
IRELAND 

International Journal of Bio-Medical Computing 
35 (1994) 39-46 

PC program for growth prediction in the two- 
stage polynomial growth curve model 

Ingrid (Ying-Yueh) Y. Guoa, Emet D. !3chneiderman*b, 
Charles J. Kowalski”, Stephen M. Willisb 

(‘Department of Public Health Sciences, bDepartment of Oral and Maxillofacial Surgery and 
Pharmacology, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA 

‘Department of Biologic and Materials Science, The University of Michigan, Ann Arbor, MI 48109, 
USA 

(Received 9 March 1993; accepted 9 April 1993) 

Abstract 

We consider the problem of growth prediction in the context of the two-stage (or random 
coefficients) one-sample polynomial growth curve model and provide a PC program, written 
in GAUSS386i, to perform the associated computations. The problem considered is that of 
estimating the value of the measurement under consideration for a ‘new’ individual at the Tth 
time point given measurements on that individual at T- 1 previous points in time and the 
values of the measurement on N ‘similar’ individuals at all T time points. The times of 
measurement t,, t2, . . . , t, need not be equally spaced, but we assume that each of the N 
individuals comprising the normative sample were measured at these times. The method and 
the program are illustrated using the data set previously considered (Schneiderman and 
Kowalski, Am J Phys Anthrop, 67 (1985) 323-333) consisting of mandibular ramus height 
measurements (in mm) for 12 male rhesus monkeys at T= 5 yearly intervals (coded 1, 2, 3, 
4, and 5). Results are compared with those obtained under a less restrictive set of assumptions 
concerning the covariance matrix of the observations than is made in the context of the two- 
stage model. It is seen that the accuracies of prediction of the two methods, for this and other 
data sets, are quite close, suggesting that the less restrictive model may be preferred in many 
situations. 

Key words: Longitudinal data; Polynomial growth curves; Prediction; PC program 

* Corresponding author. 

0020-7101/94/.$07.00 0 1994 Elsevier Science Ireland Ltd. All rights reserved. 
SSDI 0020-7101(93)00840-E 



40 I. Y. Guo et al. /ht. J. Biomed. Comput. 35 (1994) 39-46 

1. Introduction 

We have previously described the two-stage polynomial growth curve model [l], 
and documented a number of the advantages which accrue when orthogonal (or 
orthonormal) polynomials are used to define the within-individual (time) design 
matrix in this and other longitudinal data-analytic contexts [2]. While the program 
described in this paper allows several forms of the time design matrix, due to the 
advantages mentioned above and to allow easy comparison with Ware and Wu [3], 
who developed the theory behind our approach, we use the notation and formulae 
appropriate for orthonormal polynomials (so (P’@ = I where Q, is the time design 
matrix). Within this framework, the structure and distributional assumptions of the 
two-stage model may be summarized by 

%lai - MVN (@ai, ~~1) 

OLi - MVN (a, A) 

xi - MVN (Go, CPA@ ’ + u21) 

where xi (ai denotes the conditional distribution of xi given oi and, for example, ai 
- MVN (a, A) is read ‘oi has a multivariate normal distribution with mean or 
expected value (Y and covariance matrix A.’ Our earlier papers may be consulted for 
detailed descriptions of these quantities and of a PC program which: 

(a) determines the lowest degree polynomial adequate to provide an acceptable 
fit to this model; 

(b) estimates the parameters oi, cr, a2 and A; 
(c) computes confidence intervals for the elements of (Y; 
(d) provides confidence bands for the average growth curve (AGC); 
(e) produces plots of the AGC and its associated confidence bands. 

The purpose of the present paper is to extend this methodology - and our pro- 
gram - to accomodate growth prediction, i.e. to allow the user to estimate the value 
of the measurement under consideration for a ‘new’ individual at the 7th time point 
given measurements on that individual at T - 1 previous points in time and given 
the values of the measurements on N ‘similar’ individuals at all T time points. The 
times of measurement 11, f2, . . . , tT need not be equally spaced, but we assume that 
the time design matrix, +, is the same for each of the N + 1 individuals (the N 
individuals comprising the normative sample and the individual whose growth we 
wish to predict), i.e. that the tl, t2, . . . , tT are not individual-specific. 

Formally, we may state the problem as follows: given 

X NxT= 1 (1) 
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where qj is the value of the measurement for the ith individual (i = 1, 2, . . . , N) at 
time tj (j= 1, 2, . . . , T), and given the first T - 1 entries of 

(2) 

estimate the value of x,r. Our exposition is based on Ref. 3. 

