more than 4 with overwhelming
probability [14]. The randomized routing algorithm of
Valiant and Brebner [25] is an extension of greedy rout-
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ing. The algorithm consists of three phases: randomize
packets within the columns, send packets to the correct
column along the row, and send packets to the correct
row along the column. This algorithm results in routing in
=3n steps, but the queue size has been reduced to O(log
N) for all permutations with overwhelming probability.
Kunde uses sorting as a preconditioner to routing [12].
His algorithm divides the array into n/qg X n/q blocks,
sorts those blocks into column major order, and then
routes the packets to their destination using the basic
greedy routing algorithm. The complexity is thus 2n — 2
plus the time required to sort the n/q X n/q blocks. The
queues required at each node are of size 2¢ — 1. Leighton
et al. [13] present a more complex algorithm that
achieves 2n — 2 step routing with constant size, though
impractically large, queues.

Online SIMD Routing Algorithms

One way to perform online routing on the SIMD model
is to emulate the MIMD model and use one of the MIMD
algorithms. Recall the two differences between the
models, the flexibility in the communication and the com-
plexity of the queueing operation. The packet transfers in
different directions on each time step can be emulated
with only a factor of 4 slow-down. However, emulating
queues is much more costly: either local indexing must
be used (a feature that often is not available or is very
costly if it is), or else the possible pointer positions must
be successively broadcast by the controller at a cost pro-
portional to the size of the longest queue. Clearly, we
want to route with the smallest queues possible, eliminat-
ing all the MIMD model algorithms but that of Kunde
with the minimal queue size.

Leighton has modified Kunde's algorithm slightly to
route with queue size of 1 [15]. This algorithm consists of
sorting the array into column-major order, routing each
packet to the correct column, and finally routing the
packets to their destinations. The complexity of this algo-
rithm is 2n — 2 on a mesh with wraparound (4n — 4 with
no wraparound) plus the complexity of sorting the array
into column-major order. The most practical sorting algo-
rithm to use here (best performance for column-major
sorting for likely values of n) is that of Nassimi and Sahni
[19]. This algorithm requires 14n communication steps.
Thus, the entire algorithm requires 16n communication
steps on a mesh with wraparound, or a factor of 8 times
the trivial lower bound.

Offtine Routing Algorithms

Since optimal online MIMD routing algorithms exist,
only offline SIMD routing algorithms are considered.
Offline preprocessing can dramatically improve perfor-
mance for certain communication patterns. For example,
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with O(log? N) preprocessing steps, optimal routes can
be found for the class of permutations specifiable by per-
muting and complementing the bits in the PE ID [20] for
meshes with no wraparound. Strong presents an efficient
algorithm for image rotation that requires little prepro-
cessing [22]. Raghavendra and Prasanna Kumar [21] give
algorithms to route various permutations optimally in
meshes with wraparound, and also prove that there exist
offline algorithms to route any permutation in 3» steps.
One such algorithm was developed by Annexstein and
Baumslag [2]. This algorithm requires O(N) preprocess-
ing time, however.

Summary

The MIMD algorithms are optimal, but those assuming
unit time priority queues are very costly to emulate on a
SIMD model. The online SIMD algorithms are all at least
as slow as sorting. The offline SIMD algorithms either are
not general, or require O(N) preprocessing.

4. PRACTICAL ROUTING ALGORITHMS

Before presenting the algorithms, we detail some re-
quirements and constraints that go along with the domain
of general online routing on SIMD meshes.

General Online Routing

Since it is impossible to precompute and store any rea-
sonable fraction of the NV possible communication pat-
terns and too time consuming in general to compute them
before the transfer, the data packet must contain a header
with address information.

SIMD Control

A consequence of SIMD control is that communication
is treated as a synchronous instruction (such as the Con-
nection Machine SEND [24]) where the arguments are a
pair of arrays mapped to the PE grid: the destination
address, and the data. The data often consist of a single
word. Another consequence of SIMD control is that PEs
not involved in communication cannot perform unrelated
instructions. Therefore, all PEs are occupied until the
last packet reaches its destination. And finally, the com-
plexity of emulating queues with no local indexing is pro-
portional to the size of the queue; therefore the queue
size must be very small.

Mesh Topology

In meshes, PEs need to process a substantial amount
of address information in order to decide where to send
packets. Unlike self-routing in a butterfly network where
only a single address bit is needed to compute the next
address, the PE must read the entire row or column index
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to decide what to do. Since the log N bits needed to
encode the address is much larger than the width of the
communication links between processors, bit-serial rout-
ing as in [1] is not advantageous for this model. We show
elsewhere that storing and forwarding entire packets is
preferable to any kind of packet splitting for data sizes
less than 4 log N and relatively sparse communication
patterns [9].

Two of the above requirements are seemingly contra-
dictory: we need to transfer entire packets from PE to PE
as in store-and-forward routing, but can only support a
very small queue size. The algorithms presented below
are based on a combination of store and forward and
wormhole routing [6]: because emulating queues is so
costly, PEs are not allocated enough queue space to store
all packets that could collide there. And although packets
are not strung out in a series of flits, the overall behavior
is similar to that in wormhole routing: trains of data pro-
ceed through the network until the head of the train is
blocked; at that point the entire train must wait until the
path is clear.

4.1. Outline of the Mesh Greedy Routing Algorithm

The basic algorithm, which we call the mesh greedy
routing algorithm or MGRA, runs as follows. Every PE
emulates a local section of two communication channels,
X and Y, by using the nearest neighbor mesh and space
allocated in on-chip memory. The X-channel and Y-chan-
nel are arbitrarily chosen to run in directions parallel to
the rows and columns respectively. Conceptually, the
algorithm runs as follows: PEs inject packets into the
network, which are sent through the X-channel a dis-
tance of one PE per routing step until the correct X co-
ordinate (column) is reached. At this point the packet is
moved from the X-channel to the Y-channel. The packet
then travels through the Y-channel until the destination is
reached. The X- and Y-moves are interleaved so that
each occurs during every iteration. Packets travel in only
one direction in each channel and wraparound is used;
because the packets have only unit length (are made up of
single flits), having single X- and Y-channels does not
cause deadlock. If the packet has reached the correct X
coordinate but the section of the Y-channel being emu-
lated at that PE is occupied, then the packet is
“‘blocked,’’ as are all the other packets contiguously be-
hind that packet in the X-channel. Y-channels are never
blocked, so overall progress is assured.

