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I examine games involving private contributions to a public good and show that less of the 
public good will be supplied if agents move sequentially than if they move simultaneously. If the 
agents bid for the right to move first, the agent who values the public good least will win. If 
each agent chooses the rate at which he will subsidize the other agent’s contributions, the 
subsidies that support the Lindahl allocation are the unique equilibrium outcome. I also 
describe two related subsidy-setting games that yield Lindahl allocations in n-person games with 
general utility functions. 

1. Introduction 

Several authors have examined the private provision of public goods in 
simultaneous-move games. The Nash equilibria in these games turn out to 
have several surprising and interesting properties. For details see Warr 
(1983), Bergstrom et al. (1986) and Cornes and Sandler (1986). In this paper I 
investigate games where agents decide on their contributions to a public 
good sequentially. In this sort of ‘Stackelberg contribution game’ the agent 
who moves first can credibly commit to his contribution in a way that is 
not possible in a simultaneous-move game. 

Admati and Perry (1991) analyze a game in which agents alternate 
contributions to a joint project. However, in their game the project is either 
completed or not, and no benefits are generated from a partially completed 
project. In this paper, by contrast, the focus is on the amount of the public 
good that is provided in the contribution game. 

It turns out that the ability to commit to a contribution exacerbates the 
free-rider problem: I show that the total amount of the public good provided 
in a sequential game is never larger than the amount provided in a 
simultaneous-move game. Along the way, I establish several other interesting 

Correspondence to: H.R. Varian, Department of Economics, University of Michigan, Ann 
Arbor, MI 48109-1220, USA. 

*This work was supported by the National Science Foundation Grant SE!%3800114 and a 
Fulbright grant. I wish to thank Ted Bergstrom, Leif Danziger, Joel Guttman, Robert 
McClelland, Ig Horstman, the participants at the Michigan-Western Ontario economic theory 
workshop and an anonymous referee for their comments and suggestions. I also wish to thank 
the Santa Fe Institute for their hospitality during the period of this reasearch. 

0047-2727/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved 
SSDI 0047-2727(93)01362-E 



166 H.R. Varian, Sequenaial contributions to public goods 

results concerning equilibria in sequential contribution games. In particular, I 
examine some mechanisms in which agents choose to subsidize the contribu- 

tions made by other agents, and show that these mechanisms provide simple 
and natural solutions to the problem of implementing Lindahl equilibria. 

2. An example with quasilinear utility 

It is instructive to start with a simple example with two agents. Each agent 
i divides his wealth wi between private consumption, x-,2_0, and a contribu- 
tion to a public good, g,2_0. The total amount of the public good is 

G =g, +gz. 
Each agent’s utility function is linear in his private consumption and a 

concave increasing function of G, so that the utility of agent i is 

U,(G) +xi=ui(g, +gJ + Wi-gi. 

Let gi be the amount of the public good that maximizes agent i’s utility 
when the other agent contributes zero. We call this amount agent i’s 
standalone contribution. We say that agent i likes the public good more than 
agent j if gi>gj, i.e. agent i would contribute more to the public good if he 
were the only contributor.’ We assume that Wi>gi so that consumption of 
the private good, xi, is always strictly positive. This makes it possible to drop 
wi, since it is an inessential constant in each agent’s utility function. 

2.1. The reaction function 

The reaction functions and Nash equilibria for the simultaneous contribu- 
tion game are reasonably well known. We sketch the derivation here for 
purposes of comparison with the sequential case. 

First, we derive the reaction function for agent 2. The first-order condition 
if agent 2 contributes a positive amount to the public good is 

U&l +gz) = 1. 

Letting G2(gl) be agent 2’s reaction function, we must have 

u;(g, + G&A) = 1. 

Since g2 is the amount that agent 2 contributes when g, =O, we have 

GAgJ =22 -g,. 

The derivation is valid only when agent 2 contributes a positive amount to 
the public good. Since g, 20, we must have 

‘It is easy to show that if one agent’s marginal willingness to pay for the public good is 
uniformly larger than the other’s, then his standalone contribution will be larger. 
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Fig. 1. Nash and Stackelberg equilibria. In the Nash equilibrium the player who likes the public 
good the most contributes everything and the other player free rides. In the Stackelberg 
equilibrium the first contributor may free ride even if he likes the public good more than the 

other agent. 

GAgA =max {E, -_g,, 0). 

This ‘kink’ in the reaction function is what makes the analysis interesting. 

2.2. The Nash equilibrium 

A Nash equilibrium is a pair of contributions (gl,g2) such that 

gl = Gr(gJ and g, = GLgJ 

A Nash equilibrium is depicted in fig. 1. In the case depicted, agent 1 likes 
the public good more than agent 2. In this case agent 1 contributes the entire 
amount of the public good and agent 2 free rides. If both agents have the 
same tastes for the public good, the reaction functions overlap and there is a 
whole range of equilibrium contributions, although there still is a unique 
equilibrium amount of the public good. 

