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The equation of motion and associated boundary conditions are derived for a uniform
Bernoulli-Euler beam containing one single-edge crack. The generalized variational
principle used allows for modified stress, strain and displacement fields that satisfy the
compatibility requirements in the vicinity of the crack. The concentration in stress is
represented by introducing a crack function into the beam’s compatibility relations. A
displacement function is also introduced to modify the in-plane displacement and its siope
near the crack. Both functions are chosen to have their maximum value at the cracked
section and to decay exponentially along the beam’s longitudinal direction. The rate of
exponential decay is evaluated from finite element caiculations. The resulting equation of
motion is solved for simply supported and cantilevered beams with single-edge cracks by
a Galerkin and a local Ritz procedure, respectively. These theoretical natural frequencies
and mode shapes match closely with experimental and finite element results. The possibility
of determining the damage properties of cracked beams from changes in dynamic behavior
is discussed.

1. INTRODUCTION

The development of damage identification techniques for vibrating structures such as
turbines, generators, motors, aircraft structures and large space structures has recently
become a focus of substantially growing research efforts, Due to increasing demands for
safety, reliability and time-efficiency, it is now believed that the monitoring of the global
dynamics of a structure offers promising alternatives for damage detection. Consequently,
the study of the dynamics of cracked structures is of importance,

Several investigators have examined the dynamics of cracked structures. For example,
the effects of cracks on the dynamic behavior of beams was studied by Chondros and
Dimarogonas [1], Dimarogonas and Massouros [2] and Dimarogonas and Papadopoulos
{3). They modelled the crack by introducing a local flexibility matrix connecting longitudi-
nal, bending and shear forces and displacements. Later, Gudmundson [4] and several other
researchers generalized this idea to a 6 x 6 flexibility matrix relating all six generalized
forces to the corresponding displacements, and applied it to a variety of dynamic problems.
Torsion was also considered by Papadopoulos and Dimarogonas [5], who derived a more
complete flexibility matrix. They showed that a crack in a Timoshenko shaft introduces
coupling between torsion and shear. Since, in the Timoshenko beam model, there is
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coupling between the shear and bending deformations, the torsional motion is coupled to
the bending one for a cracked shaft.

Cawley and Adams (6, 7] demonstrated the feasibility of using natural frequency test
measurements to detect damage in a structure. Their approach consisted of comparing the
natural frequencies obtained from finite element analysis with the measured frequencies.
They introduced damage in the finite element model by a reduced stiffness element. The
damage location was determined by replacing each element with a reduced stiffness element
until the finite frequencies matched best the measured frequencies.

Recently, Christides and Barr (8] derived the equations of bending motion for a
Bernoulli-Euler beam containing pairs of symmetric cracks. The cracks were taken to be
normal to the beam’s neutral axis and symmetrical about the plane of bending. They used
an exponential-type function (the so-called “crack function™) to model the stress concen-
tration near the crack tip. The rate of stress decay from the crack was controiled by a
dimensionless parameter, o, that was determined by fitting the analytical results to
experimental data. However, Christides and Barr obtained the approximaie cracked beam
natural frequencies by a two-term Rayleigh-Ritz procedure. Recently, Shen and Pierre [9)
showed that this two-term solution does not feature adequate convergence and that,
indeed, convergence is very slow for this type of problems, because cracks affect the
continuity characteristics of the solution. To ensure adequate convergence, an approximate
Galerkin solution with as many as 150 terms was suggested in reference [9], which led to
a redetermination of the stress decay rate a. To validate the theoretical results, a
two-dimensional finite element approach was also proposed in reference [9], which allows
one to determine & without requiring the use of experimental results.

The cracked beam theory in references [8, 9] is restricted to pairs of symmetric cracks,
This assumption was made to avoid the modelling difficulty due to the discontinaities in
the slope of the neutral axis and in the axial displacement along the neutral axis, which
both occur with a non-symmetric crack configuration. Furthermore, in order to avoid the
non-linear characteristics occurred by allowing crack face contacts during the vibration,
the crack was assumed open in the cracked beam theory. The crack beam theory of
references {8} and [9] is further extended in the present study, which investigates the effects
of single surface cracks on the modes of free vibration of beams. The analysis proceeds
in several steps. First, we assume that the damage can be viewed as a single surface crack
normal to the beam’s neutral axis. According to the observations of Freund {10-12),
Bodner {13] and Freund and Herrmann {14], that the normal stress distribution on the
prospective fracture plane is essentially linear before initiation of the fracture on the tensile
side of the beam, a crack function f is introduced into the normal stress and strain
expressions to account for this phenomenon, Also, a function is introduced in the
representation of the in-plane displacement to model the disruption of the deformation
field due to the crack. A generalized variational principle extended from the Hu-Washizu
principle is used to derive the governing equations for a uniform beam with a single-edge
crack. This procedure is similar to that used for beams with pairs of symmetric cracks [8, 9].
These equations and boundary conditions are particularized for a cracked beam with
rectangular cross-section. The Galerkin and Ritz methods are then applied to predict the
free vibration modes of cracked beams, for simply supported and cantilevered configur-
ations. The value of the stress decay factor « is determined by a least square fit of the
natural frequencies calculated by Galerkin or Ritz methods with finite element results. For
the cantilevered beam, a comparison with published experimental results is performed, and
excellent agreement is observed.

Two basic issues are addressed in this study. First, the adequacy of a model based on
a simple beam theory for the prediction of the dynamic response of cracked beams is
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demonstrated. Second, the effects of a single surface crack on the free response of simply
supported and cantilevered beams are investigated. The possible use of this formulation
to identify the crack position and size from changes in the beams’ natural frequencies and
mode shapes is also discussed.

2. CRACKED BEAM THEORY FOR SINGLE-EDGE CRACKS

2.1. KINEMATIC ASSUMPTIONS

The distribution of stress and strain in an elastic body with a crack has been studied
by TIrwin [15] and Paris and Sih [16]. They divided the stress fields near the crack tip into
three basic types, each associated with a local mode of deformation. These are mode I,
the crack-edge opening mode; mode II, the crack-edge sliding mode; and mode II1, the
crack-edge tearing mode.

