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Protein tyrosine phosphatases (PTPs) play an important role in the regulation 
of cell growth and differentiation. With over 30 PTPs identified, the specific 
functions of these enzymes are now being addressed. The identification of 
extracellular domain receptor-like PTP interactions and the characterization 
of intracellular PTP ‘targeting’ domains represent recent efforts in this pursuit. 
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Introduction 

The importance of protein tyrosine phosphorylation in 
growth, differentiation and cytoskeletal integrity has 
been well established over the past decade. Protein 
tyrosine phosphatases (PIPS), enzymes that hydro- 
lyze phosphotyrosyl groups, were initially considered 
to play ‘housekeeping’ roles by returning the tyrosine 
phosphorylation state of target substrates back to basal 
levels. This overly simplistic view now seems to be 
incorrect, since a number of PTPs have been shown 
to regulate integral components of signal transduc- 
tion pathways (for recent reviews, see 11”,2*,3**1). 
PTPs have been implicated in tumor suppression 
14,5,6’,7-91, cytoskeletal reorganization llO*“,ll*l, de- 
velopment and differentiation 112**,13,14**1, mitotic 
induction [15g,16,17*l, T-cell activation 118.1, and in 
growth factor 119’-21*,22-241, somatostatin 1251 and in- 
terferon [26”,27*1 signaling pathways. This review will 
focus on recent advances in understanding the function 
of receptor-like PTP extracellular domains, as well as 
the role of specific ‘zip code’ domains that govern in- 
tracellular PTP subcellular localization. 

Protein tyrosine phosphatase structural domains 

PTPs can be separated into two major groups: trans- 
membrane receptor-like PTPs (Fig. 11, and intracellular 
PTPs (Fig. 2). All PTPs possess at least one catalytic do- 
main of approximately 250 amino acids which contains 
the ‘active site’ signature motif WV)HCXAGMCRWT)G 
(in the one-letter amino acid code, where X can be any 
amino acid) 13”,28”1. Studies using chemical modifl- 
cation and site-directed mutagenesis have established 

that the cysteinyl residue within this consensus motif 
is essential for phosphatase activity, forming a thio- 
phosphate enzyme intermediate necessary for cataly- 
sis 1291. This catalytic domain is unique to PTPs, bear- 
ing little resemblance to the catalytic domains of ser- 
ine/threonine protein phospahatases, alkaline protein 
phosphatases, or acid protein phosphatases. 

The receptor-like PTPs (Fig. 1) possess an extracellular 
domain, a single transmembrane domain, and usually 
two intracellular PTP catalytic domains. The first intra- 
cellular PTP domain generally accounts for the majority 
of catalytic activity, while the second domain is inac- 
tive or (in some cases) weakly active 130°1. The only 
transmembrane PTPs containing a single catalytic do- 
main are human (H) PTPB and Drosophila (D) PTPlOD 
131-331. Receptor-like PTPs can be further subdivided 
into five types on the basis of common features found 
in the extracellular domain [l”l. Type I is represented 
by the CD45 family, exhibiting multiple isoforms aris- 
ing from differential splicing of sequences at the amino 
terminus 1341. Type II members (e.g. LAR, HPTPK, and 
HPTPl,t) contain tandem repeats of immunoglobulin- 
like and libronectin type III-like domains resembling 
neural cell adhesion molecules 135,36,37*1. Type III 
members bear multiple fibronectin type III-like repeats 
(e.g. DPTPlO and DPTP99A) [32,33,381. HITPa and 
HPTP& represent type IV isoforms, possessing small 
glycosylated segments 131,391. Type V constituents in- 
clude HPTP< and IWIPy, which exhibit amino-termi- 
nal carbonic anhydrase-like domains [40,41’1. Although 
the structural features of the receptor-like PTPs suggest 
that they may bind ligands, no ‘ligand’ interaction has 
yet been identified. However, the extracellular domain 
of a receptor-like PTP has recently been shown to 
mediate cell-cell aggregation via homophilic binding 
[42-,43-l. 