2.3. The Stackelberg equilibrium 

We assume that agent 1 moves first. The utility of agent 1 as a function of 
his contribution is given by 

v,(gr)=&r +GZ(gl))-gl 
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utility 

91 

Fig. 2. Utility of the first contributor as a function of his gift. In this example, agent I’s optimal 
choice is to contribute zero, but if the ‘hump’ were higher, he would want to contribute R,. 

We can also write this as 

v,kl) = u1@2)-g, for gl %z, 
%kt)-g1 for g, 22,. 

It is clear from fig. 2 that there are two possible optima: either the first agent 
contributes zero and achieves utility uI(g2) or he contributes gI and achieves 
utility ~~(2,) -El. 

Case 1. The agent who likes the good least is the first contributor. In this 
case the optimal choice by the first player is to contribute zero. This is true 
since 

Case 2 The agent who likes the public good the most is the first contributor. 
In this case, either contributor may free ride. The easiest way to see this is by 
example. Suppose that agent i’s utility for the public good is ui(G)=ai In G, so 
that agent i’s standalone contribution is ai. Then the first contributor will get 
utility lna, -a, or lna,, and either of these may be larger. 0 
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If the agents have tastes that are very similar, then the first contributor 
will free ride on the second’s contribution. However, if the first agent likes 
the public good much more than the second, then the first agent may prefer 
to contribute the entire amount of the public good himself. 

Referring to fig. 1 we see that there are two possible Stackelberg equilibria: 
one is the Nash equilibrium, in which the agent who likes the good most 
contributes everything. The other Stackelberg equilibrium is where the agent 
who likes the good least contributes everything. This equilibrium cannot 
arise as a Nash equilibrium since the threat to free ride by the agent who 
likes the public good most is not credible in the simultaneous-move game. 

Note that it is always advantageous to move first since there are only two 
possible outcomes and the first mover gets to pick the one he prefers. Also 
note that the sum of the utilities is higher at the higher level of the public 
good. It follows that if you want to ensure that the higher level of the public 
good is provided, then you should make sure that the person who likes the 
good least moves first. 

3. Examples 

Here we briefly describe two examples of free riding in games involving 
sequential contributions to public goods. The first is a variation on the 
Samaritan’s dilemma as described by Buchanan (1975) Varian (1982) and 
Lindbeck and Weibull (1988). Consider a game between the young gene- 
ration and the old generation. The old generation has two choices: they can 
save for their retirement, or they can squander their earnings on their 
consumption. The young generation likewise has two strategies: they can 
support the older generation when it retires, or they can let them starve. 

A natural assignment of payoffs to these strategies implies that there are 
two Nash equilibria in this game. In one equilibrium, the older generation 
expects the younger generation to support them and they therefore choose to 
squander. Given the choice between letting the older generation starve or 
providing support, the younger generation chooses to provide support. In the 
other Nash equilibrium, the older generation expects the younger generation 
not to provide support, and so they prudently choose to save. Since they 
reach retirement with adequate resources, the younger generation chooses 
not to support them. 

However, only one of these equilibria survives when we take account of 
the fact that the older generation gets to move first. The unique subgame 
perfect equilibrium is for the older generation to squander, recognizing that 
the younger generation will be forced to provide for them in their old age. 
Even though the older generation cares more about its consumption that the 
younger generation does, the older generation still finds it optimal to free 
ride on the younger generation’s contribution. 
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The second example has to do with reproductive strategy in animals. 
Males and females normally contribute equal amounts of genetic material to 
their offspring. However, they often contribute unequally to the care of the 
offspring. The degree to which males and females provide care for their 
offspring depends, in part, on the timing of their choices. In mammals, the 
male is generally the first mover when he fertilizes the eggs of the female. 
Once the female egg is fertilized the male may well depart, leaving most 
childcare responsibilities to the female. 

In some species of fish, the childcare responsibilities are completely 
reversed. Among fish, the female is the first mover when she lays the eggs. 
The male moves second by fertilizing them. At that point the female may 
well depart, leaving the male to care for the eggs. 

Forsyth (1986) describes a particularly interesting case in which there is yet 
another level of free riding. There are two type of bluegill sunfish: large 
‘territorial’ males and much smaller ‘satellite’ males. The territorial males 
build nests in order to attract females, while the satellite males hover around 
the nest built by the territorial male. After a female selects a nest and releases 
her eggs, the satellite male rushes into the nest and releases its sperm at the 
same time as the territorial male attempts to fertilize the eggs. The territorial 
male then has no recourse but to care for the eggs, even though only a 
fraction of them carry his genetic material, since he is better able to fend off 
predators than the smaller satellite male. The female bluegill and the satellite 
male then blithely swim away, free riding on the childcare activities of the 
territorial male! 