In the case of free bending vibrations of a uniform beam with a single-edge crack, the
bending moment and the longitudinal force do not contribute to mode IT and mode III
deformations. The shear force does contribute to mode II deformation. However, for
slender beams, this contribution can be neglected.

Similar to the case of symmetric cracks, the normal stress, ¢, is the only stress affected
by a single crack. The remaining normal and shear stresses out of the plane of bending
are assumed to be zero. The in-plane shear stress component, o, is included to
accommodate the possibility of shear loading on the lateral surfaces of the beam. Since
6, 18 not concentrated in mode I, the details of its distribution are not affected by the crack.

In references [15] and [16], the normal stress 4,, was found to be concentrated at the
crack tip and to decay in inverse proportion to the square root of the distance from the
crack tip. This phenomenon is reproduced here by using a crack function f(x, z) in the
expressions of the stress ¢, and the strain ¢,,, as follows:

0%, 2, ) =(=2 +f6, 2)T(x, 1), (%2, 1) =(—2z +f(x,z2)S(x, 1), (1,2)

where T(x, t) and S(x, ¢) are defined as unknown stress and strain functions, respectively.

The function f(x, z) is maximum at the crack tip. It is taken to decay exponentially along
the length of the beam and to vary linearly through the depth of the uncracked portion
of the beam, according to:

f(x,2)=[z —m(z + a/)H((d — a) — z)} exp[—alx — x.|/d]. (3)

Here, x., a and d represent the crack position, the crack length and half the depth of the
uncracked section, respectively, as shown in Figure 1. The positive non-dimensional
constant ¢ determines the rate of stress decay away from the crack tip. It was found to
be 1-936 in reference [9] for a pair of symmetric cracks. At the crack section x = x, and
for z > (d —a) (i.e., within the crack), f(x, z) reduces to z and the stress and strain in
equations (1) and (2) are zero. The constant m represents the slope of the linear stress
distribution at the cracked section (calculated in section 2.3).
The derivative of the axial displacement u(x, z, ¢) is represented as

vix,z,ty=(—z + o{x, z2yw"(x, 1), {4)

where w(x, t) is the transverse beam deflection. The function ¢ is chosen so that the surface
of zero in-plane displacement coincides with the surface of zero normal stress. For
(kinematic) consistancy between equations (2) and (4) we choose @ (x, z) to be similar in
form to f(x, z) in equation (3):

o(x,z)=[z — (z + a/H((d — a) — z)} exp(—2B|x — x.|d). (5)
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Figure 1. Geometry of a beam with a single-edge crack at x,_.

The assumptions for a nominally uniform beam with a single surface crack are
summarized as

- uo=u(x,z,t), u, =0, w,=w(x,t),

=0, p=0, p=Px1),
51.1::(_2 +f(x,z))S(x, t)s

€y =€ = — Ve,
€y =€, =€, =0,
O ={(—2 + f(x, 2T (x, 1), g, =0.(x,21),
6 =0,=0,=0,= 0,

LA =X,=X,=0, (6)

where o; and ¢; are stress and strain components, and X, and p, are the body forces and
velocity components, respectively. (The indices i, j=1,2,3 refer to the orthogonal
directions x, y, z, respectively.) The shear stress o, is included to permit loading of the
beam.

2.2. VARIATIONAL THEOREM

Since S, T, P and w are unknown functions, the compatibility and constitutive relations
of the cracked beam are undefined. In the absence of these relations, classical variational
principles such as Hamilton’s principle are inadequate. However, these principles can be
generalized by the introduction of Lagrange multipliers to yield a family of variational
principles that includes the Hellinger-Reissner principle in elastodynamic problems and
the Hu-Washizu principle in elastic static problems.

Here, the Hu—Washizu principle is modified to include the virtual work done by inertial
forces. This yields the functional:

o
J= J‘ {J lepiti; — 3ppip; — Aley) + (e, — 3 (w;;+w, o, + X ] dV
f .4

+J g".-ude‘+J g;(uf—ﬁ;)dSz}dt, Q)
5 52

where p is the density, 4(¢,) is the strain energy density function, the g;’s are the surface
tractions, ¥ is the total volume of the system, and § its external surface. The overbarred
quantities, g and # denote the prescribed values of surface tractions and surface
displacements, respectively,
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The functional J in equation (7) is stationary for the solution in the independent
quantities u;, p;, €, and g,,. Therefore, for arbitrary independent variations of du; (with
conditions du,(f,) = du,(t,) = 0}, dp,, d¢, and do,, the first variation of J must be equal to
zero, yielding

o = J 2 {J {(aw- + X; — pp;)ou; + (ij - 4.% )¢,
I v

+ [6,-,- - %(”nj + uj,i}]aal'j +{pu; — (% PP:‘P:’L:, ]‘517:'} dv

+ .[ (8~ g)ou,dS, + J
5

5

(u, - 15,)5g; dS,_} dr =0. ®)

2.3. EQUATION OF MOTION AND ASSOCIATED BOUNDARY CONDITIONS

Assumptions (6) are substituted into the formulation (8), whereby the problem is
reduced to a form corresponding to the beam model. After integration by parts and
simplification, we obtain the following

2.3.1. Strain—displacement term
The strain—displacement term in equation (8) is

f (e — Ou/0x)oa,  dV = J {j [(f—2)S —(p —zw")(f — z)0T dA} dx. 9)
Defining
I=J‘zsz, K=jzfdA, L=deA,
A A A

K =J zp dd, L =J.f49 d4, (10
A A
the right side of equation (9) can be written as

J‘ (I—=2K+L)YS -+ L, —K-K)W1T dx. an

2.3.2. Strain-stress term
The strain—stress term in equation (8) is

dd o4 o4
—_ —_— - V.
JV [(an 65,,) o€, e, €y, 2. 65,,] d (12)
If the material is elastic and isotropic, we have
a{l/aexx = Eexxs a{l/aeyy =0, 64/6622 =0, (13)

s0 equation (12) becomes
J (0. — B¢ )0, . dV = j (T — ESY{I 2K + L)éS dx. {14)
| 4 x

2.3.3. Velocity term
The velocity term in equation (8) is

'[ (pAw — pPA)SP dx, (15)
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2.3.4. Dynamic equilibrium term