Initially, each iteration contains two data movement
instructions, one in the X-channels and one in the Y-
channels. After every iteration, however, the controller
checks to see if there are still packets in the X-channels.
If none remain, a second phase of the MGRA is begun
where only Y-channel moves are executed. During this
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phase, the controller checks the Y-channels for packets:
when none remain, the algorithm is terminated.

The critical problem in this algorithm is how to handle
the collisions that occur when a packet needs to switch
from an X- to a Y-channel but finds the Y-channel al-
ready occupied. If the X-channel packet is simply left in
place, that packet runs the danger of being overwritten by
a packet arriving in the next iteration. Naive approaches
are to emulate queues within each PE as in the MIMD
greedy routing algorithm, or to include a notification
step. In the latter approach, each PE with a blocked
packet sends a message to the packets contiguously be-
hind it informing them that they too are blocked and
should not proceed in the next iteration. However, both
alternatives yield 6(N) algorithms: the former approach
requires queues of length 6(n), while the notification step
requires # data transfers. How we deal with collisions is
the key difference among the implementations of the
MGRA on the different models.

4.2. The MGRA on the Basic Model

In the basic model we handle collisions by emulating
queues of size 2 in the X-channels. The details are as
follows: we adapt the MGRA by adding another buffer to
the X-channel; we call the two buffers X-head and X-tail.
The algorithm now has some additional steps interposed:
instead of transferring packets directly along the from X-
channel buffer to X-channel buffer, a PE moves packets
from its X-head to the X-tail of its neighbor, and then
internally from its X-tail to its X-head. Of course in either
case, PEs only send packets if the destination buffer is
clear. We demonstrate the correctness of this algorithm
later; intuitively the ‘*blocked™ information travels back
down the train of contiguous packets at the same rate that
incoming packets become compressed in the trailing
queues. The pseudocode for the MGRA can be found in
Fig. 1.

1. WHILE OR(XHeadPacket [nUse) = TRUE
2. IF YPacket InUse AND YPacket YAddress = PE.YAddress
THEN Output := YPacket Data
YPacket.InUse := False
3. YPacket := South(YPacket}
4. Blocked := False
5. IF XHeadPacket.InUse AND XHeadPacket. XAddress = PE.XAddress
THEN IF -YPacket InUse
THEN YPacket := XHeadPacket
XHeadPacket.InUse := FALSE
ELSE Blocked := TRUE
6. IF —~XTailPacket InUse AND -~East(Blocked)
THEN XTailPacket := East(XHeadPacket)

+ While packets in X

; destination?

;  then store packet

; ond clear Y-channel
; Y-channel move

; initialize flag

; X destination?

;Y not occupied?

; then transfer to Y

;  and clear XHead

;  else blocked

; If space and not blocked
i X-channel move

7. IF -XHeadPacket.InUse ; If space,
THEN XHeadPacket := XTailPacket ;  align packet
XTailPacket. InUse := FALSE ;  and clear XTail

8. WHILE OR{YHeadPacket InUse) = TRUE
9. IF YPacket.InUse AND YPacket. YAddress = PE.YAddress
THEN Output := YPacket.Data
YPacket.InUse := False
10.  YPacket := South(YPacket)

; While packetsin Y

; destination?

;  then store packet

;  and clear Y-channel
; Y-channel move

FIG. 1. The Mesh Greedy Routing Algorithm on the basic model.
Packet transfers automatically set InUse to TRUE.
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1. IF YPacket.InUse AND YPacket. YAddress = PE.YAddress
THEN Output := YPacket.Data
YPacket.InUse := False
2. YPacket := South({YPacket)
3. Blocked := False ; initialise flag
4. [F XPacket.1InUse AND XPacket.1.XAddress = PE. XAddress  ; X destination?
THEN IF -~YPacket.InUse ;  and Y not occupied?
THEN YPacket := XPacket.1 ; then transfer to Y,
XPacket.1.InUse := FALSE ; clear X
FROM i:=1TOp-1 ; and align
XPacket.i := XPacket.i+1 ;  X-channel packets
XPacket.p.InUse := FALSE
ELSE Blocked := TRUE
5. [F ~XPacket.p.InUse AND -East(Blocked)
THEN XPacket.p := East{XPacket.1)
6. FROMi:=p1TO1

; destination?

; then store packet

;  and clear Y-channel
; Y-channel move

;  else blocked
; I space and not blocked,
X-channel move

IF ~XPacket.i.InUse ; If space,
THEN XPacket.i := XPacket.i+1 align packet
XPacket.i+1.InUse := FALSE and clear tail

FIG. 2. The body of one iteration of the Mesh Greedy Routing
Algorithm simulating p-length queues on the basic model when both X-
and Y-channels are in use.

4.3. The MGRA with Longer Queues

Since we later compare the performance of the MGRA
with length 2 queues with the MGRA with FIFO queues
of arbitrary length, we also show how this latter version
is implemented. We do not attempt to implement priority
queues, a structure that—although it would enable an
optimal algorithm in terms of communication steps—
would have unacceptable overhead.

Queues can be emulated on the basic model in several
ways. However, when a queue size greater than 2 (all we
needed above) must be supported, the algorithms are
slightly more complicated. The intuitive method is to use
a circular buffer and a bit vector. A somewhat simpler
method using no bit vector is to simply keep the queue
““justified”” to one end of the buffer. Pseudocode for one
iteration using this method can be found in Fig. 2.

If hardware support for local indexing is available, then
FIFO gqueues can be implemented directly. As mentioned
earlier, however, the queue and dequeue operations are
often substantially slower (by about a factor of 10) than
the PE to PE move operations. Therefore even if local
indexing is available, longer queues should only be used
if reduction in the number of communication operations
is greater than the slowdown in memory access.