4. Bidding for the right to move first 

Since the first mover always has an advantage in the sequential contribu- 
tion game, we might consider auctioning off the right to move first. If the 
first mover likes the public good much more than the second, then he will 
provide the entire amount of the public good anyway, so it is no advantage 
to him to be the first mover. The advantage to the first mover only arises 
when the players have similar tastes for the public good. In this case, each 
player would prefer to move first and free ride on the other’s contribution. 

Consider, then, the case where agent 1 likes the public good a bit more 
than agent 2, so that gr>g,, but not so much more as to contribute 
everything himself. Agent I can get utility uI(g2) by moving first and free 
riding. If he moves second, he gets utility ur(gr)-gr. The amount that he 
would be willing to bid to move first, h,, is therefore 

We assume that the bids are either thrown away or given to the other agent. 
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Since there are no income effects, it does not matter what is done with the 
bids. 

The difference between the bids of the two agents is 

(1) 

It seems plausible to suppose that the agent who values the public good 
more would be willing to pay more to move first. However, this is exactly 
wrong! Under our assumptions, the agent who values the public good feast is 
willing to pay more for the first-mover position. 

To see this, note that concavity of the utility functions gives us the 
following inequalities: 

Substituting these into (1) we have 

b, -bz 5 Cu;(~?r) + u;(g,) - ll(E, -Cd. 

Since a;@,)= 1, this simplifies to 

where the least inequality follows since gr >g2. 
It follows that b, <b,. That is, the agent who likes the public good the 

least will be willing to pay the most in order to move first. As we have seen, 
this will ensure that the largest amount of the public good will be provided. 
Essentially each agent is bidding for the right to free ride on the other agent, 
and it is better to free ride on someone who will provide a lot of the public 
good than someone who will provide only a little. 

5. Subsidizing the other agent 

In the game considered above, one agent is able to commit to a 
contribution to the public good before the other agent makes his choice. The 
contribution by the first agent affects the benefits that the second agent 
receives from his contribution. In this section we examine public goods 
games in which the agents can influence the cost to other agents of their 
contributions. In particular, we examine what will happen if one agent has 
the opportunity to subsidize the other agent’s contributions. 

For simplicity we consider the case of identical utilities. As we have seen, 
the Nash equilibrium amount of the public good, G”, is determined by the 
condition 
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u;(G”)= 1, 

and any set of contributions (g;,g;) such that g; +g;= G” is a Nash 
equilibrium. 

Suppose that agent 1 offers to subsidize agent 2’s contributions at the rate 
s2. The payoffs to the two agents become 

i&Y, +g,)-g, --s,g,, 

U2kl +g,)-_(I -s,k,. 

Since agent 2 now faces a lower cost of contributing than agent 1, agent 2 
will contribute the entire amount of the public good. The amount that agent 
2 contributes, G(s& is determined by the equation 

u;(G(s,)) = I- s2. 

Given our assumption that u2(G) is strictly concave, G(s,) will be a 
continuous increasing function. Agent l’s utility from offering the subsidy 
rate s2 is 

Originally agent 1 had utility u,(G”) -g; = ui( G(0)) -g;. The increase in 
agent l’s utility from offering the subsidy is 

ul(G(s,))-u,(G(O))+gl -s,W,b (2) 

As s2 approaches zero, this expression converges to g; 20. This implies that 
if agent 1 was initially contributing a positive amount, he would be strictly 
better off by offering to subsidize agent 2’s contribution by a sufliciently 
small amount. Intuitively, if agent 1 offers a very tiny subsidy to agent 2, 
agent 2 will end up contributing the entire amount of the public good in the 
second stage. But a tiny subsidy hardly costs agent 1 anything, which means 
that each agent always will want to subsidize the other agent’s contribution. 

Roberts (1987) and Bergstrom (1989) show that if a subsidy on contribu- 
tions to a public good is financed by an equal lump-sum tax, then each agent 
prefers that the other agent be subsidized. We have shown that each agent 
prefers to subsidize the other agent even if he must pay for the subsidy 
himself. However, the Roberts-Bergstrom result holds for general preferences, 
while our result only holds for quasilinear preferences. 

6. Equilibrium subsidies 

We have seen that each agent will prefer to subsidize the other agent in 
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our contribution game. Suppose that each agent simultaneously names a rate 
at which he is willing to subsidize the other agent. Then, given these subsidy 
rates, the agents play a simultaneous contribution game. What is the 
equilibrium of this game? 

In order to answer this question, we need some facts about the Lindhal 
allocation in this model. In the case of quasilinear utility there will be a 
unique amount of the public good that maximizes the sum of the utilities. 
This amount, G’, satifies the first-order condition 

u;(G’) + u;(Ge) = 1. 