2. Prediction of xvr 

The general solution of the prediction problem was previously outlined in Ref. 4 
where it was shown how x,T could be predicted in the context of Rao’s [5] one- 
sample polynomial growth curve model. The solution in terms of the two-stage 
model (which is also due to Rao, but will be referred to here as the two-stage model 
to distinguish it from his earlier model) will be briefly sketched as follows. We parti- 
tion the vector x, into its known and unknown parts, namely, X,1 : x, = 

[I 1 x: 
XT-1 = __ 
-_ 

XvT 
[ 1 (3) 

XvT 

so that x,’ is (T - 1 ) x 1, the observed values for the yth individual, and x,r is the 
(scalar) quantity to be predicted. The time design matrix + is partitioned similarly 
into the (T - 1) x P matrix 9) and the 1 x P matrix $, namely, 

(4) 

where D is the degree of the final polynomial growth curve model [ 11 and P = D + 1 
the number of parameters in this model. 

In terms of these submatrices the covariance matrix of the Xi, C = CPA@’ + a21 
can then be written I *,A@; c __ __ 1 (5) I *,A@; + u2 
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and from standard multivariate normal theory (e.g. Ref. 6, p. 442) the conditional 
mean and variance of _&,r given x,* are 

An estimator of x,r is then obtained by substituting estimates [I] of cz, e2, and A in 
Eq. 6; the estimated prediction variance results when these substitutions are made 
in Eq. 7. An approximate 95% confidence interval for x,r is 

&,r 1 XV*) f 2’ @(x,r 1 xv*) 

3. The program 

The program is essentially a combination of two previously documented pro- 
grams: one which estimates the parameters in the two-stage model [I] and one which 
computes the predicted values and their variances [4]. Since this documentation is 
available and since the program is interactive, only a brief overview of the program 
operation is provided here. 

The user is prompted for the name and location of an ASCII (or GAUSS) data 
set of the form of Eq. 1, containing the observations for the N individuals at the T 
times of measurement. She is then requested to enter the values for the ‘new’ individ- 
ual at the first T - 1 time points. The output includes D, the smallest degree ade- 
quate to fit the data; the estimated values of the elements of (Y and their 
corresponding 95% confidence intervals; the 95% confidence bands for the AGC at 
each time of measurement; the estimated value of &r; and an approximate 95% 
confidence interval for this quantity. The AGC and its confidence bands are then 
plotted and the predicted value for the first ‘new’ individual is highlighted. The user 
is then asked whether or not another prediction is to be made. If yes, the user is 
prompted for the observed values of the second ‘new’ individual at the first T - 1 
time points. The numerical output at this stage consists only of the predicted value 
and the prediction interval. The graphical output is the same as above. The program 
continues in this fashion until the user responds in the negative (‘N’) to the question 
concerning another individual’s prediction. 

Finally, as an option, the user may choose to apply the leave-one-out method to 
her data set. This method is described in the following section (see also Ref. 4). 

4. Ao example 

Our example is based on the data set previously considered in Ref. 7, consisting 
of mandibular ramus height measurements (in mm) for 12 male rhesus monkeys at 
T = 5-yearly intervals (coded 1, 2, 3, 4, and 5). This data set was also used in Ref. 
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4 to illustrate prediction in the context of Rao’s [5] polynomial growth curve model. 
Use of these data thus allows the comparison of the two approaches. We employ the 
leave-one-out (LOO) method in which N = 12 predictions are made; we leave one 
monkey out of the computations involving the normative sample at each stage and 
predict his value at T - - 5. Since the actual values at T = 5 are known for each mon- 
key, a comparison of these values with the predicted values provides some insight 
into the accuracy with which predictions are being made. This method was used in 
growth prediction contexts by Rao [8,9] and other applications were indicated by 
Lachenbruch [lo]. The results for the predictions based on Rao’s model [4] and the 
two-stage model are shown in Table 1. 

The root mean square error (RMSE) of prediction [4] for Rao’s model is 0.56, 
while for the two-stage model, RMSE = 0.68. It is seen that there is little difference 
between the two methods for this data set. In this case, however, the degrees of the 
polynomials adequate to fit the two models differed (D = 2 for Rao; D = 3 for two- 
stage), and the initial estimate of A was not positive definite, requiring a correction 
[ 11, which may call into question the appropriateness of the two-stage model in this 
situation [l 11. Accordingly, we present the results for another data set, one that has 
been extensively studied in the context of growth prediction by Rao [8,9], and one 
for which the same degree polynomial is adequate for both models (D = 1) and the 
estimate of A in the two-stage model is positive definite. It consists of ramus heights 
of N = 20 boys measured at ages 8, 8.5, 9 and 9.5 years. We predict the values at 
9.5 years of age given the earlier measurements. The results are shown in Table 2. 
For Rao’s method, RMSE = 0.65; for two-stage, RMSE = 0.72. We see again that 
there is little to choose between the two methods and, in fact, Rao’s method is slight- 
ly better than the two-stage model even though there is no reason to suspect the ap- 
propriateness of the two-stage model for these data. 