The first term in equation (8) represents the virtual work done by the dynamic forces.
In the absence of body forces, it can be written as

da, do, a0,
L{a du + 5 du +(6 ——pP)éw}dV (16)

Under the assumptions {6), equation {16) becomes
) 20w +(66 )6w}dV {an

L {([(f— OTT + ‘%‘") oW — ([(f
Kz=j 07dd, L= f fordd, L= j o d4,

Defining

L42Jf'¢ d4, Ls=| fo’d4, (18)
A

JA

and integrating by parts the first two terms in equation (17), we obtain

H{(f 17 + %02 }c'wwdAL J X0%%) s ax ayz,
A ¥

JX
- J {(Li— K)T" +2T'Ly+ TLy+ (L, ~ K;)T + Ls T}ow dx. {19)
X
Integrating by parts the last two terms of equation {17) yields

H{(f—zm 4+ 9n }zawdAuxm”a(z"” 5w dx dyize,,

-J j == 5w dA dx + J {(K — DT" +2T°K’ + TK}éw dx. (20)
x /A *

Finally, substituting equations (19) and (20) into equation (17) and integrating over the
cross-section A, we have

j (K =1~ L+ K)T" + Q2K = 2L — L+ K;)T' + (K" ~ Ly — L;)T]
\ 0
~ pAP}ow dx + j {[(f-zm’(qo —-D+(p —z)%}aw dAfzh
A

_jfwa dx dy[r=?,. v3)
- ox

2.3.5. Boundary force terms

The last two terms in equation (8) represent the boundary conditions for the ends and
the lateral surfaces of the beam. They are incorporated with the other boundary condition
terms as follows

(1} Lateral surfaces. We assume that the lateral surfaces of the beam are free of external
traction, i.e., £ =0 on these surfaces. This assumption comes from the relationship
between g; and o (given by Cauchy’s formula),

& = V;Gy, (22)
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where v, is the unit outer normal vector. Since v, and v, are zero and v, is 1 on the lateral
surface, equation (22) becomes:

Bx = Oz gy=0! gz=0 (23)

Accordingly, the condition that the lateral susfaces are traction-free corresponds to the
requirement that o,, = 0 on these surfaces.
The boundary force term in equation (8) over the lateral surface is

f J‘ [(0—0.).. s0u+(0+06.),_,0uldxdy =J. '[ (=0 )0udx dyliZl, (24

Integrating by parts over x yields

[(J ((P —2)(—ze)6w dy)
¥

The second term in equation {25) cancels the last term in equation (21), The remaining
force term in equation (21) can be integrated by parts over z and results in a term that
is cancelled by the first term in equation (25). The remaining term turns out to be the end
condition:

z=d

(25)

= _J' I oo —2)(—0u)} 5 oo dy]

x=0 ox

z=~d

J. {i(f = 2)TT(e —2) + 0. }éw d4[ ;. (26)

(2) End surfaces. We have v,= —1 and +1 at the ends x =0 and /, respectively.
According to equation (22), g, reduces to +o, and g, to ta,, at x =90 and x =],
respectively. The external tractions at the ends, g;, are prescribed as X and Z. The force
boundary term in equation (8) is therefore

_[{(J?—axx)éu+(Z~ax,)5w}dAix=,+j {X+0,)0u +(Z+0,)0w}dAl._, (27)
A A

Combining equation (26) with equation (27) and substituting the relations (6), the
boundary force terms become

[U (p~2)%dAd-TU +L, —K - K.)}tSW‘

+ H ZAdA+TUT+L—K—-K)+ T(L;-K')} 6W]
A

x=1{

+|:{J. ((p—z)f’dA+T(I+L.——K—K,)}c$w’

(28)

x=0

+{J' ZdA—T’(I+L.—K—Kl)+T(L3—K')}5W]
A

2.3.6. Boundary displacement terms

With # and w as the prescribed displacements at the ends x =0,/, the boundary
displacement terms in equation (8) are

J‘ {(u - ﬁ)éﬂ'” + (W - w)‘saxx} d4 'z:! - J {(u - a)ﬁaxx + (W - w)ao'xz} d4 lx=0' (29)
A A
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Substituting for « and g, from equation (6) and integrating over the cross-section yields

[{([4. L—-K-K)w —~ f a(f — z)dA}5T+ f(w —w)dds  J. ;s

- [{(1 +L—K—K)w — j i(f —z)dA } 8T +[(w — W) Ao )_g.  (30)
A

2.3.7. Derivation of equation of motion

Finally, the variational terms (11), (14), (15) and (21) are substituted into eguation (8),
along with the boundary terms (28) and (30), Since the variations éw, éP, 45 and 6T are
independent, each quantity multiplied by the corresponding variation must equal zero.
This leads, from equation (11), to

S = (x)w”, (31)
where

O=(U+L—K-K){-2K+L) (32)

The above equation shows that (F — 2K + L) necessarily differs from zero. Therefore,
from eguation (14),

~3
!

ES. 33
From equation (15),
P=w. (34)
From equation (21),
(K—T—Li+K)T"+ QK —2Ly— L+ KT + (K" — Ly~ L)T — pAP =0. (35)

Equation (35) can be rewritten in terms of the displacement w by substituting S, T and
P from equations (31), (33) and (34). This leads to the equation of motion

EJ+L-K-K)Ow"+EXI+ L, —K—-K)Q
+ L+ L,— K, +2K)0,Iw" + EiI + L, — K — K))@|
+ QL+ L,— K, - 2K)Q\+(L,+ L, — K")Q\lw" + pAw = 0. (36)
Clearly, if there is no crack, the functions L, L,, X and K, are zero, and @, becomes

unity. The equation of motion reduces to that of a uniform Bernoulli-Euler beam.

2.3.8. Derivation of houndary conditions

For specified displacements, the boundary conditions are obtained by equating the
surface integral (28) to zero when u and w are prescribed on the boundary.

For specified forces, the boundary conditions are obtained by equating the surface
integral (30) to zero when the external forces 7 and o, are prescribed on the boundary.

