Protein tyrosine phosphatases: characterization
of extracellular and intracellular domains
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Protein tyrosine phosphatases (PTPs) play an important role in the regulation
of cell growth and differentiation. With over 30 PTPs identified, the specific
functions of these enzymes are now being addressed. The identification of
extracellular domain receptor-like PTP interactions and the characterization
of intracellular PTP ‘targeting’ domains represent recent efforts in this pursuit.
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Introduction

The importance of protein tyrosine phosphorylation in
growth, differentiation and cytoskeletal integrity has
been well established over the past decade. Protein
tyrosine phosphatases (PTPs), enzymes that hydro-
lyze phosphotyrosyl groups, were initially considered
to play ‘housekeeping’ roles by returning the tyrosine
phosphorylation state of target substrates back to basal
levels. This overly simplistic view now seems to be
incorrect, since a number of PTPs have been shown
to regulate integral components of signal transduc-
tion pathways (for recent reviews, see [1°¢,2¢3°]).
PTPs have been implicated in tumor suppression
[4,5,6°,7-9], cytoskeletal reorganization [10*,11°], de-
velopment and differentiation [12°%,13,14*], mitotic
induction [15%,16,17°], T-cell activation [18°], and in
growth factor [19°-21¢,22-24), somatostatin (25] and in-
terferon [26°*,27°] signaling pathways. This review will
focus on recent advances in understanding the function
of receptor-like PTP extracellular domains, as well as
the role of specific ‘zip code’ domains that govern in-
tracellular PTP subcellular localization.

Protein tyrosine phosphatase structural domains

PTPs can be separated into two major groups: trans-
membrane receptor-like PTPs (Fig. 1), and intracellular
PTPs (Fig. 2). All PTPs possess at least one catalytic do-
main of approximately 250 amino acids which contains
the ‘active site’ signature motif (I/V)HCXAGXXR(S/T)G
(in the one-letter amino acid code, where X can be any
amino acid) [3**,28**]. Studies using chemical modifi-
cation and site-directed mutagenesis have established

that the cysteinyl residue within this consensus motif
is essential for phosphatase activity, forming a thio-
phosphate enzyme intermediate necessary for cataly-
sis [29). This catalytic domain is unique to PTPs, bear-
ing little resemblance to the catalytic domains of ser-
ine/threonine protein phospahatases, alkaline protein
phosphatases, or acid protein phosphatases.

The receptor-like PTPs (Fig. 1) possess an extracellular
domain, a single transmembrane domain, and usually
two intracellular PTP catalytic domains. The first intra-
cellular PTP domain generally accounts for the majority
of catalytic activity, while the second domain is inac-
tive or (in some cases) weakly active [30°]. The only
transmembrane PTPs containing a single catalytic do-
main are human (H) PTPB and Drosophbila (D) PTP10D
[31-33). Receptor-like PTPs can be further subdivided
into five types on the basis of common features found
in the extracellular domain [1*]. Type I is represented
by the CD45 family, exhibiting multiple isoforms aris-
ing from differential splicing of sequences at the amino
terminus [34]. Type II members (e.g. LAR, HPTPx, and
HPTPW) contain tandem repeats of immunoglobulin-
like and fibronectin type IlI-like domains resembling
neural cell adhesion molecules [35,36,37°]. Type III
members bear multiple fibronectin type Ill-like repeats
(e.g. DPTP10 and DPTP99A) [32,33,38]. HPTPa and
HPTPe represent type IV isoforms, possessing small
glycosylated segments [31,39]. Type V constituents in-
clude HPTP{ and RPTPy, which exhibit amino-termi-
nal carbonic anhydrase-like domains [40,41°]. Although
the structural features of the receptor-like PTPs suggest
that they may bind ligands, no ‘ligand’ interaction has
yet been identified. However, the extracellular domain
of a receptor-like PTP has recently been shown to
mediate cell—cell aggregation via homophilic binding
[4200,43-.]'