4.4. The MGRA on a Mesh with Broadcast Buses

Even queues of length 2 create unwanted overhead
through internal move instructions. In this section we
show how the MGRA can be modified to use broadcast
buses to reduce the X-channel queue size to one. This
has two advantages: (1) internal moves are eliminated
and (2) nearest neighbor transfers are faster for some
mesh architectures when the packet memory address in
the source PE is identical to the memory address in the
destination PE. The problem again is dealing with colli-
sions: we must keep from overwriting packets that are
blocked because of occupied Y-channels. We use the fol-
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; destination?
then store packet
and clear Y-channel
; Y-channel move
; initialize flag
; X destination?
and Y not occupied?
then transfer to Y

1. IF YPacket.InUse AND YPacket.YAddress = PE.YAddress
THEN Output := YPacket.Data
YPacket.InUse := False
2. YPacket := South{YPacket)
. Blocked := False
4. IF XPacket.InUse AND XPacket. XAddress = PE.XAddress
THEN IF -YPacket.InUse
THEN YPacket := XPacket

©

XPacket.InUse := FALSE ; and clear X
ELSE Blocked := TRUE ; else blocked

5. Blocked := RowBroadcast(Blocked) ; inform row that blocked
6. IF ~Blocked ; if not blocked,

THEN XPacket := East(XPacket} X-channel move

FIG. 3. The body of one iteration of the Mesh Greedy Routing
Algorithm using broadcast buses when both X- and Y-channels are in
use.

lowing solution: since a packet can only be overwritten
by another packet in an X-channel, PEs with blocked
packets broadcast that status to their rows. Therefore, if
any packet in a row is blocked, then no packet in that row
proceeds. Pseudocode for this algorithm can be found in
Fig. 3.

4.5. The MGRA on a Mesh with Reconfigurable Buses

The obvious disadvantage of the above method is that
some packets are needlessly prevented from proceeding.
When the broadcast buses are reconfigurable, however, it
is possible to retain the queue size of one while blocking
only those packets that could overwrite a blocked
packet. The method is as follows. Each PE containing a
packet in its X-channel closes its East and West
switches, while all PEs open their North and South
switches. If the PE contains a blocked packet then the
West switch is opened. In this way circuits are formed
along the horizontal buses that are made up of contiguous
PEs containing packets in their X-channels; if there is a
PE with a blocked packet within the circuit, it will be in
the leftmost PE. See Fig. 4 for an illustration. Pseudo-
code can be found in Fig. 5.

@ = PE with a blocked X-channel packet

57 = PE with an X-channal packet

@: PE with no X-channel packet

FIG. 4. Reconfigurable buses are used to form circuits containing
exactly those PEs with blocked packets. After broadcast, the PEs in
circuits 1 and 4 are blocked while the PEs in circuits 2 and 3 continue.
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; destination?

; then store packet

; and clear Y-channel
; Y-channel move

; initialize flag

+ X destination?

; and Y not occupied?
; then transfer to Y

; and clear X

;  else blocked

1. IF YPacket.InUse AND YPacket. YAddress = PE.YAddress
THEN Output := YPacket.Data
YPacket.InUse := False
. YPacket = South{YPacket)
3. Blocked := False
4. IF XPacket.InUse AND XPacket. XAddress = PE.XAddress
THEN IF -YPacket.InUse
THEN YPacket := XPacket
XPacket.InUse := FALSE
ELSE Blocked := TRUE
5. IF XPacket.InUse AND Blocked ; create circuits of adjacent
THEN Switches(N,E,S,W) := (OPEN,CLOSED,OPEN,OPEN} ; PEs with X occupied
ELSE IF XPacket.InUse AND ~Blocked ; partion if X packet
THEN Switches(N,E,S,W) := (OPEN,CLOSED,OPEN,CLOSED); is blocked
ELSE
Switches(N,E,S,W) := (OPEN,OPEN,OPEN OPEN)
6. Blocked := Broadcast(Blocked)
7. IF -Blocked
THEN XPacket := Enst(XPacket)

»

; inform circuit that blocked
; if mot blocked,
3 X-channel move

FIG. 5. The body of one iteration of the Mesh Greedy Routing
Algorithm using reconfigurable broadcast buses when both X- and Y-
channels are in use.

4.6. The Four-Channel MGRA on the Basic Model

One way to cut down on the number of blocked pack-
ets is to double the number of channels emulated so that
the scheme resembles more closely that in [6]; in this
case the overhead per iteration is also roughly doubled.
We call these new channels X2 and Y2. When a packet
reaches the last row (column) of the torus, but has not yet
reached its destination column (row), the packet switches
channels to X2 (Y2) and wraps around. This scheme does
indeed cut down on the congestion, but was not found to
be worth the overhead.

A much more effective scheme is for the additional
channels X2 and Y2 to route packets in the opposite di-
rections to X1 and Y1, respectively. Packets are injected
into the X1 or X2 (Y1 or Y2) channels so that they always
travel by a shortest path from source to destination. We
shall see later that this is advantageous when the maxi-
mum shortest path is significantly less than » (in Manhat-
tan distance). The complexity of the channel emulation is
significantly more than doubled, however, as there are
now four ways that X- and Y-channels can interact rather
than one. We call this variation the 4-channel MGRA.
This algorithm again does not deadlock because the pack-
ets are transferred in their entirety.

4.7. The Coterie Greedy Routing Algorithm

Reconfigurable buses can also be used to emulate cut-
through routing. Cut-through routing was developed by
Kermani and Kleinrock [11] as a hybrid of store-and-
forward and point-to-point circuit switched routing. Each
packet is routed through the network to the furthest
available PE toward its destination, where it is queued in
its entirety. The advantage is that packets need not wait
for the entire circuit between source and destination to be
free before transfer, while also avoiding the need to be
queued at every intermediate PE. The implementation of
cut-through routing on reconfigurable buses involves sub-
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2%:' = PE with an X—channel packet . = PE with no X—channe! packet

FIG. 6. In CGRA steps | and 3 (5 and 8) PEs broadcast packets
directly to the destination PE, or to the furthest possible PE with an
open channel, respectively.

stantially greater overhead per iteration than the MGRA,
but as we see below, this is more than compensated by
the decreased number of iterations when the communica-
tion pattern is sparse.