For example, let us consider a cantilevered beam with a fixed end at x = 0. The virtual
displacements Ju (i.e., dw") and dw must vanish at x = 0, implying that 8T and do,, are
arbitrary, With & =0 and w# =0, at x =0, equation (30) gives

w =10, w =0, 37
At x =/, the external forces X and Z are zero, and equation (28) gives
TI+L-K—K))=0 (38)
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and
"I+ L—-K—K)+T(L,—K)=0 {39)

Since (/ + L, — K — K,) differs from zero, the above two equations imply that w” =0
(from T =0) and that w” =0 {from T’ =0).

2.3.9. Calculation of the constant m

The above cracked beam theory is based on the stress and strain distributions, equations
(1) and (2), and the slope of the in-plane displacement, equation (4). The stress (or strain)
distribution is characierized by the crack function f, with the parameters a and m defining
the stress profiles in the x and z directions. The parameter « is evaluated in section 3, in
a least square sense. Since the stress along the z direction is assumed to be linear, its decay
rate m can be estimated from the condition that the same bending moment is carried by
the cracked beam and the uncracked beam at the crack section:

J. (—zEw")z dA =f (—z +f(x,,z)ES(x_, t)(z + aj2)dA, (40)

where A, is the cross-sectional area at the crack tip (x = x,) and the left side of equation
(40} is for the uncracked beam.
At the crack-tip section, we have, from equations (3}, (31} and (32),

Jx,z)=z—m(z +af2), Qix)=1/m, (41,42)
S(xcs t) = QI (xc)w”(xcr t)' (43)

Substituting the above results into equation (40) and integrating over the cross-section, we
find that

m= I”.Ir + (0/2)1,:], (44)
where

I= j z*dA, I.= I z d4, (45, 46)
A( AC

are the second and first moments of the area of the reduced section with respect to z (the
origin is at the centroid of the uncracked section}).

3. APPLICATION TO BEAMS WITH RECTANGULAR CROSS-SECTION

The cracked beam theory is applied to examine the modes of free vibration of simply
supported and cantilevered beams with one single-edge crack. We consider a beam of
rectangular cross-section of depth 2d and breadth 24, with one crack of depth a located
at x = x,_. The constants and functions in equations (10}, (18) and (44) are

T=4bj3,  L=2b[d—aP +dV3,  I=abla—2d), (47)
1

" TR i@y YD — ) @)

X =0, K =0, K" =10, 49

L =(mn — ) exp(—2atlx — x,|/d), (50)

L, =IC, exp{—2a|x — x,/d),
K =IC exp{~alx —x|/d), C =(1-1/m),
Ly+Ly=L{, Ly+Li=Lj=3L7, L,=K]. (51)
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The modes of free vibration of the cracked beam are obtained by assuming simple
harmonic motion of frequency, w,. Taking w(x, £) = w(x) ¢** leads to

E(I + L —K)Q " + ERUI+ L — K)Qi + 2L, + L, — K;)Q\ W™
+E[( + L — K)QT+ Ly + L — K;)Q1 + (Ly + L)Q 0" — wlpdw =0. (52)

For an uncracked beam, Q, equals 1, and L,, K|, L,, X,, L, L, and L, equal 0. Thus,
equation {52) reduces to the Bernoulli-Euler beam equation.

For a cracked beam, the continuity characteristics of the solution are altered by the
crack: the solution has a continuous second derivative vi:” but only a piecewise continuous
third derivative w™, with a jump at the crack-tip section (for details, see reference [91). This
weaker continuity of the solution significantly deteriorates the convergence of the

discretization method used to approximate the normal modes in equation (52).

3.1. FREE VIBRATION OF A SIMPLY SUPPORTED BEAM WITH A MID-SPAN CRACK

The free modes of a simply supported beam with a single-edge crack at mid-span are
studied. Since (, in equation (52) is a function of the rate of stress decay, the latter cannot
be determined by the above theory alome. Thus, to both validate the theoretical
formulation and determine the stress decay rate o, numerical results are obtained first from
a finite element analysis,

3.1.1. Finite element mesh

The finite elernent mesh, with four quarter-point rectangular elements to model the crack
tip, 1s shown in Figure 2(a). Transition elements [17]) are used above and below the
crack-tip clements [18, 19] to capture the stress singularity which is assumed to cover the
entire thickness of the beam. This mesh is designed to yield accurate results which rapidly
converge as the mesh is refined, both for uncracked and cracked beams. It consists of 40
eight-noded, plane stress, two-dimensional elements, totalling 151 nodal points and 298
degrees of freedom. In Figure 2(a), the beam’s slenderness ratio (=//24) is equal to 20-0.

Crack
tip

2d

(a)

42

{b)

Figure 2. Finite element mesh f{or a simply supported beam containing a single-edge crack at mid-span
(x,=1/2). (a) rectangular elements; (b) triangplar elements. [/2d = 20, 1/2a, = 24.
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TABLE 1

Natural frequency of uncracked and cracked beams (single crack)
Uncracked beam (natural frequency parameter f§ = w, \/pAl*/EI)

247

Finite element (rectangular)
—

Galerkin solution (¥ = 100} I — \
B SE%
First mode 9-8696 9-8461 104847
Second mode 39-4784 39-1003 16:68123
Third mode 88-8264 87-1909 82-71803
Cracked beam (first mode)
Finite element
I A )
Galerkin solution Rectangular Triangular
{x = 1276, N = 100} —r— ’ A— N
CR FR FR SE FR SE
01 0-98837 Not available
02 0-97415 Not available
1/4 0:96546 0-97119 095932 0-97238 096253
1/3 0-94716 094922 0-89884 0-95027 090145
12 0-88137 0-88294 0-73743 0-88742 0-74764
0-6 0-80080 Not available
2{3 0-71410 Not available
Cracked beam (second mode)
Finite element
— - N
Galerkin solution Rectangular Triangular
a=1276N=100) ———A N - A —
CR FR FR SE FR SE
1 0-99956 Not available
0-2 099916 Not available
1/4 0-99897 (3-99908 16-68105 1-00001 16-68134
1/3 0-99868 1-00005 16-68397 1-00009 16-68438
172 0:99812 (0-99969 16-67600 099972 16-67694
0-6 0-99761 Not available
2/3 0-99697 Not available
Cracked beam (third mode)
Finite element
r i hY
Galerkin solution Rectangular Triangular
A = 1276,N = 100) s A = r —A N
CR FR FR SE FR SE
a1 (-98886 Not availabie
0-2 097573 Not available
1/4 096796 0-97270 68-14161 0-97372 68-41354
1/3 095225 0-95379 61:33226 695462 £1-49821
1/2 0-90260 0-90296 47-60207 0-90607 48-38150
G-6 0-85403 Not availabie
2/3 081323 Not available