Abbreviations
CA—carbonic anhydrase; CAM—cellular adhesion molecule; EGF—epidermal growth factor; D—Drosophila;
GFR—growth factor receptor; H—human; LAR—Ileukocyte common antigen related molecule;
MAP kinase—mitogen-activated protein kinase; PEST—proline-, glutamic acid-, serine- and threonine-rich;
PTK—protein tyrosine kinase; PTP—protein tyrosine phosphatase; SH2—Src homology 2; TCR—T-cell receptor.
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Fig. 1. Transmembrane receptor-like
PTPs. The members of this family of PTPs
possess a single transmembrane domain,
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and one or two intracellular PTP cat-
alytic domains (black bar). They can be
subdivided into five types on the ba-
sis of their extracellular domain struc-
tures: 1, for example CDA45; Il, for ex-
ample LAR and HPTPy; Ull, for example
DPTP10D and DPTP99A; IV, for example
HPTPa; and V, for example HPTP{ and
HPTPy [1°°]. The extracellular domain
structures are shown: amino terminus
isoforms (horizontal lines) resulting from
differential splicing; immunoglobulin-like
v (vertical lines); fibronectin type MlI-like
{shaded bar); MAM adhesive protein
homology-like (diagonal lines); and car-

Intracellular PTPs (Fig. 2) possess a single catalytic do-
main with flanking regions that often contain amino
acid sequences which direct the enzyme to specific
intracellular locations. These zip code sequences can
target PTPs to the endoplasmic reticulum (e.g. PTP1B)
[44,45°], to the nucleus (e.g. DPTPG1F) [46*], or per-
haps result in their rapid degradation (e.g. PTP-PEST)
{47¢]. Several amino-terminal structural motifs have
been identified that may direct intracellular PTPs to
interact with cytoskeletal proteins (e.g. HPTPMegl,
HPTPH1) {48,49) or with phosphotyrosine-containing
proteins via Src homology 2 (SH2) domains (e.g.
PTP1C, SH-PTP2) [50,51°].

Transmembrane protein tyrosine phosphatases
and extracellular domain interactions

CD45
The receptor-like structure of transmembrane PTPs
suggests that they may interact with ligands. CD45,

bonic anhydrase-like (stippled).

the first transmembrane PTP to be identified [34], has
served as a model for understanding the function of the
receptor-like PTPs. CD45 plays a role in T-cell recep-
tor (TCR) mediated signal transduction and has been
shown to reconstitute TCR signaling in CD45-deficient
T cells [18°,52]. In an effort to determine whether the
extracellular domain of CD45 influences its function in
TCR signal transduction, Desai et al. [53**] constructed
a chimera of the epidermal growth factor (EGF) recep-
tor extracellular domain and the CD45 intracellular do-
main. The expression of this chimera in CD45-deficient
T-cells restored TCR signal transduction (measured as
intracellular calcium flux), indicating that the extracel-
lular domain of CD45 is not absolutely required for
TCR signaling. When EGF was added, TCR signaling
was inhibited. The coexpression of a truncated EGF
receptor (missing its cytoplasmic domain) with the
EGF receptor/CD45 chimera restored TCR signaling.
This suggests that the chimera may dimerize on ad-
dition of EGF, resulting in inactivation of intracellular
PTP activity. Expression of sufficient truncated EGF
receptor would presumably prevent chimera self-as-
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Fig. 2. Intracellular PTPs. The members of this family of PTPs pos-
sess a single catalytic domain (black bar) with flanking regions that
often contain intracellular ‘targeting’ domains. Carboxy-terminal
domains can target PTPs to the endoplasmic reticulum (stippled)
for PTP 18, to the nucleus (shaded box) for DPTP6IF, or result in
their rapid degradation (vertical lines) for PTP-PEST. Amino-termi-
nal domains may direct PTPs to interact with cytoskeletal proteins
(horizontal lines) for PTPMeg1, or with phosphotyrosine via SH2
domains (diagonal lines) for PTP1C.

sociation. Data have also been published suggesting
that CD45 is tyrosine-phosphorylated following TCR
activation [54]. The specific effects of phosphorylation
are unknown. It has been proposed that endogenous
ligand-induced dimerization of CD45 may lead to trans-
dephosphorylation and functional inactivation, anal-
ogous to the dimerization, transphosphorylation and
activation of receptor protein tyrosine kinases (PTKs)
[55].