In this version of the greedy algorithm, which we call
the Coterie Greedy Routing Algorithm (CGRA),' the X-
and Y-channels are emulated not only by the nearest
neighbor connections, but also by the reconfigurable
broadcast buses. The major consequence is that rather
than moving packets just one PE at a time, all of the open
space between occupied PEs is traversed in a single itera-
tion of the algorithm. The basic idea is to create circuits
having the property that the rightmost PE (bottommost if
these are Y-channels) contains a packet, while all other
PEs in the circuit do not (see Fig. 6 for an illustration).
The occupied PE then broadcasts its packet to the cir-
cuit, where it is read either by the destination or by the
leftmost (topmost) PE. The pseudo-code with some im-
plementation details removed can be found in Fig. 7.

4.8. Many-to-One Routing

A combine operation has been created by augmenting
the routing algorithms as follows: Instead of simply mov-
ing the packets that have arrived at their destinations
from the Y-channel(s) to the output buffer, a binary oper-
ator is interposed. For example, sum—combine adds the
value in the packet to the value already in the output
buffer. Many-to-one routing is implicit in the combine
operation; more congestion is therefore likely to occur
than in permutation routing. To deal with this situation,
intermediate combining at the point of collision may op-
tionally be executed. The cost is an increase in overhead
of an extra compare and arithmetic operation for each
iteration, but there are situations where intermediate
combining is worthwhile. One example is the degenerate
case where the entire array is combined at one destina-
tion: the complexity of that combine operation is reduced
from O(N) to O(n).

! The Coterie Network is the name for the CAAPP reconfigurable
broadcast mesh.
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1. IF YPacket.InUse
THEN Switches(N,E,S,W) = (CLOSED,OPEN,OPEN,OPEN) ;
ELSE H
Switches(N,E,8,W) = (CLOSED,OPEN,CLOSED,OPEN)

. Broadcast(YPacket)
3. IF PE.YAddrese = Broadcast{YPacket.YAddress)

THEN Receive(YPacket)
4. IF YPacket.InUse AND YPacket.YAddress = PE.YAddress

THEN Output := YPacket.Data

YPacket.InUse := Falee
5. Broadcast(YPacket)
IF North{YPacket.InUse) AND ~YPacket.InUse

; create circuit with one
Y-channel occupied PE
and adjacent empty PEs
to north
all PEs broadcast
destination of broadcast?
; then receive
; destination?
then store packet
and clear Y-channel
; all PEs broadcast
furthest empty PE?
then store packet
, guarantee some progress
; initialize flag
; create circuit with one
i X-channel occupied PE
and adjacent empty PEs
to west
all PEs broadcast
destination of broadcast?
; then receive
; X destination?
and Y not occupied?
then transfer to Y
and clear X
else blocked
; create circuits of ndjacent
PE1 with X occupied
;  pastion if X packet
is blocked

[X)

THENReceive(YPacket)
8. YPacket = South(YPacket)
7. Blocked := False
8. IF XPacket InUse
THEN Switches(N,E,5,W) = (OPEN,OPEN,OPEN,CLOSED)
ELSE B
Switches(N,E,S,W) = (OPEN CLOSED OPEN,CLOSED)
9. Broadcast(XPacket)
IF PE.XAddress = Broadcast(XPacket.XAddress)
THEN Receive(XPacket)
11. IF XPacket.InUse AND XPacket.XAddress = PE.XAddress
THEN IF -YPacket.InUse
THEN YPacket := XPacket
XPacket InUse := FALSE
ELSE Blocked := TRUE
12, IF XPacket.InUse AND Blocked
THEN Switches(N,E,S,W) := (OPEN,CLOSED,OPEN,OPEN)
ELSE IF XPacket.InUse AND —Blocked
THEN Switches(N,E,S,W) := (OPEN,CLOSED,OPEN,CLOSED};
ELSE
Switches(N,E,S,W) := (OPEN,OPEN,OPEN,0PEN)
13. Blocked := Broadcast(Blocked)
14. IF -Blocked
THEN Broadcast{XPacket)
15. IF West(XPacket.InUse) AND ~XPacket.InUse ;
THEN Receive(XPacket)
16. IF ~Blocked
THEN XPacket := East(XPacket)

—
=%

; inform circuit that blocked
; non-blocked PEs
broadcast

furthest empty PE?
then store packet

| guarantee some progress

FIG. 7. Reconfigurable broadcast buses used to transmit data. Par-
tial code for the body of one iteration of the Coterie Greedy Routing
Algorithm when both X- and Y-channels are in use.

5. CORRECTNESS AND FREEDOM FROM DEADLOCK

We present an informal argument for the correctness of
the MGRA. Clearly if a packet does not get permanently
blocked it proceeds across the row in which it starts to
the column of its destination, switches from the X-chan-
nel to the Y-channel, and then proceeds up the column to
the row of its destination. We must only show that no
packet can be blocked forever. A packet is blocked on a
given iteration when another packet occupies the buffer
into which it must proceed. We define a stall point as a
processor whose queue is full at the end of an iteration
(i.e., both X-head and X-taii contain a packet). A packet
in the Y-channel of a processor may create a stall point
by blocking a packet in the X-channel wishing to enter
the Y-channel at that processor. Assuming a contiguous
stream of packets behind the blocked packet, this stall
point would move right, against the flow of the packets,
one processor per iteration, like a compression wave.
The creation and propagation of a single stall point are
shown in Fig. 8. Note that a packet will be delayed one
iteration for every stall point that it encounters in the X-
channel.

Suppose some packet is permanently blocked. Since
packets in the Y-channel cannot be blocked, the perma-
nently blocked packet must be in the X-channel. In order
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FIG. 8. Stall point progression.

for the packet to remain in place, a continuous stream of
stall points must pass over it. Each of these stall points
must be created by a packet in the Y-channel blocking a
packet in the X-channel of this row. Such a packet, once
creating a stall point, must move out of this row on the
next iteration since packets in the Y-channel cannot be
blocked. Furthermore, since it must reach its destination
before coming around to this row again, it can never
create another stall point in this row. Therefore, each of
the stall points passing over the permanently blocked
packet must be created by a different packet, but since
there are only a finite number of packets, this is impos-
sible. Hence no packet is permanently blocked.