Abbreviations 
CA-carbonic anhydrase; CAM-cellular adhesion molecule; ECF-epidermal growth factor; D-Drosopbib; 

CFR-growth factor receptor; H-human; LAR-leukocyte common antigen related molecule; 
MAP kinase-mitogen-activated protein kinase; PEST-proline-, glutamic acid-, wine- and threonine-rich; 

PTK-protein tyrosine kinase; F’TP-protein tyrosine phosphatase; SHZ-Src homology 2; TCR-T-cell receptor. 
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Intracellular PTPs (Fig. 2) possess a single catalytic do- 
main with flanking regions that often contain amino 
acid sequences which direct the enzyme to specific 
intracellular locations. These zip code sequences can 
target PTPs to the endoplasmic reticulum (e.g. PTPlB) 
144,45*1, to the nucleus (e.g. DPTPblF) [46..1, or per- 
haps result in their rapid degradation (e.g. PTP-PEST) 
[47'1. Several amino-terminal structural motifs have 
been identified that may direct intracellular PTPs to 
interact with cytoskeletal proteins (e.g. HPTPMegl, 
HPTPHl) 148,491 or with phosphotyrosine-containing 
proteins via Src homology 2 (SH2) domains (e.g. 
PTPlC, SH-PTP2) [50,51’]. 

Transmembrane protein tyrosine phosphatases 
and extracellular domain interactions 

CD45 
The receptor-like structure of transmembrane PTPs 
suggests that they may interact with ligands. CD45, 

Fig. 1. Transmembrane receptor-like 
PTPs. The members of this family of PTPs 
possess a single transmembrane domain, 
and one or two intracellular PTP cat- 
alytic domains (black bar). They can be 
subdivided into five types on the ba- 
sis of their extracellular domain struc- 
tures: I, for example CD45; II, for ex- 
ample LAR and HPTPp; III, for example 
DPTPl OD and DPTP99A; IV, for example 
PlPTPa; and V, for example HPTP( and 
HPTpr [l**]. The extracellular domain 
structures are shown: amino terminus 
isoforms (horizontal lines) resulting from 
differential splicing; immunoglobulin-like 
(vertical lines); fibronectin type Ill-like 
(shaded bar); MAM adhesive protein 
homology-like (diagonal lines); and car- 
bonic anhydrase-like (stippled). 

the first transmembrane PTP to be identified 1341, has 
served as a model for understanding the function of the 
receptor-like PTPs. CD45 plays a role in T-cell recep- 
tor (TCR) mediated signal transduction and has been 
shown to reconstitute TCR signaling in CD45-deficient 
T cells [18*,521. In an effort to determine whether the 
extracellular domain of CD45 influences its function in 
TCR signal transduction, Desai et al. [53"1 constructed 
a chimera of the epidermal growth factor (EGF) recep- 
tor extracellular domain and the CD45 intracellular do- 
main. The expression of this chimera in CD45-deficient 
T-cells restored TCR signal transduction (measured as 
intracellular calcium flux), indicating that the extracel- 
lular domain of CD45 is not absolutely required for 
TCR signaling. When EGF was added, TCR signaling 
was inhibited. The coexpression of a truncated EGF 
receptor (missing its cytoplasmic domain) with the 
EGF receptor/CD45 chimera restored TCR signaling. 
This suggests that the chimera may dimerite on ad- 
dition of EGF, resulting in inactivation of intracellular 
PTP activity. Expression of sufficient truncated EGF 
receptor would presumably prevent chimera self-as- 
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Fig. 2. Intracellular PTPs. The members of this family of PTPs pos- 
sess a single catalytic domain (black bar) with flanking regions that 
often contain intracellular ‘targeting’ domains. Carboxy-terminal 
domains can target PTPs to the endoplasmic reticulum (stippled) 
for PTP 16, to the nucleus (shaded box) for DPTP6lF, or result in 
their rapid degradation (vertical lines) for PTP-PEST. Amino-termi- 
nal domains may direct PTPs to interact with cytoskeletal proteins 
(horizontal lines) for PTPMegl, or with phosphotyrosine via SH2 
domains (diagonal lines) for PTPlC. 

sociation. Data have also been published suggesting 
that CD45 is tyrosine-phosphorylated following TCR 
activation 1541. The specific effects of phosphorylation 
are unknown. It has been proposed that endogenous 
ligand-induced dimerization of CD45 may lead to trans- 
dephosphorylation and functional inactivation, anal- 
ogous to the dimerization, transphosphorylation and 
activation of receptor protein tyrosine kinases (PTKs) 
1551. 