t N = number of terms in the Galerkin expansion.
{ SE =strain energy.
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Figure 3. Displacement function profile for a simply supported
beam (1/2d = 20) with a single crack at mid-span (XC = 0-5): ~——~
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Figure 5. Normal stress profile in the first mode for a simply
supported beam with a single crack (CR =1/3) at mid-span
(XC = 0-5). The origin of each curve is shifted to avoid overlap: ————,
1{% {r is the distance from the crack tip); ——, Galerkin solution,
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Figure 4. Fundamental natural frequency
in terms of crack depth, Theoretical and finite
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Figure 6. Third natural frequency in terms
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resulis are shown for a simply supported
beam (I/2d = 20} with a single-edge crack at
mid-span (x, ={/2). +, Finite element {rec-
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(a)

(b)

A3/

(c)

x/

Figure 7. First mode shape of a simply supported beam (//2d = 20) with a single-edge crack at mid-span
(x.=1{2). Galerkin and finjte element results are shown for various crack ratios: (a) CR =}, (b) CR =%, {c)
CR =§. +, Finite element; ————, Galerkin solution, & = 1:276, N = 100; ——, uncracked beam.

The 16 nodal displacements for each element are the in-plane displacements u
and w at each node. The size of the quarter-point elements at the crack tip is chosen to
capture the effect of the singularity. The elements cover 1/24 of the beam’s length in the
axial direction, such that they extend over nearly all the stress concentration. Quarter-point
elements of various sizes were tested, such that the elements’ length was much smaller or
much greater than the range of the stress concentration. Crack-tip elements that were too
narrow or too wide led to considerable errors. It was demonstrated numerically that the
finite element mesh shown in Figure 2(a) gives a nearly optimal result for the present
problem. Since no special procedure is needed to compute the stiffness and mass matrices
for the distorted crack tip element, any general purpose finite element code can be
used.

An alternative finite element mesh, which essentially replaces every rectangular quarter-
point element in Figure 2{a) by two triangular quarter-point elements, is illustrated in
Figure 2(b). The mesh consists of 44 elements, 157 nodal points and 310 degrees of
freedom. All the results obtained by the triangular elements are very close to those given
by the rectangular ones.

To validate the finite element model, the lowest three natural frequencies of the
uncracked beam were compared to Bernoulli-Euler theory results. As shown in Table I,
the finite element frequencies are, respectively, 0-24, 0-96 and 1-8% lower than the
Bernoulli-Euler results. Since there are no geometrical assumptions for the finite element

formulation, the natural frequencies are expected to be lower, especially for the higher
modes.
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3.1.2. Finite element results
Ll

The modes of vibration were computed for crack depths of 1, 3 and } of the total beam
thickness. The natural frequencies, as shown in Table 1 and Figures 3 and 4, are presented
in the form of the frequency ratio (FR), the ratio of the frequency of the cracked beam
to that of the uncracked beam, vs. the crack depth ratio (CR), the ratio of the depth of
the crack to the beam thickness. The first three mode shapes for cracked beams with crack
ratios of §, {, and  are plotted in Figures 5-7 and compared to the modes of the uncracked
beam. The changes in the first and third mode shapes are significant for large crack ratios
only (CR > 1). The second mode shape is unaffected by the crack for all ratios examined.
This is because the crack is located at mid-span, where compressive or tensile stresses equal
zero in the even vibration modes. Therefore, for a beam pinned at both ends, a single-edge
crack at the middle will not affect the even, antisymmetrical modes of vibration.

It has been shown in reference [9] that for a pair of cracks, the strain energy in the odd
modes decreases, while in the even modes it remains unchanged. Similarly, for single-edge
cracked beams, it is shown in Table 1 that the strain energy in the first and third modes
decreases as the crack depth increases and that the strain energy for the second mode
remains unchanged. This is consistent with the above frequency and mode shape
observations,

3.1.3. Galerkin solution

We seek a Galerkin approximate solution to the continuous eigenvalue problem,
equation (52), by expanding the transverse deflection in a series in the infinitely
differentiable modes of the uncracked beam [9],

W)= ‘Zl a;sin (ing). (53)

Because the modes of the cracked beam have a discontinuous third derivative, their
Galerkin expansion requires a large number of terms N to satisfy the convergence criterion

N
i
]
wt‘l'

max
=123

<E, (54)

where Aw? is the change in the ith frequency from the N-term to the (¥ + 1)-term
calculation, @¥ is the N-term estimate of the ith frequency of the cracked beam, and ¢
is a small real number. For all cases presented in this paper, 100 terms were necessary 10
achieve convergence with ¢ =2-0 x 1075,

Substituting equation (53) into equation (52) and applying the Galerkin procedure, we
obtain a discrete eigenvalue problem of size N in the generalized co-ordinates, g;:

[K.Ja - wl{M.]Ja=0, (55)
where
[M.]=(pAl{2}[]] (56)

is the mass matrix, [7] is the identity matrix, the vector a=1{a,,a,,...,a,]", and
1
IK]= (Efﬂ“ﬂ’)f {51 + Li(¢) — K (E)Qy (&) sin int sin jng
0

+ (1 2m) (L (E) — Ko(E))Qy (€N cos ind sin jnd
+ @2m) () — KGN (O] sin ing cos jat} AL (57)
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is the stiffness matrix. The functions L(¢), L, (¢), Ry(€), L(¢), Kx(¢) and 0 (£) are defined
as L&) = Cexp(—2aP),  L()=C,exp(—aP)exp(~28P),
K, (¢) = C, exp(—28P), I’,z(g)=zl(§)‘_ﬁ_i’f_l’_(&g_2_@,
1+ L)~ Ki(©)
+0o

3.1.4. Determination of the neutral surface shift constant f§

The rate of neutral surface shift § is obtained by fitting the displacement function
@(x, z), in a least square sense, best with the normalized theoretical stress decay function
1 /\/;, where the variable r is the distance from the crack tip, As it is shown in Figure 3,
the least square fit of the displacement function with the function l;’,/; determined the
value of parameter f§ to be 21-94,

K& =0k(£)de, Q)= P=|;—3ljd. (58)

3.1.5. Determination of the stress decay constant o

Once the number of terms yieiding satisfactory convergence is determined, the rate of
stress decay o is obtained by fitting the natural frequencies calculated by Galerkin’s method
best with the finite element results, in a least square sense. Only the fundamental frequency
is considered for simplicity.