This proof depends on the packets being small enough
to fit into one buffer. If the packets had to be strewn out
in flits over several processors, as in wormhole routing,
then four channels would be necessary to prevent dead-
lock [6].

6. WORST CASE

In the worst case, the MGRA can take time linear in
the size N of the network, but never longer.

Upper Bound

THEOREM. Let M be an n X n mesh. For all permuta-
tions w: M — M the routing algorithm takes at most n* +
o(n?) iterations to route .

Proof. We augment the above proof of correctness by
counting how many iterations a packet can be blocked.
On each iteration, a packet either takes one step toward
its destination or is delayed by a stall point. A packet can
create stall points only when in the Y-channel and thus
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FIG. 9. Permutation causing a quadratic amount of blocking for n =
16.

can create only one per row since a packet in the Y-
channel cannot be blocked and will only pass each row at
most once. Therefore, at most n? stall points can be cre-
ated in a given row, so packets in that row can be blocked
for at most n? iterations. Since a packet can have at most
2n — 2 units to travel, any packet must finish within 2n —
2 + n? = n? + o(n?) iterations. W

Lower Bound

THEOREM. Let M be an n X n mesh. There exists a
permutation m: M — M which takes Q(n?) iterations to
route.

Proof. We construct a permutation in which (n?)
stall points pass through a packet; the result follows. The
idea is to set up Q(n) rows, each of which will block some
packet for (U(n) iterations. A sequence of rows is set up
such that each row crosses in front of the remaining
rows, creating stall points in them. The actual permuta-
tion for n = 16 is shown in Fig. 9; larger cases are analo-
gous. Certain elements of the mesh are labeled. Each
label appears exactly twice, so each labeled element has a
unique ‘‘partner.”’ Define = as the permutation which
maps each labeled element to the location of the partner
of that element, and maps all other elements to their cur-
rent location.

We focus on the packets starting in the lower right
quadrant, all of which are routed to the left half of the
mesh. The letter in an element label determines the
column in the left half of the mesh the packet is routed to.
The permutation is constructed so that while elements
with unprimed labels ascend a column, the remaining la-
beled rows are blocked by elements labeled with the
same letter primed. During the route, the row of 8 a’s
creates 8 stall points in all the other rows as it ascends its
column, since all the other rows begin with an element a;
which also needs to enter that column. Similarly, the row
of 6 b’s then creates 5 stall points in the remaining rows
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(b, ascends the column one iteration too soon to create
stall points in the rows above), the row of 4 ¢’s creates 3
stall points (¢, is similarly one iteration too soon), etc.
Thus 8 + 5 + 3 + 1 stall points pass through the element
d}, delaying it on 17 iterations.

In the general case, we set up |n/4] + 1 rows in the
lower right quadrant of the mesh and |n/4] columns in the
left half of the mesh as follows. Number the rows 1, 2, 3,
..., ln/4] + 1 starting from the bottom of the mesh; num-
ber the columns in the left half of the mesh 1, 2, 3, ...,
{n/4] from the right (i.e., the column just to the left of
center is column 1). The ithrow (i = 1, ..., |n/d4] + 1)
starts with [n/2] + i — | unlabeled elements (to allow the
labeled elements of row 1 to be in column 1 when the first
labeled element of this row reaches column 1), followed
by i — 1 labeled elements routed to columns I, 2, 3, ...,
i — 1, in that order (these correspond to the primed ele-
ments in the example above), followed by |{n/2] = 2(/ = 1)
elements routed to column /. The labeled elements of row
i create at least [n/2) — 2(i — 1) — 1 stall points in all rows
j=1i+1, .., |n/4] + 1, thus

|n/af

Sn2 =26~ 1) — | = Qn?)
i=1

stall points pass through the last element of row {n/4] +
. &

Dealing with the Worst Case

Clearly the worst case performance is unacceptable in
a practical routing scheme. In the next section we present
experimental results which indicate that communication
patterns that result in even double the optimal running
time (much less anything approaching n times) are hard
to find, and that random permutations have especially
good and consistent performance.

Valiant and Brebner [25] addressed the problem of
poor worst case routing performance by applying a ran-
domization preprocessing step before greedy routing.
The result is that routing on the MIMD model can be
executed nearly optimally with extremely high probabil-
ity. Although our algorithms differ significantly in how
they deal with blocked packets, we can expect that simi-
lar preprocessing will yield a similar reduction in the
amount of congestion. In the next section we demon-
strate this result.

7. EXPERIMENTAL RESULTS

In previous sections we have presented online routing
algorithms for a series of models based on classes of
SIMD meshes that have low overhead per iteration. We
have also proven correctness, freedom from deadlock,



350

and O(N) worst case performance. In this section we
demonstrate the practicality of those algorithms by show-
ing that the typical performance is close to optimal, while
any communication pattern approaching the worst case
does not appear in practice. In particular, we seek to
answer the following questions:

1. For all the algorithms described above, what is the
typical and worst case performance in number of itera-
tions and communication steps? What does this say
about the likelihood of the theoretical worst case?

2. Which algorithms have advantages in routing certain
types of communication patterns?

3. Does randomization preprocessing help? Is it worth
the cost?

4. How do the algorithms compare when overhead is
factored in?

5. What is the performance on a detailed model? How
do these results scale?

Not all these questions are best answered by the same
method; we use three types of simulation having increas-
ingly complex models: (1) counting the number of com-
munication steps and algorithm iterations, which is suffi-
cient to answer the first three questions; (2) combining
the number of iterations with the relative overhead of the
different algorithms as obtained by comparing the num-
ber of identical instructions executed per iteration; and
(3) accurate hardware models approximating actual ma-
chine execution. The last two models are needed to ad-
dress the final two questions.