Cell adhesion molecule-like protein tyrosine phosphatases 
Type II receptor-like Ill’s share extracellular domain 
similarities to cell adhesion molecules (CAMS). PTI’p 
and 1vK contain one immunoglobulin-like domain 
and four libronectin type III repeats 136,371. In ad- 
dition, they both contain an ‘MAM’ (meprin, A5, cl> 
motif amino-terminal to the immunoglobulin-like do- 
main. MAM motifs span approximately 170 amino acids 
and contain four conserved cysteines that may form 
disulfide bridges [56'1. The function of this domain 
is unknown. However, the MAM motif occurs in sev- 
eral diverse transmembrane adhesion proteins (e.g. A5 
and meprin) and may therefore contribute ‘adhesive’ 
properties to I’TI’p and ITPK. 

The sequence similarity of type II PTI’s to CAMS has 
led researchers to suggest that these I’TI’s also promote 
homophilic binding. Expression of full-length I’TI’p in 
SF9 insect cells results in cell aggregation, suggesting 
that 1’TIQ.t may mediate this process [42”,43”1. The 
expression of cytoplasmic domain-deleted constructs 
indicates that PTP catalytic activity is not required for 
the observed adhesion; only the extracellular domain 
is essential for cell-cell interactions. This was further 
substantiated by the observation that purified extracel- 

lular domain conjugated to resin beads can mediate 
bead-bead adhesion. Work from Schlessinger’s labo- 
ratory, reported in a ‘research news’ article in Science 
[57”1, indicates that the closely related molecule M’PK 
also displays homophilic adhesive properties [57”1. 
When cells expressing PTPp are mixed with cells ex- 
pressing PTPK, the cells segregate and adhere in a 
homophilic fashion. This shows that although PTpp 
and M’PK are structurally very similar, they display a 
high degree of specificity in their cell-cell adhesion. 
In addition, structurally similar L4R is not known to 
undergo homophilic interactions. 

Carbonic anhydrase-like protein tyrosine phosphatases 
Type V transmembrane PTPs contain a carbonic an- 
hydrase (CA)-like domain in the amino-terminal 300 
amino acids of their extracellular domain. These PTIJS 
include the neural-specific human Ml’< [401, mouse 
RPTPB i58.1, rat PTI’18 ([59l; RJ Mourey, KL Guan, un- 
published data), and RFTPy [41*1, which is expressed 
in kidney, brain and lung. The CA domains of these 
PTI’s are 25-40% identical to the seven isotypes of 
CA. It is unlikely that this domain functions as a car- 
bonic anhydrase, since two of the three essential his- 
tidy1 residues required for catalysis are missing. Rather, 
the overall structure of the CA domain may be utilized 
for ligand binding. Indeed, computer modeling of this 
domain and comparison with the crystal structure of 
CA indicates that 11 of the 19 residues that form the 
active site of CA are conserved [41*1. Interestingly, the 
type V ITS show the same degree of identity to CA 
as does the vaccinia virus transmembrane protein D8 
over almost its entire external domain, lacking two 
of the three catalytically required histidines [6Ol. Evi- 
dence suggests that the function of D8 is adsorption 
of the vaccinia virus to cell surfaces [6ll. The shared 
homology between Gaccinia D8 and this subclass of 
PTPs suggests that the D8 binding site may be a po- 
tential ligand for these PTI’s. 

Targeting of intracellular protein tyrosine 
phosphatases to specific subcellular locations 

SH2 domains 
The Src homology 2 (SH2) domain is a conserved se- 
quence motif of approximately 100 amino acids that 
promotes interactions between cytoplasmic signaling 
molecules and specific phosphotyrosyl residues on ac- 
tivated (i.e. autophosphorylated) growth factor recep- 
tors or other signaling molecules. These interactions 
bring the appropriate signaling components of mito- 
genie pathways together [62**,6Y,641. Over the past 
two years, several new PTPs that contain two SH2 
domains in their amino-terminal regions have been 
identified. These include PTI’IC [501 and its homologs 
(SH-PTPl 1651, HCP 1661 and SHP [bfl), which are ex- 
pressed predominantly in hematopoietic cells. More 
ubiquitously expressed SHZcontaining I’Tl’s include 
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SH-MP2 El*1 and its homologs (Syp &%Pl, PTPlD 
[69”1, PTPZC [701, and SH-PTP31711).- - 