This is just the familiar condition that the sum of the marginal willingesses- 
to-pay must equal marginal cost. 

Suppose that we choose rates s; to support the efticient amount of the 
public good: 

u;( G”) = 1 - s”l; u;(G’) = l-s;, (4) 

Note that (3) and (4) together imply 

Eq. (5) implies that the utility of agent 1 at the Lindahl allocation is 

u,(G’)-(l-s”,)g,-s;g,=u,(G’)-(1-s’,)G’. 

Hence s; = 1 -s; is effectively a Lindahl price for agent 1; accordingly, we 
call (s;,s;) the Lindahl subsidies. 

Theorem 1. The unique subgame perfect equilibrium of the subsidy-setting 
game yields the Lindahl subsidies, and the resulting allocation is the Lindahl 
allocation. 

Proof. If we have an interior equilibrium at the contribution stage, the 
amount of the public good must satisfy 

u;(g:+g;)=l -s,; u;(g: +gf)= 1 -sz. (6) 

Suppose that agent 2, say, is not contributing. There is no cost to agent 1 of 
increasing s2 up to the point where agent 2 is just on the verge of 
contributing. We assume that this has been done, which means that (6) will 
apply even in the case of boundary solutions. 

If agent 1 slightly increases the subsidy agent 2 faces, then agent 2 will do 
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all the contributing, and agent 1 will contribute zero. If we are in 
equilibrium, such a change cannot benefit agent 1. Using a limiting argument 
similar to that used to establish eq. (2) this implies 

ul(g:+g:)-(l-s,)gT-sZg:~Ul(g:+g:)-sZ(g:.+gti), 

After simplification, we have 

g:(si +s,- 1)ZO. (7) 

Similarly, if agent 1 reduces the subsidy rate that agent 2 faces, then agent 
I will do all the contributing. In equilibrium agent 1 cannot benefit from this 
change which implies 

u,(g:+g2)-(l-s,)g:--s,gt_2u,(g:+g:)-(l-s,)(g:+g:). 

Simplification yields 

gT(s, +s,- 1)SO. 

The same arguments applied to agent 2 yield 

&h+s2--1)>=Q 

63) 

(9) 

g:(sl +s,- 1)SO. (10) 

At least one of (gr,&) must be non-zero in equilibrium. This observation, 
together with (7)-(10), implies s1 +s2= 1. It follows from (6) that the resulting 
allocation is the Lindahl allocation. 0 

The intuition behind this result is rather nice: if agent 1 contributes 
directly to the public good, it costs him a dollar for each dollar he 
contributes. But if he contributes indirectly, say by giving a 10 percent 
subsidy, then it costs agent 1 only ten cents for each dollar that agent 2 
contributes to the public good. Each agent will continue to subsidize the 
other until the marginal cost of contributing directly is equal to the marginal 
cost of contributing indirectly. In the case of identical consumers, this is 
where each agent gives the other a 50 percent subsidy - which is the Lindahl 
price. 

Related literature 

There is a large literature on designing mechanisms to solve the public 
goods problem. Groves (1979), Groves and Ledyard (1987), Moore (1991), 
Ledyard (1992) provide surveys of various aspects of this literature. 
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The classic solutions to the free-rider problem are due to Groves and 
Ledyard (1977), Hurwicz (1979), and Walker (1981). However, the most 
closely related result to ours is Guttman (1978, 1987). In the first stage of 
Guttman’s game each agent announces a rate at which he will match the 
other agent’s contribution. In the second stage each agent contributes a ‘flat’ 
amount plus a matching amount tied to the other agent’s direct contribution. 
Guttman argues that the equilibrium of this game is the Pareto-efficient 
amount of the public good.* In Guttman’s game, the matching contribution 
goes directly to the public good; in my game, the subsidy is paid to the other 
contributor. However, the strategic nature of the two games is similar since 
each agent is effectively setting a price for the other agent’s contribution. 
Guttman (1986) describes some experimental evidence in his matching game. 

More recently, Jackson and Moulin (1992) describe a two-stage bidding 
game that yields a Lindahl-like allocation in the case of a discrete public 
good. In the first stage of the Jackson-Moulin game, each agent announces 
the total value of the public good. In the second stage, each agent announces 
his own valuation. The Jackson-Moulin game implements an efficient 
allocation in undominated Nash equilibrium, although they offer a variation 
that implements efficiency in subgame perfect equilibrium. 

In Varian (1989) I describe a subsidy-setting game for implementing 
Lindahl-like outcomes for completely general externalities problems. The 
mechanism in Varian (1989) is more general than the subsidy-setting game 
described here, but it is also more complicated. The nice thing about the 
subsidy game is that it is very natural. 