Once we have a sufficiently accurate simulation model
for the task at hand, we must select the patterns with
which to test the algorithms. Since we are interested in
practical performance, the ideal set of patterns would be
those extracted from execution traces of real programs.
However, there are as yet very few applicable systems in
operation and therefore few available traces. The alterna-
tive of using random permutations is inadequate, how-
ever. Though important (e.g., arising after a randomiza-
tion preprocessing phase as in Valiant and Brebner [25]),
random permutations are generally among the ‘‘easiest’
patterns to route. And (as we shall show below) random-
ization preprocessing is not always cost-effective. There-
fore, we also test our algorithms on many other patterns
(and classes of patterns) found in the literature. This
method is still not perfect, but the results we present in
this section are in such consistent agreement so as to
provide adequate support for our assertions.

We divide the communication patterns into two cate-
gories: (1) particular patterns such as transpose and shuf-
fle, and (2) classes of patterns, which are defined by a
rule for generating patterns, and over which a mean and
standard deviation can be taken. Some particular pat-
terns used are based on permuting and complementing
the bits in the PE ID. These are known as bit permute/
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complement permutations and are described in {20]. The
definitions of the classes of patterns are as follows:

« Bit Permute (BP): patterns derived from randomly
permuting the bits of the PE ID

* Bit Permute and Complement (BPC): patterns de-
rived from randomly permuting and flipping the bits of
the PE ID

* P-ordered Vectors (see [23])

* Image Rotation: patterns derived using the standard
matrix; rotation in general produces a many-to-one com-
munication pattern.

All experiments in this section, unless otherwise speci-
fied, were run on an n X n array where n = 256. Results
for the random, random BP, and random BPC classes of
patterns are based on runs of at least 100 trials. For p-
ordered vectors, a trial was run for each permutation
generated by the relatively prime values of P less than
256. The image rotation was tested for all angles (in de-
grees) divisible by 5. For most of these patterns there
exists a packet that must travel nearly the maximum dis-
tance and so the minimum number of neighbor moves
(and therefore iterations of the MGRA) possible is 2n —
2, or 510. We refer to this figure as the ‘‘trivial lower
bound’’ or as ‘‘optimal performance.’’ And finally a note
about counting iterations and communication steps: re-
call that in the MGRA, iterations contain two communi-
cation steps in the first phase and one in the second. They
can therefore be related as follows: 2+ irerations — n =
communication steps.

7.1. Algorithm Performance in Communication Steps

Tables I and II contain the results of the basic two-
channel MGRA on particular communication patterns
and on classes of communication patterns respectively.
The major results are that random permutations require
only slightly more than the lower bound of iterations and
1.5 times the lower bound of communication steps, with
very small variance, while the most costly patterns tried
require only a factor of 1.5 times the lower bound of
iterations and 2.5 times the lower bound of communica-
tion steps. Recall that the algorithms that use sorting as a
preconditioner require a factor of 8 times the lower
bound communication steps with queue size of 1 and 4.5
times the lower bound of communication steps with a
priority queue of size 3. Also significant is that the stan-
dard deviations of the results from the classes of patterns
were a fraction of ». This is an indication that encounter-
ing patterns from these classes that are much worse than
those presented is very unlikely. Another interesting
result is that for some permutations, no packets collide at
all; these are so indicated in Table 1. Additional experi-
ments (not presented here) support these results for ar-
rays of different diameters: trials were run for n = 4, 8,
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TABLE 1
Performance of the MGRA on a 256 x 256 Basic Architecture
when Routing Particular Permutations

# of # of

Pattern iterations comm. steps Collisions?
Bit reverse (FFT) 498 754 No
Unshuffle S12 768 No
Shuffle 512 768 No
Transpose 258 514 No
Reflection in X-axis 257 513 No
Reflection in Y-axis 257 258 No
Vector reverse 512 768 No
Shuffled row-major 664 1101 Yes
Bit shuffle 758 1269 Yes
Snake-like row-major 257 258 No
Snake-like column-major 511 767 No
90° rotation S11 767 No
180° rotation 512 768 No
270° rotation 511 767 No
16, ..., 256 on all particular permutations with similar

results. For random permutations, many thousands of
trials were run for many additional n values up to 512.

Table III contains the results of the other versions of
the MGRA and of the CGRA for the classes of communi-
cation patterns. The variances are similar to those in Ta-
ble 11 and are not shown. For particular patterns that
were routed by the MGRA with no collisions, perfor-
mance is the same as above. The major result for each
algorithm is as follows:

Long FIFO queues. Increasing the size of the queues
from 2 to infinite does not significantly reduce the number
of iterations required.

Reconfigurable Buses. Reducing the queue length
from 2 to 1 and using reconfigurable buses to block only
the necessary packets does not significantly increase the
number of iterations required.

Broadcast Buses. When the nonreconfigurable buses
are used to block all packets in a row where any packet is
blocked, there was an increase in the number of iterations
which varied from 5% to 20%.
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TABLE 11
Performance of the MGRA on a 256 x 256 Basic Architecture
when Routing Classes of Permutations

Mean #
Class of Mean # Standard Worst of comm.
pattern of iterations deviation case steps
Random 524.65 3.76 539 807.03
Random BP 611.56 83.61 780 983.46
Random BPC 614.56 80.94 798 994.02
Rotation 631.57 96.84 827 1037.18
P-vector S11.10 19.12 761 774.29

Four Channels. Using four channels reduces the
number of iterations by slightly more than a factor of 2
with respect to the original two-channel version. This
factor is not precisely 2 because using extra channels also
reduces congestion.

CGRA. The use of broadcast to transmit packets re-
duces the number of iterations by 45-55% with respect to
the two-channel MGRA.

7.2. Algorithm Performance on Local and
Sparse Communication

The Four-Channel MGRA routes packets via shortest
paths and could therefore be assumed to perform better
on communication patterns exhibiting locality. This is
confirmed by the results in Table 1V showing that the
number of iterations depends almost entirely on the max-
imum distance a packet must travel, and is independent
of the diameter of the network.