Evidence that these SH2-1’TPs~may play a role in signal 
transduction comes from the characterization of two 
developmental genes, Hcph 114**,721 and corkscrew 
(csw) 173”l. Mice homozygous for the recessive al- 
lelic mutation motheaten display severe hematopoi- 
etic abnormalities [14”,721. These mutations were re- 
cently localized to the Hcph gene, which encodes the 
SHZ-containing 1”Il’ hematopoietic cell protein phos- 
phatase 1661. Abnormalities in this protein may lead 
to defective signaling in hematopoiesis. Further evi- 
dence for the role of SH2-PTI’s in signal transduction 
is provided by the Drosophila gene csw. This gene en- 
codes an SHZ-Ml’ that functions in the terminal class 
signal transduction pathway essential for normal de- 
velopment of anterior and posterior segments of the 
Drosophila embryo 173”l. Genetic experiments sug- 
gest that csw interacts with polehole (the Drosophila 
homolog of c-raf, 1741 to transduce signals generated 
from the receptor PTK torso (a I’DGF receptor homo- 
log) 1751. The csw protein has high sequence identity 
with SH-PTP2 and may share functional similarities as 
well 176’1. 

The exact nature of the interaction of SHZcontain- 
ing IJTI’s with PTKs to positively transduce signals is 
unclear, although several possible models have been 
suggested 176’1. One possibility is that the amino-termi- 
nal SH2 domain of the PTI’ binds an activated growth 
factor receptor (GFR), allowing the second SH2 do- 
main to bind other phosphotyrosyl proteins. In this 
way, the PTI’ is acting to bring proteins to the GFR 
for further phosphorylation, or to participate in other 
protein-protein interactions. In an alternative model, 
SHZ-binding of I’TI’s to GFRs may allow the PTI’ 
to dephosphorylate nearby phosphotyrosyl-regulated 
proteins. For example, activation of the insulin receptor 
results in the association of Syp with tyrosine-phospho- 
rylated insulin receptor substrate 1, a protein participat- 
ing in the insulin receptor signaling pathway 177’1. In 
addition, the proximal I’TI’ may dephosphorylate and 
inactivate GFRs, thus terminating signal transduction. It 
is important to realize, however, that these two models 
may not be mutually exclusive 

A third mechanism of SHZI’TP-mediated GFR sig- 
nal transduction has been suggested by more re- 
cent results. In this model, the SH2 domains facilitate 
PTP-GFR interaction, whereupon the PTI’ is subse- 
quently tyrosine-phosphorylated. The phosphorylated 
MI’ could then interact with other SHZ-containing pro- 
teins in signal transduction. In addition, tyrosine phos- 
phorylation may increase 1’TI’ catalytic activity, poten- 
tially increasing the dephosphorylation of downstream 
effector molecules. Both Syp and PTI’lD were shown 
to associate in vivo with activated I’DGF and EGF re- 
ceptors [68*,69..1. Both 1’TI’s failed to dephosphory- 
late the GFR, .but were themselves tyrosine-phospho- 
rylated. I’hosphorylation of SH2-PTI’s may be required 
for interaction with receptor tyrosine kinases and other 
signaling molecules 168’,69”,76’,78’1. In the case of 

PTPID, phosphorylation is correlated with a small in- 
crease in I’TI’ catalytic activity in vitro [69”1. These 
findings indicate that SH2-FTPs may interact with PTKs, 
not simply to inactivate the GFR, but rather to work in 
concert with the GFR to regulate the phosphorylation 
state of signal transduction effector molecules. 

Nuclear-targeting domains 
Recently, several I’TPs were shown to localize to the 
nucleus [46”,79’1, which is intriguing given the sug- 
gested functional role of I’TI’s in cell cycle regula- 
tion and gene transcription [15*,16,26”,27*1. In the 
case of the Drosophila I’TI’ Dl’TI’61F, alternative splic- 
ing can produce two different carboxy-terminal zip 
codes directing the PTI’ to alternative locations 179’1. 
Expression of each alternatively spliced form in COS-1 
cells indicated that the form possessing a highly ba- 
sic 11 amino acid carboxyl terminus was directed 
to the nucleus. The other Dl’TI’61F species, con- 
taining a carboxy-terminal splice of 24 hydrophobic 
amino acids, was localized to a ‘reticular’ network and 
mitochondria-like organelles within the cell. The sub- 
strate specificities of the nuclear and membrane 1’TI’s 
were indistinguishable, as expected, since they share 
the identical catalytic domain. This underlines the fact 
that subcellular location can define and restrict the sub- 
strate specificity of PTI’ases within the cell. 