7. General utility functions 

I have described several results for public goods problems with two stages 
in which a price or a quantity is set in the first stage, and further quantity 
choices are made in the second stage. However, the quasilinear case is very 
special: do these results generalize to a model with income effects? 

Let uj(G,xi) be a utility function with G the level of the public good and xi 
the private consumption of agent i. As before, I assume that utility is a 
differentiable, strictly concave function. 

I first derive the form of the reaction function. Agent 2’s maximization 
problem is 

max u2kl +g2, x2) 

‘Guttman (1978) did not contain a complete proof of this result because of space limitations. 
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such that g, +x2 = w2, 

g,ZO. 

We can add g, to each side of the constraints and use the definition 
G=g, +g, to write the problem as 

max n,(G, x2) 
X2.G 

such that G +x2 = w2 +g,, 

In this problem, agent 2 is choosing the level of the public good, subject to 
the constraint that the level that he chooses is at least as large as the 
contribution of agent 1. 

Following Bergstrom et al. (1986) we note that this problem is a standard 
consumer demand problem except for the inequality constraint. Let f2(w) be 
agent 2’s demand function for the public good. It follows from the above 
remarks that 

Subtracting g, from each side of this equation, we have the reaction function: 

According to this reaction function, agent 1 will either contribute zero or 
the amount of the public good that he would demand if his wealth were 
wi +g, minus the amount contributed by the other agent. The following 
assumption is quite natural: 

Normal goods. Both the public and the private good are strictly normal 
goods at all levels of wealth. 

Given this assumption it is easy to see the general shape of the reaction 
function. When g, =O, agent 2 will contribute f2(w2). As g, increases, the 
contribution of agent 2 will decrease, but less than one-for-one. For some gf 
we may have f2(w2+g;)=O; at this point agent 1 contributes so much that 
agent 2 chooses to free ride. We call this amount the complete crowding out 

contribution. 
We summarize some properties of the reaction function in the following 

fact, the proof of which follows immediately from the assumption. 

Fact 1. The reaction function G,(g,) is a non-increasing function. It will be 
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strictly decreasing when it is not equal to zero. The function H(g,)= 
g, + G2(gl) is a strictly increasing function. 

As before, we can use this reaction function to calculate the Nash 
equilibria and the Stackelberg equilibrium. A Nash equilibrium is a solution 

(g%g2) to 

gn2=max{fz(~~,+s;)-g~,0}. 

A Stackelberg equilibrium is a pair (g;, G,(fi)) for which g”l solves 

maxn,(g, +maxLMw2+g1)-g1J$ w1 -gi). 
91 

We want to compare the solutions of these two sets of equations. This 
comparison is made simpler by noting that Bergstrom et al. (1986) have 
proved that under the normality assumption we have made there is a unique 
Nash equilibrium. There will also be one Stackelberg equilibrium for each 
ordering of the agents. 

8. Results for general utility functions 

We have three sets of results. The first set of results concerns who 
contributes and who free rides. The second set of results concerns the effect 
of redistributions of wealth. The third set of results concerns how the amount 
of the public good provided in the Stackelberg equilibrium compares with 
the amount provided in the Nash equilibrium. 

8.1. Free riding 

Fact 2. If the standalone contribution is Iess than the complete crowding out 
contribution (g, <g’,), then both agents must contribute in the Stackelberg 
equilibrium. 

Proof. Evaluate the right derivative of agent l’s utility function at g;. We 
have 

%k’,> Wl -&I <O, 

ac------ ax, 
The inequality follows since the derivative equals zero at g,, and gs >gi. 
[Recall that u,(g,, w1 -gJ is a concave function]. It follows that agent l’s 
utility will increase if he contributes less than g;, even if he is the only one to 
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contribute. The fact that the other agent will also contribute can only 
increase the first agent’s utility. Hence the Stackelberg equilibrium must 
involve contributions by both agents. 0 

Fact 3. Zf there is a Nash equilibrium with g; =O, then this is also a 
Stackelberg equilibrium. 

Proof. By definition of a Nash equilibrium, agent 2 is on his reaction curve, 
so we only need to show that agent 1 is on his reaction curve. If agent 1 
contributes 0, then agent 2 will contribute g2. Let g, >O be any other 
possible contribution by agent 1. Then we have 

UC,, WI) > ul(g, +%2, ~1 -gJ > ulk, + G2kA ~1 -sd 

The first inequality follows from the Nash assumption. The second inequality 
follows since G,(O) =g2 and G2(gl) is a non-increasing function. 0 

8.2. Wealth redistribution 

Fact 4. Suppose that we have a Stackelberg equilibrium (g;,g”,). Let 
(Aw,, Aw,) be a redistribution of wealth such that g,+ Awi2_0 for i = 1,2. Then 
the Stackelberg equilibrium after this redistribution is (g; + Aw,,g; + Aw,) and 
the total amount of the public good remains unchanged. 