The fundamental frequency drop in terms of crack depth is shown in Figure 4 and
Table 1. The least square fit of the 120-term Galerkin solution with the finite element
results determined the rate of stress decay o to be 1-276. As we expect, the corresponding
normal stress distribution shown in Figure 5 reaches a maximum at the cracked section
and decays proportionally to | /\/r_‘.

Figure 6 and Table 1 show the variation of the third natural frequency with the crack
ratio. Similarly to the fundamental mode, there is excellent agreement between Galerkin
and finite element results for crack ratios smaller than t/2. Crack ratios larger than 1/2
were not considered, as failure would occur before such a value is reached.

3.1.6. Examination of the mode shapes

The mode shapes obtained by the Galerkin and finite element formulations are
compared in Figures 7-9. One observes that the Galerkin results are consistently in good
agreement with the finite element ones.

The prediction of the crack’s location and depth based upon only one mode could be
misleading. For instance, by reviewing only the data for the second mode, as given in Table
1 and Figure 8, one would conclude that the beam is not damaged. This implies that
different modes viewed separately might yield different predictions of damage, i.e., crack
position and depth. Moreover, from Figures 7(c} and 9(c), the effect on the third mode
is more severe than on the first. Therefore, it is expected that a multi-mode analysis is
needed to identify the position and size of a crack.

3.2. FREE VIBRATION OF CRACKED CANTILEVERED BEAMS

The above cracked beam theory is applied to a cantilevered beam (see Figure 10) with
a single-edge crack. However, the numerical integration of the free bending modes of the
uncracked beam (required to generate the mass and stiffness coefficients in the Galerkin
procedure) causes a computer overflow, because these modes involve hyperbolic functions
and many modes are required. Therefore, the Galerkin procedure with 100 terms is
impractical in the cantilevered case.
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Figure 8. Second mode shape of a simply supported
beam (//2d = 20) with a single-edge crack at mid-span
{x,=1{2). Galerkin and finite element results are
shown for various crack ratios: (a) CR =4, (b) CR =3,
(c) CR =4 Key as Figure 7.

3.2.1. Local Ritz method

Figure 9. Third moede shape of a simply supported
beam (/24 = 20) with a single-edge crack at mid-span
{x.=1/2). Galerkin and finite element results are
shown for various crack ratios: (a) CR =4, (b) CR =4,
{¢) CR =1 Key as in Figure 7.

To circumvent this problem, a local Rayleigh-Ritz approach which uses a piecewise fit
to the deflection shape is presented. The displacement, w(x), is approximated by piecing
cubic polynomials, each defined over only a portion of the structure, or sub-beam. The
coefficients of the polynomials can be determined uniquely in terms of the displacements

N\

\

Figure 10. Geometry of the experimental cantilevered beam with a single-edge crack at x, I/d = 2564,

x4/l = 0-0035, CR = a/d (from reference [20]).
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Figure 11. Fundamental natural frequency in terms of crack depth. Theoretical, finite element and experimen-
tal results are shown for a cantilevered beam ({/24 = 25-64) with a single-edge crack at x, =02/ (XC =0-2). +,

Finite element (rectangular); @, experiment, Wendtland [20];

, local Ritz method, & = 1-276, 50 sub-beams.

and slopes at the end points. The displacement at a point within the ith sub-beam is
approximated as

wim)=F(pw, 0<y<l, (59)

where F = (F,, F,, F;, F,]" is a vector of prescribed (shape) functions of position and u, is
a vector of end displacements and slopes for the ith sub-beam. The shape functions
(F);-\,....q are listed in Appendix A. This piecewise polynomial interpolation amounts to
a finite element solution of the ¢racked beam differential equation (52). In this analysis,
a local Rayleigh-Ritz model with four shape functions, M identical sub-beams, M + 1
nodes, and 2M DOF is used.

The free vibration eigenvalue problem is expressed as

(KJu—wiMJn=0, (60)
10
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Figure 12. Third natural frequency in terms of crack Figure 13. Third natural frequency in terms of ¢crack
depth. Theoretical and experimental results are shown  depth. Theoretical and experimental results are shown
for a cantilevered beam (//2d = 25-64) with a single- for a cantilevered beam (//2d = 25-64)} with a single-
edge crack at x, = 0-3/ (XC =0-3). Key as Figure 11. edge crack at x,=0-7 (XYC = 0-7). Key as Figure 11,
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Figure 14, Second natural frequency in terms of
crack depth. Theoretical and experimental results are
shown for a cantilevered beam (//2d =2564) with a
single-edge crack at x, =055/ (XC =0-55). Key as
Figure 11.
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Figure 15. Fourth natural frequency in terms of
crack depth. Theoretical and experimental results are
shown for a cantilevered beam (//2d = 25-64) with a
single-edge crack at position x, = 0-81 (XC = 0-8). Key
as Figure 11.

where u is the vector of nodal displacements, and [K.] and [M,] are (2M x 2M) stiffness
and mass matrices for the entire beam. The assemblage process to obtain [K,] and [M,]

is symbolically described by

M
(u, [K.], [M.]) = 21 (w, [k;), [m)),

Frequency ratio, FR

0-6 |
00 0-2

| L
0-4 0-6 0-8

Crack ratio, CR

1.0

Figure 16. Fifth natural frequency in terms of crack
depth. Theoretical and experimental resuits are shown
for a cantilevered beam (//2d = 25-64) with single-edge

crack at position x, = 0-6/ (XC = 0-6). Key as Figure
i1.