Endoplasmic reticulum-targeting domains 
1’TI’lB was originally purified from placental tissue as 
a soluble 39 kDa protein [Sol. However, the molecular 
cloning of rat and human I’TI’lB predicted a SO kDa 
protein containing a hydrophobic carboxyl terminus 
181,821. Frangioni et al. 1441 and Woodford-Thomas and 
co-workers 145.1 showed that full length PTI’lB is nor- 
mally localized to the endoplasmic reticulum in cells 
and that this localization is dictated by the carboxy-ter- 
minal 35 amino acids. Expression of carboxy-terminal 
truncated I’TI’lB results in a soluble enzyme. I’TI’lB 
can be released from the endoplasmic reticulum partic- 
ulate fraction by trypsinitation. The targeting of PTI’s to 
the endoplasmic reticulum via their hydrophobic car- 
boxy1 terminus may result in limited substrate availabil- 
ity and act to keep PTI’s in reserve until a cellular stim- 
ulus induces translocation of the PTI’ to the cytoplasm 
by carboxy-terminal proteolysis. Such an agonist-medi- 
ated stimulation of proteolysis and subsequent release 
of soluble PTI’ is observed in platelets [83’]. Activation 
of platelets by mixing, thrombin, or antibody engage- 
ment of the fibrinogen receptor gpIIb-IIIa, results in 
the activation of calpain, a calcium-dependent neu- 
tral protease. Activated calpain then cleaves I’TI’lB 
between its catalytic domain and its membrane-anchor- 
ing carboxyl terminus, resulting in a soluble I’TI’. The 
cleavage of PTI’lB correlates with irreversible platelet 
aggregation 183’1. In addition, cleavage and subcellu- 
lar relocation of PTI’lB results in a twofold stimu- 
lation of its enzymatic activity and an altered pattern 
of phosphotyrosyl-substrate dephosphorylation [83*]. 
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Dual specificity tyrosine/serine protein 
phosphatases 

The first member of the class of dual specificity PTPs 
was identified in vaccinia virus 1841. This phosphatase, 
VHl, is a small (20 kDa) soluble phosphatase (Fig. 2) 
that dephosphorylates both phosphotyrosine- and 
phosphoserine-containing substrates. VHl-like phos- 
phatases have also been identified in smallpox variola 
virus, several orthopoxviruses and baculovirus 1851. In 
mammals, several VHl-like phosphatases have been 
cloned and shown to be induced as immediate-early 
genes. The synthesis of human T-cell PAC-1 179’1, hu- 
man CL100 1861 and the mouse homolog 3CH134 120’1 
is induced by serum growth factors and oxidative or 
heat stress. In addition, a yeast VI-D-like phosphatase 
has been shown to be induced upon nitrogen starva- 
tion 1871. 

Serum growth factors activate transmembrane protein 
tyrosine kinases 1881. Mitogen-activated protein kinase 
(MAP kinase) has been shown to be a major compo- 
nent of the signaling pathway involved in transducing 
the signal from activated I’TKs to downstream effec- 
tor molecules 1891. MAP kinase (~42) is activated by 
phosphorylation on Thr183 and Tyr185 by MAP kinase 
kinase 1901. The dual specificity phosphatases appear 
to dephosphorylate activated MAP kinase. Transcrip- 
tion of 3CH134 VFD-like phosphatase is rapidly in- 
duced by mitogenic stimulation, and synthesis occurs 
within the first hour 120’1. 3CH134 dephosphorylates 
Thr183 and Tyr185 on activated MAP kinase both in 
vitro and in vivo 191**1. In serum-stimulated iibrob- 
lasts, the inactivation of MAI’ kinase coincides with the 
new synthesis of 3CH134 [91**1. Expression of 3CH134 
in COS cells blocks serum-stimulation of MAP kinase, 
while the expression of a catalytically inactive 3CH134 
augments MAP kinase phosphorylation. In addition, in- 
active 3CH134 can be immunoprecipitated with phos- 
phorylated MAP kinase demonstrating a physical inter- 
action 191**1. These findings suggest that 3CH134 may 
be the physiological MAP kinase phosphate. 

Conclusions 

With the recent characterization of receptor-like I’TP 
homophilic interactions, investigators can begin to ap- 
proach the problem of understanding how these cata- 
lysts regulate signal processing during cell-cell contact. 
In addition, the characterization of intracellular I’TP tar- 
geting domains will allow researchers to begin to de- 
termine how the substrate specificity of these enzymes 
is controlled. Characterization of targeting domains will 
also provide clues about PTP localization and function 
in the cellular landscape. 
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