Proof: The first-order condition for the Stackelberg equilibrium is 

%kl +g2, Wl -g1) 
ac 

.~ f;(w2+gl)_ ?u(g,-tg2~wl--l)=O 
ax, 

Let (Awi) be a redistribution of wealth and let agent i change his contribu- 
tion by Ag,=Aw, for i= 1,2. Note that since Awi+Aw2=0 we must have 
Ag, + Ag,=O. Now simply observe that if each agent changes his contribu- 
tion in this way the first-order condition is still satisfied. q 

Warr (1983) and Bergstrom et al. (1986) show that essentially the same 
result holds in an (interior) Nash equilibrium. Bergstrom et al. (1986) also 
investigate the boundary cases in some detail. In the two-agent context we 
are investigating here the analysis of the boundary cases is quite straight- 
forward so we simply state the result. 

Fact 5. Suppose that person 1 is contributing and person 2 is not. Then a 
redistribution from 2 to 1 will increase the amount of the public good, while a 
redistribution from 1 to 2 can decrease or increase the amount of the public 
good. 
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8.3. Comparison to the Nash equilibrium 

Theorem 2, The amount of the public good contributed by agent 1 in the 

Stackelberg equilibrium is never larger than the amount provided by agent 1 in 

the Nash equilibrium. That is, g”l Ig;. 

Proof: There are two cases to consider: the case where gl; = 0, and the case 
where g;>O. In the first case, it follows from Fact 3 that the Nash 
equilibrium is also a Stackelberg equilibrium. Hence, gl =g;. 

As for the second case, let V,(gr)=u,(g, + G2(gl), w1 -g,). The derivative of 
V,(g,) evaluated at the Nash equilibrium is 

= WG”, -g;) G’ (gn) <o 

C3G 
21 . 

This follows since &,/aG-du,/~?x, =0 at the Nash equilibrium and G’,(gy) is 
strictly negative when gi >O. This shows that agent l’s utility will increase by 
decreasing his contribution, from which it follows that g; <gff. 0 

Corollary. The total amount of the public good in the Stackelberg equilibrium 
is less than or equal to the total amount provided in the Nash equilibrium. 

Proof: According to Fact 1, the function H(g,) =g, + G,(g,) is an increasing 
function. Therefore 

f&i?) =sT + G,k;) =gl +& Is; + G&Y) = ff(g”,). 

The corollary follows. 0 

9. Subsidy-setting mechanisms for public goods with general utilities 

Here we describe some generalizations of the two-person, subsidy-setting 
game described earlier. Each mechanism is a variation on the compensation 
mechanism described in Varian (1989). 

9.1. Subsidy setting with more than two agents 

The subsidy-setting game described earlier only works for two agents with 
quasilinear utility. If there are more than two agents, each agent still prefers 
that the other agents’ contributions be subsidized - but each agent wants 
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someone else to do the subsidizing. However, by adjusting who subsidizes 
whom, it is possible to overcome this sort of free riding in subsidy setting. 

The trick is to have agent 1 set the rate at which agent 2 will subsidize 
agent 3’s contributions. Agent 2, in turn, sets the rate at which agent 3 will 
subsidize l’s contributions, and so on. More specifically, let sf be the subsidy 
facing agent j as set by agent i. As before, let x1 be agent l’s private 
consumption, and g, be his contribution to the public good. If there are 
three agents doing the contributing, agent l’s budget constraint will be 

Note that, unlike the two-person case, the prices agent i faces are indepen- 
dent of the prices he sets. 

In order to establish the result, we need a regularity assumption on 
demand functions: they must be locally invertible functions of the subsidy 
rates. This means that if agent 1 wants agent 2 to contribute a little more or 
a little less to the public good, there is some subsidy rate that he can set that 
will induce agent 2 to do this. Local invertibility will be satisfied if the 
derivative of each agent’s demand function with respect to price is not zero 
at the equilibrium.3 

Theorem 3. Let each agent have continuous convex preferences. Assume that 
the demand functions are locally invertible. Then the subgame perfect equilibria 
of the subsidy-setting game are Lindahl allocations. 

Proof. We prove the theorem for three agents, but the idea extends to an 
arbitrary number of agents. Let (x:,gT) be a subgame perfect equilibrium of 
this game, and let (xi,g:) be an allocation that Pareto dominates it. Since 
preferences are convex and continuous, we can assume that (x:,g;) is 
arbitrarily close to (x*,gt). 