Cell adhesion molecule-like protein tyrosine phosphatases
Type II receptor-like PTPs share extracellular domain
similarities to cell adhesion molecules (CAMs). PTPu
and PTPk contain one immunoglobulin-like domain
and four fibronectin type Il repeats [36,37°]. In ad-
dition, they both contain an ‘MAM’ (meprin, AS, W)
motif amino-terminal to the immunoglobulin-like do-
main. MAM motifs span approximately 170 amino acids
and contain four conserved cysteines that may form
disulfide bridges [56°]. The function of this domain
is unknown. However, the MAM motif occurs in sev-
eral diverse transmembrane adhesion proteins (e.g. AS
and meprin) and may therefore contribute ‘adhesive’
properties to PTPu and PTPk.

The sequence similarity of type II PTPs to CAMs has
led researchers to suggest that these PTPs also promote
homophilic binding. Expression of full-length PTPU in
SF9 insect cells results in cell aggregation, suggesting
that PTPH may mediate this process [42¢°¢,43%]. The
expression of cytoplasmic domain-deleted constructs
indicates that PTP catalytic activity is not required for
the observed adhesion; only the extracellular domain
is essential for cell—cell interactions. This was further
substantiated by the observation that purified extracel-

lular domain conjugated to resin beads can mediate
bead-bead adhesion. Work from Schlessinger’s labo-
ratory, reported in a ‘research news’ article in Science
[57¢°], indicates that the closely related molecule PTPx
also displays homophilic adhesive properties [57*].
When cells expressing PTPp are mixed with cells ex-
pressing PTPk, the cells segregate and adhere in a
homophilic fashion. This shows that although PTPu
and PTPk are structurally very similar, they display a
high degree of specificity -in their cell—cell adhesion.
In addition, structurally similar LAR is not known to
undergo homophilic interactions.

Carbonic anhydrase-like protein tyrosine phosphatases
Type V transmembrane PTPs contain a carbonic an-
hydrase (CA)-like domain in the amino-terminal 300
amino acids of their extracellular domain. These PTPs
include the neural-specific human PTP{ [40], mouse
RPTPB [58°], rat PTP18 ({59]; RJ Mourey, KL Guan, un-
published data), and RPTPy [41°], which is expressed
in kidney, brain and lung. The CA domains of these
PTPs are 25-40% identical to the seven isotypes of
CA. It is unlikely that this domain functions as a car-
bonic anhydrase, since two of the three essential his-
tidyl residues required for catalysis are missing. Rather,
the overall structure of the CA domain may be utilized
for ligand binding. Indeed, computer modeling of this
domain and comparison with the crystal structure of
CA indicates that 11 of the 19 residues that form the
active site of CA are conserved [41°]. Interestingly, the
type V PTPs show the same degree of identity to CA
as does the vaccinia virus transmembrane protein D8
over almost its entire external domain, lacking two
of the three catalytically required histidines [60]. Evi-
dence suggests that the function of D8 is adsorption
of the vaccinia virus to cell surfaces [61]. The shared
homology between vaccinia D8 and this subclass of
PTPs suggests that the D8 binding site may be a po-
tential ligand for these PTPs.

Targeting of intracellular protein tyrosine
phosphatases to specific subcellular locations

SH2 domains

The Src homology 2 (SH2) domain is a conserved se-
quence motif of approximately 100 amino acids that
promotes interactions between cytoplasmic signaling
molecules and specific phosphotyrosyl residues on ac-
tivated (i.e. autophosphorylated) growth factor recep-
tors or other signaling molecules. These interactions
bring the appropriate signaling components of mito-
genic pathways together [62¢°¢,63°,64]. Over the past
two years, several new PTPs that contain two SH2
domains in their amino-terminal regions have been
identified. These include PTP1C [50] and its homologs
(SH-PTP1 [65], HCP [66] and SHP (67)), which are ex-
pressed predominantly in hematopoietic cells. More
ubiquitously expressed SH2-containing PTPs include
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SH-PTP2 [51°] and its homologs (Syp [68°], PTP1D
[69°¢], PTP2C [70], and SH-PTP3 [71]).