The CGRA transmits packets using broadcast; there-
fore performance should improve as the density of the
communication pattern is decreased by enabling packets
to propagate further on each communication step. As a
test we used random permutations with a proportion of
the packets removed at random. The results for the num-
ber of iterations as a function of the percentage of PEs
sending packets are shown in Fig. 10. The minimum num-
ber of iterations required to route a packet (not starting at
the correct row or column coordinates) using the CGRA

TABLE 111
Performance of Different Algorithms on 256 x 256 Arrays when Routing Classes of Permutations

Performance in iterations for different algorithms

Class of pattern MGRA FIFO queues Broadcast buses Reconf. buses CGRA 4C MGRA
Random 524.65 525.40 641.87 524.94 220.73 260.04
Random BP 611.56 606.08 650.02 615.70 339.35 303.14
Random BPC 614.56 613.94 650.30 618.90 345.40 306.77
Rotation 631.57 623.83 654.10 637.99 297.29 264.56
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FIG. 10. CGRA results for random permutations on a 256 X 256
array: (a) The number of iterations decreases nearly linearly with re-
spect to the density of the communication pattern; (b) the asymptotic
limit of 4 is approached.

is 4. Therefore, when the density is very small, only very
few iterations more than the minimum possible are re-
quired (as is shown in Fig. 10b).

7.3. Randomization Preprocessing

In Tables I and II we saw that the maximum number of
iterations was nowhere near N and that the standard de-
viations were a fraction of »; still, the performance varied
from slightly more than 2n with standard deviation of 4
for random permutations, to around 3# with a standard
deviation of 84 for certain bit-permute permutations.
Clearly there would be an advantage if the performance
for all (nonregular) patterns were as good as that for ran-
dom permutations. In particular, introducing a randomiz-
ing phase similar to that in [25] has two potential benefits:
improvement of the performance (not including prepro-
cessing) when routing nonrandom patterns, and reduc-
tion in the likelihood of poor performance.

We see in Tables V and VI that for the two- and the
four-channel MGRA, randomization reduces the number
of iterations and the standard deviations for the permuta-
tions tested. For the four-channel MGRA, randomization

HERBORDT ET AL.

TABLE 1V
The Performance of the Four-Channel MGRA when the
Diameter and the Maximum Distance Are Varied

Maximum Mean # Standard
Diameter distance of iterations deviation

20 10 14.6 .89

40 10 15.7 94

60 10 15.7 .95

80 10 16.3 71
100 10 16.3 .84
120 10 16.6 .89
140 10 16.9 1.05
160 10 17.0 45
180 10 17.0 .00
200 10 17.1 .54
220 10 17.4 .49
240 10 17.2 .55
256 10 17.4 .66
256 20 28.5 .67
256 40 48.9 .70
256 60 69.1 .94
256 80 89.4 .92
256 100 109.3 .78

of the BP and BPC classes yields performance nearly
identical to that of performance on random permutations.
For the two-channel MGRA, the new performance of the
BP and BPC classes is about halfway between that of the
original performance and that for the random case.

Is randomization worth the cost? The preprocessing
procedure requires n packet move steps, but since no
comparisons need to be made, the overhead is less than
for a comparable number of iterations of the MGRA.
(Since the same randomization can be used for every
communication pattern, a preprocessing route can be
computed offline at compile time; the n-bit-long vector
encoding of that route is brought into PE memory at pro-
gram load time.) Even so, randomization does not in-
crease performance enough (only 5% to 15%), for the
communication patterns tried, to make it a standard fea-
ture. However, because the standard deviations were de-
creased substantially, especially for the four-channel

TABLE V
Number of Iterations and Communication Steps Required for Classes of Permutations Using the MGRA in 256 X 256 Array:
Comparison with Randomized Axis Version

Two-channel MGRA

Two-channel MGRA with randomization

Standard # of Comm. Standard Total # of
Class of pattern Iterations deviation steps Iterations deviation comm. steps
Random BP 611.56 83.61 983.46 567.21 45.92 1152.01
Random BPC 614.56 80.94 994.02 570.90 48.43 1158.63
Rotation 631.57 96.84 1037.18 555.25 70.49 1135.94
Random 524.65 3.76 807.03
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TABLE VI
Number of Iterations and Communication Steps Required for Classes of Permutations Using the Four-Channel MGRA in 256 X
256 Array: Comparison with Randomized Axis Version

Four-channel MGRA Four-channel MGRA with randomization

Standard # of Comm. Standard Total # of
Class of pattern Iterations deviation steps lterations deviation comm. steps
Random BP 303.14 42.66 975.18 260.53 9.43 1052.18
Random BPC 306.77 48.11 995.96 261.49 3.89 1057.80
Rotation 264.56 99.30 945.18 246.53 37.54 746.04
Random 260.04 1.57 792.46

MGRA, randomization could be useful if more consistent
performance were required.

7.4. Algorithm Performance Including Overhead

In order to compare the algorithms to each other we
need to take into account the overhead per iteration. The
problem is that the precise overhead of the various algo-
rithms depends on feature implementations that change
from machine to machine. However, certain compari-
sons among algorithms—such as counting identical in-
structions—can certainly be made. Also, instructions of
similar complexity, such as internal moves and com-
pares, can be related to instructions that take substan-
tially longer, such as broadcast moves and off-chip mem-
ory references. Table VII contains the counts of
instructions of different types for the different algo-
rithms.

We make the following observations.

Basic MGRA. The MGRA requires an extra internal
move (in comparison to the two bus algorithms) to simu-
late the size-two queue. Up to two additional internal
moves are required depending on how nearest neighbor
moves are implemented.

Four-Channel MGRA. The four-channel version has
twice as many nearest-neighbor moves per iteration as
the two-channel version. It also requires extra internal
moves as a packet from either X-channel can be moved
to either Y-channel.

Broadcast and Reconfigurable Buses. These ver-
sions have overhead similar to each other. The recon-
figurable bus version does require a few extra cycles per
iteration to deal with handshaking, but this does not sig-
nificantly change the relative overhead.

FIFO Queues. The internal moves are replaced with
gqueue and dequeue operations.

CGRA. The CGRA has about eight times the over-
head of the MGRA.

We combine the overhead with the iteration counts of
Table 111 to make the following algorithmic comparisons
with respect to general routing.