T MJu=1

(61)

x/

Figure 17. First mode shape of a cantilevered beam
({/2d = 25-64) with a single-edge crack at x, =02/
(XC =0-2). Ritz’s result is shown for various crack
ratios; ——, CR=00; - --~, CR=013; —-—
CR =05 —-—, CR =08,
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Figure 18. Second mode shape of a cantilevered
beam (/{24 =25-64) with a single-edge crack at
x, =055/ (XC =0-55). Ritz's result is shown for vari-
ous crack ratios: , CR =0-0; ————, CR ={-13;
—-— CR=05 —— CR=038.

xA

Figure 19. Third mode shape of a cantilevered beam
(//2d = 25-64) with a single-edge crack at x. =03/
{XC =0-3). Ritz's result is shown for various crack
ratioss —, CR=00; - ——, CR=013; ———,
CR =05 —-—, CR=043.

where u,, (k;] and [m;] are the nodal displacements, stiffness and mass matrices, respectively,
for the ith sub-beam, and the summation is over all M sub-beams. The (4 x 4) mass and
stiffness matrices of the ith sub-beam in the local co-ordinate system are

[m] = j F'F dy

(62)

w’ [M.Ju=1)

x/l

Figure 20. Fourth mode shape of a cantilevered
beam (I/2d =25-64) with a single-edge crack at
x. = 0-5! (XC = 0-5). Ritz’s result is shown for various
crack ratios: ——, CR=00; -———, CR=013; —
-— CR=05 —-—, CR=043.

xfl

Figure 21. Fifth mode shape of a cantilevered beam
(//2d =25:64) with a single-edge crack at x, =07/
(XC =0-T). Ritz’s result is shown for various crack
ratios: ——, CR=00; - ———, CR=013; — ——,
CR =05, —-—, CR=08.
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Figure 22, Fundamental natural frequency in terms of crack depth for a cantilevered beam ({/2d = 25-64).

Ritz’s result is shown for various crack positions:

and

, XC =02 —-—-,

XC=04 ——, XC=0¢6, -,

fs
(k)= (EI/pA)j {(t0+Li(n) — K.(m)0: (n)B'B

+ (DI, (n) — K(n)Q: (1)]B1'B

+ (DI, — K10 (m)IBTBL] dy,

where B1 = (d/dn)F and B = (d?/d’y)F.

The value of « was determined to be 1:267 by a least square fit with the finite element
results (see Figure 11). The eigenvalue problem, equation (60), was then solved for an
increasing number of sub-beams, M, until a frequency convergence test was satisfied. The

(63)
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Figure 23, Second natural frequency in terms of
crack depth for a cantilevered beam (7/24 = 25-64).
Ritz’s result is shown for various crack positions: ——,
XC =02 —~——, XC=04; ———, XC=06; -,

XC =08
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Figure 24, Third natural frequency in terms of crack
depth for a cantilevered beam (//2d = 25-64). Ritz’s
result is shown for various crack positions: —,
XC=02 ————, XC=04; ——, XC=06, - ",
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convergence criterion used was similar to that for the Galerkin approach, equation (54),
except that the number of sub-beams, M, was increased instead of the number of
uncracked modes, N. At least 50 sub-beams (A > 50) were needed in the local Ray-
leigh—~Ritz procedure to satisfy the convergence criterion (¢ = 20 x 107%) for the funda-
mental mode.

3.2.2. Experimental verification

The effects of cracks on the natural frequencies of beams have been studied experimen-
tally by Wendtland [20] and Wendtland and Wiederuh [21]. In reference [20], the cracks
were obtained by sawing cuts of width 0-0035 times the length of the beam (see Figure
10), and the lowest five natural frequencies were measured for various crack ratios and
positions.

We obtained the lowest five cigenfrequencies for rectangular beams with cracks at
x /I = XC =02, 03, 0:55, 0-6, 0-7 and 0-8. Selected theoretical results are compared with
the experimental data obtained by Wendtland [20] in Figures 11-16. Observe that our
theoretical frequencies correlate very closely with the experimental ones for crack ratios
up to 0-8. This excellent comparison confirms the validity of our theory.

3.2.3. Examination of the mode shapes

The first five mode shapes of cracked beams with crack ratios of 0-13, 0-5 and 0-8 and
various locations are compared to those of an uncracked beam in Figures [7-21. Observe
the severe deformation near the crack tip for large cracks, which could be used to detect
crack position.

3.2.4. Effects of crack position on the dynamical response

We examined the effect of crack position on the sensitivity of natural frequencies and
mode shapes of a cantilevered beam with a single-edge crack. The first bending frequency
is shown in Figure 22 as a function of the crack ratio for four crack positions, XC = 0-2,
0-4, 0-6 and 0-8. The drop in frequency is far greater for cracks near the clamped end, while
the frequency is almost unchanged when the crack is located near the free end. This result
can be explained by noting that the bending moment is distributed heavily near the fixed
end for the fundamental mode, leading to a severe loss in bending stiffness due to the crack.
However, the drop in frequency is different in the higher modes. The solid curves in Figures
23 and 24 show that the second and third frequencies are comparatively much less affected
than the fundamental one for CR = (-2, but are strongly affected for other crack locations:
XC =06 and 0-8 for the seccond and third modes, respectively. In other words, the
frequency drop is greatest for a crack located where the bending moment is largest. Clearly,
the sensitivity to cracks depends highly on the mode number and the crack position.

Several observations can be made from the above discussion. First, for a given mode,
the effects on the bending frequency and mode shape become more severe as the crack
depth grows. Second, for a certain crack ratio, the crack position strongly affects the
dynamic behavior of a cracked beam. Third, if the position of the crack is known
information, one specific mode may be sufficient to obtain accurate results in the crack
identification problem. However, if the crack position is unknown, the uniqueness and
accuracy of the identification process becomes questionable. In general, the more modes
are used for crack identification, the more accurate and reliable the result will be.

4. CONCLUSIONS

A formulation for the flexural motion of a Bernoulli-Euler beam containing a
single-edge crack is presented. It is based on two key kinematic assumptions, made to
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satisfy the compatibility requirements in the vicinity of the crack. First, the stress
concentration near the crack tip is accounted for by introducing a crack function into the
beams’ compatibility retations. Second, a function is introduced that modifies the in-plane
displacement and its slope to avoid the discontinuity in the slope of the neutral axis at the
single crack.