Evidence that these SH2-PTPs may play a role in signal
transduction comes from the characterization of two
developmental genes, Hcph [14*,72] and corkscrew
(csw) [73*°]. Mice homozygous for the recessive al-
lelic mutation motheaten display severe hematopoi-
etic abnormalities [14**,72). These mutations were re-
cently localized to the Hcph gene, which encodes the
SH2-containing PTP hematopoietic cell protein phos-
phatase [66). Abnormalities in this protein may lead
to defective signaling in hematopoiesis. Further evi-
dence for the role of SH2-PTPs in signal transduction
is provided by the Drosopbila gene csw. This gene en-
codes an SH2-PTP that functions in the terminal class
signal transduction pathway essential for normal de-
velopment of anterior and posterior segments of the
Drosopbila embryo [73*°]. Genetic experiments sug-
gest that csw interacts with polebole (the Drosopbila
homolog of c-raf) [74] to transduce signals generated
from the receptor PTK torso (a PDGF receptor homo-
log) [75]. The csw protein has high sequence identity
with SH-PTP2 and may share functional similarities as
well [76°].

The exact nature of the interaction of SH2-contain-
ing PTPs with PTKs to positively transduce signals is
unclear, although several possible models have been
suggested [76°). One possibility is that the amino-termi-
nal SH2 domain of the PTP binds an activated growth
factor receptor (GFR), allowing the second SH2 do-
main to bind other phosphotyrosyl proteins. In this
way, the PTP is acting to bring proteins to the GFR
for further phosphorylation, or to participate in other
protein—protein interactions. In an alternative model,
SH2-binding of PTPs to GFRs may allow the PTP
to dephosphorylate nearby phosphotyrosyl-regulated
proteins. For example, activation of the insulin receptor
results in the association of Syp with tyrosine-phospho-
rylated insulin receptor substrate 1, a protein participat-
ing in the insulin receptor signaling pathway [77°]. In
addition, the proximal PTP may dephosphorylate and
inactivate GFRs, thus terminating signal transduction. It
is important to realize, however, that these two models
may not be mutually exclusive

A third mechanism of SH2-PTP-mediated GFR sig-
nal transduction has been suggested by more re-
cent results. In this model, the SH2 domains facilitate
PTP-GFR interaction, whereupon the PTP is subse-
quently tyrosine-phosphorylated. The phosphorylated
PTP could then interact with other SH2-containing pro-
teins in signal transduction. In addition, tyrosine phos-
phorylation may increase PTP catalytic activity, poten-
tially increasing the dephosphorylation of downstream
effector molecules. Both Syp and PTP1D were shown
to associate in vivo with activated PDGF and EGF re-
ceptors [68%,69*]. Both PTPs failed to dephosphory-
late the GFR, but were themselves tyrosine-phospho-
rylated. Phosphorylation of SH2-PTPs may be required
for interaction with receptor tyrosine kinases and other
signaling molecules [68°,69°*,76°,78°]. In the case of

PTP1D, phosphorylation is correlated with a small in-
crease in PTP catalytic activity in vitro [69*]. These
findings indicate that SH2-PTPs may interact with PTKs,
not simply to inactivate the GFR, but rather to work in
concert with the GFR to regulate the phosphorylation
state of signal transduction effector molecules.

Nuclear-targeting domains

Recently, several PTPs were shown to localize to the
nucleus [46°°,79°], which is intriguing given the sug-
gested functional role of PTPs in cell cycle regula-
tion and gene transcription [15°,16,26**,27%]. In the
case of the Drosophila PTP DPTPGIF, alternative splic-
ing can produce two different carboxy-terminal zip
codes directing the PTP to alternative locations [79°].
Expression of each alternatively spliced form in COS-1
cells indicated that the form possessing a highly ba-
sic 11 amino acid carboxyl terminus was directed
to the nucleus. The other DPTP6IF species, con-
taining a carboxy-terminal splice of 24 hydrophobic
amino acids, was localized to a ‘reticular’ network and
mitochondria-like organelles within the cell. The sub-
strate specificities of the nuclear and membrane PTPs
were indistinguishable, as expected, since they share
the identical catalytic domain. This underlines the fact
that subcellular location can define and restrict the sub-
strate specificity of PTPases within the cell.