Two- vs Four-Channel MGRA. The four-channel
MGRA requires slightly fewer than half the iterations of
the two-channel version. This difference, however, is not
enough in general to offset the extra internal moves re-
quired for each iteration by the four channel MGRA.

TABLE VII
Overhead Comparisons: (1) Cost per Iteration in Terms of Numbers of Operations of Different Types, (2) Cost of Startup
Overhead in Number of Operations

Overhead per iteration

Internal Neighbor Queue Broadcast Overhead at

Algorithm moves Compares moves operations moves startup
MGRA 3-5 2 2 0 0 2
4 channel MGRA 8-12 4 4 0 0 15
FIFO queues 0 2 2 2 0 2
Broad. buses 2 2 2 0 0 2
Reconf. buses 2 2 2 0 0 2
MGRA + rand. 3-5 2 2 0 0 2n + 2
CGRA 4 6 2 0 4 2
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TABLE VIII
Fine Simulation Comparisons for Routing 16 Bits of Data on a 256 x 256 Array

Parameters Routing times
Memory ALU Neighbor Broadcast 4C MGRA CGRA: CGRA:
width width bus width bus width MGRA Max(d) = 10 500 packets 100 packets

1 { 1 1 80 8 It 5.5

8 1 1 1 50 5 10 5

8 8 1 1 40 4 9 4.5

8 8 8 1 20 2 9 4.5

8 8 8 8 20 2 2 1
Handshaking overhead 10 I i .5

Note. Times in 1000’s of cycles. Width of features in bits.

Broadcast Buses vs Basic Model. Using broadcast
buses improves performance: the 15-30% reduction in
overhead more than compensates for the 5% to 20% in-
crease in iterations.

Reconfigurable Buses vs Broadcast Buses. Using re-
configurable buses improves performance more than us-
ing broadcast buses does: the number of iterations is re-
duced by from 2.5% to 18% while the increase in
overhead is negligible.

CGRA vs MGRA. All versions of the MGRA are su-
perior to the CGRA for dense routing patterns since the
factor of 2 reduction in iterations is offset by a factor of
10 increase in the overhead.

We have now seen that the MGRA, four-channel
MGRA, and CGRA are all faster for certain communica-
tion patterns. Automating the online choice among these
three algorithms is straightforward: The maximum dis-
tance any packet must travel can be obtained in a few
microseconds using a global OR and an associative leader
election algorithm. If hardware support for global count
is available, the density of the communication pattern
can be quickly found as well.

7.5. Performance and Scalability on a Detailed Model

In order to compare our approach with other available
routing methods and to predict scalability with changing
technology, we must use more detailed simulations. The
problem is again that costs differ from machine to ma-
chine. Some important factors are the widths of the
ALU, the memory paths, and the nearest neighbor con-
nections: whether nearest-neighbor move instructions
send data directly from PE memory to PE memory or
whether they must first go through a transfer register; and
whether memory is addressable on bit boundaries.

To try all the different combinations of possible fea-
tures is of course impractical. Instead, we simulate a rep-
resentative sample based on various configurations of the

CAAPP [27]. The CAAPP has eight-bit internal memory
paths and one-bit-wide ALU and communication paths,
and can perform nearest-neighbor moves from on-chip
memory to on-chip memory in a single cycle. We also
simulate a model based on the CAAPP but less powerful
(one-bit internal data paths), as well as a model that is
more powerful (wider ALU and external data paths).

We test three algorithms: the MGRA using recon-
figurable buses, the four-channel MGRA using recon-
figurable buses, and the CGRA. The communication pat-
terns tested are a complete random permutation, a ran-
dom permutation with no packet distance greater than 10,
and two sparse random permutations routing 100 and 500
packets respectively. These choices of architectures, al-
gorithms, and communication patterns, though they only
represent a small sample, yield some hard numbers from
a representative set of design decisions.

We summarize here the fine simulation results appear-
ing in Table VIII. The CAAPP cycle time has been con-
servatively estimated at 100 ns (in the first generation).
Thus the execution times for a random permutation, a
“‘nearby’’ random permutation, and a *‘sparse’’ random
permutations would be 5 ms, 500 us, and 500-1000 us
respectively. We also see in Table VIII that this perfor-
mance can be increased by a factor of 4 when the path
widths are all increased from 1 to 8. The speed-up is not
directly proportional to the increase in width of the data
paths because only single bits are exchanged during
handshaking operations. Since the handshaking com-
prises 12% of the routing time when the data paths are all
one bit wide, it follows that the possible improvement in
performance due to wider data paths is limited to a factor
of 8.

8. CONCLUSION

This work addresses the problem of general online
routing on SIMD meshes having no dedicated hardware
support for that purpose. Our goal in carrying out this
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research was to find the best possible algorithms to be
integrated into a system for use on real applications.
Upon reviewing the literature, however, it was found that
existing algorithms all make unacceptable tradeoffs.
They are either slow (though completely general), or op-
timal but unsatisfactory in some other way: they either
require adding impractical hardware to the model, are
applicable to only a small subset of possible communica-
tion patterns, or require too much preprocessing. In this
work we made the decision to create the fastest possible
algorithms for patterns that are likely to occur in prac-
tice. The tradeoff is that there are routing patterns for
which our algorithms do not work well, and thus that
there exists a worst case which causes bad performance.
However, we have also shown that this is unlikely: that
communication patterns that require even 2.5 times the
optimal number of communication steps occur very infre-
quently, and that randomization can be used to make
them still more unlikely. This is done using only FIFO
queues of size 2 or, if broadcast buses are available,
queues of size 1.

We have thus shown that our algorithms have the twin
benefits of having very low overhead and only rarely re-
quiring significantly more iterations than the trivial lower
bound. Hopefully a consequence of this paper will be that
users who have only used their array processors for solv-
ing problems with regular and uniform communication
patterns will be encouraged to use them to solve addi-
tional problems.

Proving that the expected complexity of the MGRA is
close to 2n is closely related to similar problems involv-
ing wormhole routing in general. In [8], some of the au-
thors outline a method for modeling the expected perfor-
mance using differential equations. We believe that
finding an analytical solution, although under investiga-
tion, remains an open problem at this time.
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