The equation of motion and associated boundary conditions are derived. The validity
of the theory is established by examining two different sets of boundary conditions. The
analytical solutions show excellent agreement with both experimental results and finite
element predictions. The effects of cracks on frequency and mode shape are found to be
very sensitive to crack location and mode number.

The present theory could be extended easily to beams with non-rectangular cross-section
and account for shear deformation (Timoshenko beam). Other future work includes the
development of an inverse analysis procedure to identify the crack properties from
dynamical measurements.

ACKNOWLEDGMENTS

The authors are grateful to Professor John Taylor (The University of Michigan) for his
valuable comments and expert suggestions. This work was partly supported by NSF Grant
No. MSM-870(820.

REFERENCES

1. T. G. CHONDROs and A. D. DIMAROGONAS 1980 Journal of Sound and Vibration 69, 531-538.
Identification of cracks in welded joints of complex structures.

2. A. D. DiMarOGONAS and G. MAssoUrROs 1981 Engineering Fracture Mechanics 18, 439-444.
Torsional vibration of a shaft with a circumferential crack.

3. A, D. DiMaroGoNAS and C. A. PaAPApoPOULOS 1983 Journal of Sound and Vibration 91, 583-593.
Vibration of cracked shafts in bending.

4. P. GupMUNDSON 1983 Journal of the Mechanics and Physies of Solids 31, 329-345. The dynamic
behaviour of slender structures with cross-sectional cracks.

5. C. A. ParaporouLos and A. D. DIMAROGONAS 1987 Ingenieur - Archiv 57, 257-266. Coupling of
bending and torsional vibration of a cracked Timoshenko shaft.

6. P. CawiLEY and R. D. ADaAMS 1979 Journal of Strain Analysis 14, 49-57, The location of defects
in structures from measurements of natural frequencies.

7. P. CowreY and R. D. Apams 1979 ASMT Paper T9-DET-46. Defect location in structures by
a vibration technique.

8. S. CurisTiDEs and A. D. 8. Barr 1984 International Journal of the Mechanical Sciences 26,
639-648. One-dimensional theory of cracked Bernoulli-Euler beams.

9. M. H. Suen and C. PErRE 1990 Journa! of Sound and Vibration 138, 115-134. Natural modes
of Bernoulli-Euler beams with symmetric cracks.

10. L. B. FReUND 1972 Journal of Applied Mechanics 39 Transactions of the American Society of
Mechanical Engineers 94, Series E, 601-602, The initial wave front emittcd by a suddenly
extending crack in an elastic solid.

11. L. B. Freunp 1972 Journal of the Mechanics and Physics of Solids 20, 129-152. Crack
propagation in an elastic solid subjected to general loading.

12. L. B. FREuUND 1974 Journal of the Mechanics and Physics of Solids 22, 137-146. Crack
propagation in an elastic solid subjected to general loading.

13. S. BopNer 1973 Journal of the Mechanics and Physics of Solids 21, 1-8. Stress waves due to
fracture of giass in bending.

14. L. B. FRevnD and G. HERRMANN 1975 Journal of Applied Mechanics 43, 112-116. Dynamic
fracture of a beam or plate in pure bending.

15. G. R. IRwiN 1960 in Structurai Mechanics (P. C. Goodier and N. J. Hoff, editors). New York:
Pergamon Press.



CRACKED BEAMS 259

16. P. C. Paris and G. C. S1H 1965 Fracture Toughness and Ilts Applications ASME STP-381, 30.
Stress analysis of cracks.

17. P. P. LynN and A. R. INGRAFFEA 1977 International Journal of Numerical Methods in Engineering
1, 1031-1036. Transition elements to be used with quarter-point crack-tip elements.

18. R. D. HensuerL and K. G. SHAW 1975 International Journal of Numerical Methods in
Engineering 9, 454-509. Crack tip finite element are unnecessary.

19. R. S. BArRsouM 1976 International Jourral of Numerical Methods in Engineering 18, 25-37. On
the use of isoparametric finite element in linear fracture mechanics.

20. D. WENDTLAND 1972 Ph.D. Thesis, University of Karlsruhe. Anderung der biegeeigenfrequenzen
ciner idealisierten Schaufe! durch Risse. .

21. D. WENDTLAND and E. WIEDERUH 1974 Forschung in Ingenieurwesen 40, 60—66. Anderungen der
Torsionseigenfrequenzen von Turbomaschinenschaufeln durch Risse.

APPENDIX A: SHAPE FUNCTIONS
Fim=1=-30/L} +20/LY,  FE@)=n-=-20/L)+0}), (A1)
Fmy=3m/LY = 20/LY,  Fn)=—0L)+0E),
L=1M, 0<n<l,.

¥

APPENDIX B: NOMENCLATURE

a crack depth [m;] element mass matrix
a; ith generalized co-ordinate amplitude M number of sub-beams in the local Ritz
A beam cross-sectional area method
/] half breadth of rectangular beam {M.] global mass matrix
CR = a/2d, crack ratio N number of terms in the Galerkin
d half depth of rectangular beam expansion
E Young's modulus of elasticity S strain function
f(x,z} crack function T stress function
FR =w, fo,., frequency ratio u; =u, v, w, displacement components
H(-) unit step function u vector of nodal displacements in local
I cross-sectional area moment of Ritz method
inertia Vv total volume
ik clement stiffness matrix w(x, 1) bending deflection
[K.] global stiffness matrix wix) bending deflection amplitude
K =|,zfdA4 X, crack position
K, =l,z¢ d4 xc =x, [l
K, ={,2¢"dA o stress decay constant
K, =K, /I B neutral surface shift constant
A = K[! 3, Kronecker's delta, =1 for i =j and
i length of beam =0 for { #j
I =1!/M, length of sub-beam p density
L ={,/"dA &; strain tensor component
L, = | e dA 6 stress tensor component
L, =|,fp’ dA @, free vibration natural frequency
L =L/ (cracked beam)
L =L, /I @, free vibration natural frequency
L, =L,JI (uncracked beam)
L, =|,/"pdd £ =xji
L, =|,f"@¢dA @{x,2) displacement function
L, =,/ ¢’ d4 n position co-ordinate along a sub-beam
Q, integrated crack function - =9d/ot

m stress magnification factor ‘ =d/ox