Endoplasmic reticulum-targeting domains

PTP1B was originally purified from placental tissue as
a soluble 39kDa protein [80). However, the molecular
cloning of rat and human PTP1B predicted a 50kDa
protein containing a hydrophobic carboxyl terminus
[81,82]. Frangioni et al. [44] and Woodford-Thomas and
co-workers [45°] showed that full length PTP1B is nor-
mally localized to the endoplasmic reticulum in cells
and that this localization is dictated by the carboxy-ter-
minal 35 amino acids. Expression of carboxy-terminal
truncated PTP1B results in a soluble enzyme. PTP1B
can be released from the endoplasmic reticulum partic-
ulate fraction by trypsinization. The targeting of PTPs to
the endoplasmic reticulum via their hydrophobic car-
boxyl terminus may result in limited substrate availabil-
ity and act to keep PTPs in reserve until a cellular stim-
ulus induces translocation of the PTP to the cytoplasm
by carboxy-terminal proteolysis. Such an agonist-medi-
ated stimulation of proteolysis and subsequent release
of soluble PTP is observed in platelets [83¢). Activation
of platelets by mixing, thrombin, or antibody engage-
ment of the fibrinogen receptor gplib-Illa, results in
the activation of calpain, a calcium-dependent neu-
tral protease. Activated calpain then cleaves PTP1B
between its catalytic domain and its membrane-anchor-
ing carboxyl terminus, resulting in a soluble PTP. The
cleavage of PTP1B correlates with irreversible platelet
aggregation [83¢]. In addition, cleavage and subcellu-
lar relocation of PTP1B results in a twofold stimu-
lation of its enzymatic activity and an altered pattern
of phosphotyrosyl-substrate dephosphorylation [83°].
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Dual specificity tyrosine/serine protein
phosphatases

The first member of the class of dual specificity PTPs
was identified in vaccinia virus [84]. This phosphatase,
VH]1, is a small (20kDa) soluble phosphatase (Fig. 2)
that dephosphorylates both phosphotyrosine- and
phosphoserine-containing substrates. VH1-like phos-
phatases have also been identified in smallpox variola
virus, several orthopoxviruses and baculovirus [85]. In
mammals, several VH1-like phosphatases have been
cloned and shown to be induced as immediate-early
genes. The synthesis of human T-cell PAC-1 [79°], hu-
man’ CL100 [86] and the mouse homolog 3CH134 [20°]
is induced by serum growth factors and oxidative or
heat stress. In addition, a yeast VH1-like phosphatase
has been shown to be induced upon nitrogen starva-
tion [87].

Serum growth factors activate transmembrane protein
tyrosine kinases [88]. Mitogen-activated protein kinase
(MAP kinase) has been shown to be a major compo-
nent of the signaling pathway involved in transducing
the signal from activated PTKs to downstream effec-
tor molecules [89]. MAP kinase (p42) is activated by
phosphorylation on Thr183 and Tyr185 by MAP kinase
kinase [90]. The dual specificity phosphatases appear
to dephosphorylate activated MAP kinase. Transcrip-
tion of 3CH134 VHI-like phosphatase is rapidly in-
duced by mitogenic stimulation, and synthesis occurs
within the first hour [20°]. 3CH134 dephosphorylates
Thr183 and Tyrl85 on activated MAP kinase both in
vitro and in vivo [91**). In serum-stimulated fibrob-
lasts, the inactivation of MAP kinase coincides with the
new synthesis of 3CH134 [91°]. Expression of 3CH134
in COS cells blocks serum-stimulation of MAP kinase,
while the expression of a catalytically inactive 3CH134
augments MAP kinase phosphorylation. In addition, in-
active 3CH134 can be immunoprecipitated with phos-
phorylated MAP kinase demonstrating a physical inter-
action [91*°]. These findings suggest that 3CH134 may
be the physiological MAP kinase phosphate.

Conclusions

With the recent characterization of receptor-like PTP
homophilic interactions, investigators can begin to ap-
proach the problem of understanding how these cata-
lysts regulate signal processing during cell—cell contact.
In addition, the characterization of intracellular PTP tar-
geting domains will allow researchers to begin to de-
termine how the substrate specificity of these enzymes
is controlled. Characterization of targeting domains will
also provide clues about PTP localization and function
in the cellular landscape.
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