Table I 
Results for the predictions on the ramus height measurements of 12 rhesus monkeys, based on Rao’s 
model and the two-stage model 

Monkey T= 5 Actual Predicted (Rao) Predicted (two-stage) 

I 35.8 35.6 36.2 
2 43.5 43.4 42.9 
3 38.9 39.4 39.5 
4 44.4 43.5 43.8 
5 31.9 38.6 38.8 
6 43.8 44.0 43.4 
I 43.1 43.2 43.4 
8 44.0 44.8 44.8 
9 43.8 44.0 44.3 

IO 42.0 42.1 42.1 
II 43.8 42.9 42.3 
12 43.8 44.4 44.2 
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Table 2 
Results for the predictions on ihe ramus height measurements of 20 boys, aged 8-9.5 years, based on 
Rao’s model and the two-stage model 

Actual value at 
9.5 years 

Predicted (Rao) Predicted (two-stage) 

49.1 49.8 49.9 
48.4 48.6 48.6 
48.5 48.8 48.6 
41.2 41. I 46.1 
49.3 49.7 49.8 
53.1 53.9 54.0 
54.5 55.2 55.6 
52.1 51.1 50.9 
54.4 53.3 54.0 
48.3 48.1 48.7 
51.9 52.6 52.4 
55.5 54.6 54. I 
55.0 54.5 54.5 
49.8 50.1 50. I 
51.8 52. I 52.1 
53.3 53.6 53.1 
49.5 49.3 49.1 
55.3 55.8 56.1 
48.4 49.0 49.2 
51.8 52.9 52.6 

Rao [8,9] studied the performance of seven different predictors on this data set. 
He obtained RMSE’s ranging from 0.70 to 0.80, so that both methods considered 
above are competitive with his, at least in so far as this data set is concerned. We 
have also compared the methods on a number of other data sets. The general conclu- 
sion is that all methods produce generally comparable results - Rao’s method is 
(slightly) better in some cases, two-stage in others. Since Rao’s method makes fewer 
assumptions than the two-stage model (specifically, for Rao, the covariance matrix, 
C, of the observations, x, is arbitrary; while in the two-stage model it has the special 
structure C = 9AcP’ + a21, it may be preferred for general use. For more details 
concerning the structure of the two-stage model, see Ref. 1. 

5. Discussion 

Here we consider the results for the monkey data set in more detail: in particular, 
how they may be related to the phenomenon of tracking [3]. It is seen that the predic- 
tions are quite close for this data set, both for the approach based on Rao’s model 
[4] and the two-stage model [l]. This occurs despite the fact that these monkeys do 
not track especially well as judged by the values of the tracking indices we have im- 
demented, these being an index based on the kappa statistic [12], and two forms of 
the index developed by Foulkes and Davis 1131, denoted here by FDI [14] and FDII 
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[15]. In fact, their estimated values and the 95% confidence intervals for the cor- 
responding parameters are: 

Kappa (with three tracks): 0.24242 f 0.12990 

FDI: 0.39394 f 0.14902 

FDII (with D = 2): 0.53030 f 0.13018 

This is somewhat unexpected. Indeed, Ware and Wu [3] essentially equate track- 
ing with the ability to predict. Obtaining accurate predictions even when other 
indices indicate a lack of tracking is perhaps a reflection of the facts that tracking 
indices measure particular aspects of growth patterns, and small values do not 
preclude prediction. One can expect that prediction will be quite good when tracking 
is in evidence, but tracking is not a necessary condition for the ability to predict. For 
a more detailed discussion, see Ref. 16. 
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7. Appendix: Computer implementation 

A full set of PC programs for longitudinal data analysis, including this program, 
can be obtained on high density 5.25 II or 3.5 x diskettes (please request type) by sen- 
ding $25 to defray the cost of handling and licensing fees. These progams require 
a 80386- or 80486-based personal computer (PC) running the MS-DOS operating 
system (version 5.0 or higher is recommended, although versions as low as 3.3 will 
suffice). 80386 computers must also be equipped with a 80387 math coprocessor. At 
least 4 Mb of memory is required, and must be available to GAUSS386i, i.e. not in 
use by memory resident programs such as Windows. EGA or VGA graphic 
capabilities are required to display the color graphics; VGA or SVGA is suggested 
to optimally display the graphic results. Runtime modules are supplied with the pro- 
grams so that no additional software (i.e. compiler or interpreter) is required to run 
these programs. One can create and edit ASCII data sets for use by these programs 
using the full screen editor supplied with MS-DOS version 5.0. The programs are 
written and compiled using GAUSS386i, version 3.0, require no additional installa- 
tion or modification, and are run with a single command. When requesting the pro- 
grams, address inquiries to the corresponding author and make checks payable to 
Baylor College of Dentistry. 
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