Agent i chooses his own contribution directly and chooses the other 
agents’ contributions through the subsidy rates that he sets for them. If each 
agent prefers (x:,g:) to (x:,g?), then this allocation must not be affordable for 
each agent at the equilibrium subsidy rates. This yields three inequalities: 

Adding these inequalities gives 

3This is automatically satisfied if utility is quasilinear and strictly concave. 



H.R. Varian, Sequential contributions to public goods 181 

which shows that the Pareto-dominating allocation is not feasible. 
Next we show that the equilibrium is Lindahl. Agent 1 can choose g, 

directly and choose g, or g, indirectly, through the subsidy he sets for the 
other agents. Since the contributions are perfect substitutes in consumption, 
they must have the same equilibrium price. Hence we can define p1 = 
1 -sf-$=s: =s:. From this it follows that agent l’s budget constraint can 
be written as 

which shows that the allocation is Lindahl. 0 

It is worth observing that this mechanism is balanced both in and out of 
equilibrium. The proof that the equilibrium is Lindahl is essentially the proof 
given in Varian (1989) for general externalities, specialized to the case of 
public goods. 

9.2. Another for implementing Lindahl allocations 

Here is 
The message space in this mechanism is much smaller in the previous 
mechanism has name 

(a) The price-setting stage. Each agent i announces qi. The price 
for agent i’s contribution to the public is the average of numbers 
named by other agents: 

(b) The contribution stage. Each agent i chooses (xi,gi) to his 
utility subject to budget constraint 

xi+Pi&Ci=wi-Pi C fTj_Q(P)3 

j+i 

where the penalty term is given by Q(p) =(I;=, pj- 1)2. 
In the second stage we have each agent choosing a contribution to the 

public good for which he pays a price pigi. But agent i must also make a 
payment based on the amount of the good contributed by the other agents. 
Since the total amount of the public good is G=gi+xjzigj, we could also 
write agent i’s budget constraint as xi+piG = wi-Q(p). 
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It is easy to show that the Lindahl allocation (p;, G”) is an equilibrium of 
this game. To do this we only need to show that if every agent makes 
announcements that lead to the Lindahl prices, agent i cannot increase his 
utility by announcing something that yields non-Lindahl prices for the other 
agents. 

To prove this we first observe that since the Lindahl prices (~9) result in an 
efficient amount of the public good; the penalty term, Q(p), must be zero by 
the standard Samuelson efficiency condition.4 Suppose that agent i 
announces some numbers that change the price vector p” to p’ and that this 
change results in some possibly different amount of the public good, G’. Note 
that agent i can only affect the prices facing the other agents, not the price he 
faces. 

We have 

The first inequality comes from the fact that we start with a Lindahl 
allocation; the second inequality comes from the fact that Q(p’) 20. This 
argument shows that agent i is at least as well off announcing prices that 
lead to the Lindahl prices (p;) as any other prices; i.e. that Lindahl 
allocations are an equilibrium to the mechanism. In the appendix I show 
that there can be no other equilibria of the mechanism. 

I have described this mechanism in terms of setting prices. However, it can 
also be described in terms of setting subsidies, which makes it look more like 
the mechanisms described earlier. In the subsidy-setting framework, each 
agent i names a number 1 -si which turns out in equilibrium to be the rate 
at which agent i’s contributions are subsidized and the rate at which agent i 
subsidizes everyone else’s contributions. We denote the contributions by 
everyone except agent i by G _ i = cjzigj. The budget constraint facing agent i 
then can be written as 

( 
It can be shown that in equilibrium si+cjzl sj= 1, so that agent i ends up 
being subsidized at the rate 1 -si and subsidizing the other agents at the 
same rate. 

9.3. Related literature 

Danziger and Schnytzer (1991) have independently examined a subsidy- 

*We ~SSUIX that it is efficient to provide a positive amount of the public good. 
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setting mechanism similar in spirit to this one. In the Danziger-Schnytzer 
mechanism, each agent names a rate at which he will subsidize the other 
agents’ contributions. In my mechanism, the rate at which each agent 
subsidizes the other agents is set by the other agents. Furthermore, my 
mechanism requires a penalty function while a penalty is not necessary in the 
Danziger-Schnytzer mechanism. The Danzigner-Schnytzer mechanism is 
therefore a bit simpler in the case of pure public goods. However, I show in 
Varian (1989) that my mechanism also works for general externalities 
problems. 

10. Incomplete information 

Until now we have examined games where each agent knows the 
preferences and wealth of the other agent, Here we consider a model where 
each contributor has incomplete information about the other contributor. In 
our game the second contributor reacts passively, making his optimal choice 
given the first agent’s contribution. Hence it is irrelevant whether or not he 
knows anything about the first contributor. The only interesting uncertainty 
concerns the first contributor’s knowledge of the second contributor’s 
preferences. 

Consider the quasilinear model examined earlier. In this case all that is 
relevant from the first contributor’s point of view is the value of gZ - how 
much the second person will contribute if the first person contributes zero. 
Suppose that the first contributor has a prior distribution on how much the 
other person will contribute and seeks to maximize expected utility.5 

The expected utility of the first contributor is 

V,kJ = 7 Cu(gl +maxkT2 -_gly 01) -gJf(~J c&T2 
0 

= C4gJ -_g,lQt) + 7 C&Q -_gtlf(2,) &?z. 
91 

Differentiating this expression with respect to g, and simplifying yields 

v;kl) = 4(g,MgJ - 1. 

Note that when g,=O, the probability that gZ is less than g, is zero, so that 

5We assume that the von Neumann-Morgenstern utility function takes the quasilinear form. 
This is restrictive, but seems necessary for a simple analysis. 
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V;(O) = - 1. If g, is large enough so that agent 1 is certain that gZ is less 
than g,, then V;(gl)=u’i(g,)- 1. Hence, agent l’s utility as a function of his 
gift is similar to the shape depicted in fig. 2. Depending on the beliefs of 
agent 1 about agent 2’s maximum contribution, agent 1 will either choose to 
free ride, or to contribute an amount g: that satisfies the condition 

u;(gf)F(g:) - 1 = 0. 

This marginal condition is quite intuitive. If agent 1 decides to contribute 
a bit more of the public good, he will get u;(g:), but only if agent 2 has 
g2 <g:. Otherwise, agent 1 will get no incremental utility from his contribu- 
tion - since his contribution would just crowd out some of the public good 
that agent 2 would have contributed anyway. Hence the expected marginal 
utility of agent l’s contribution is u;(gr) times the probability that g2<g:, 
which is just u’,(g:)F(g:). The optimal contribution is determined by the 
condition that this expected marginal utility must equal the (certain) 
marginal cost of the contribution. 

How does this amount compare with gl, which is what agent 1 would 
contribute under certainty? Note that Vi(Sl) = OFF - 1 = IQ,) - 1. As 
long as there is some possibility that agent 2 will have g2>gl, we will have 
F(g,) < 1 and V;(g,) will be negative. If V,(gi) is concave, this implies that 
the equilibrium contribution in the presence of uncertainty is less than the 
contribution under certainty. Intuitively, the possibility that agent 2 may 
value the good more than agent 1 leads agent 1 to reduce his contribution to 
the public good, hoping to free ride on agent 2’s contribution. 

11. Summary 

We have examined some sequential games involving contributions to a 
public good. If preferences are quasilinear, then: 

(1) The sequential equilibrium of the contribution game will provide the 
same or less of the public good than the simultaneous-move game. 

(2) The player who likes the public good least will bid the most to move 
first. 

(3) Each player would like to subsidize the other player’s contributions. If 
both players choose subsidy rates and then play the voluntary contribution 
game, a Lindahl equilibrium is the unique subgame perfect equilibrium of 
this two-stage game. 

(4) The equilibrium of the sequential-move game is independent of small 
redistributions of wealth. 

(5) If the first agent is uncertain about the type of the second agent, he 
will tend to contribute less to the public good. 

In the case of general utility functions, the amount of the public good 
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supplied in the Stackelberg game will never be more than in the Nash game. 
Furthermore, there are several generalizations of the subsidy-setting game 
that yield Lindahl allocations. 

Appendix: Proof of uniqueness in the price-setting contribution game 

Here we provide a proof of the claim made in the text that the only 
equilibria of our price-setting mechanism are Lindahl allocations. We assume 
that for some agent the marginal rate of substitution between the private and 
the public good is infinite when G=O so that someone will always want to 
make a positive contribution to the public good. We also assume local 
invertibility of the sort described earlier: there is a set of prices that will 
result in any desired (small) change in behavior. See Varian (1989) for more 
discussion of the role of this assumption. 

Let (pr) be the set of prices that results from the equilibrium announce- 
ments (4:). We first show that in equilibrium we must have ~~=r pz= 1. 
Suppose not. We have assumed that at least one agent i will choose a 
positive amount of the public good. Suppose that this agent changes his 
announcement, qi. This will change agent i’s utility by 

Since agent i is contributing a positive amount the bracketed expression 
vanishes by the envelope theorem, leaving us with a term that is, by 
assumption, non-zero. Hence there is some change in i’s announcement that 
will increase his utility, contradicting the assumption of equilibrium. It 
follows that xi= 1 pt = 1 in equilibrium. 

Now suppose that the equilibrium allocation is not Pareto efficient. Then 
there is some other feasible allocation (xi, G’) that all agents prefer. By 
continuity and convexity, we can take this allocation to be arbitrarily close 
to the equilibrium allocation. Local invertibility implies that there is some 
announcement of prices that each agent can make that will implement this 
dominating allocation. If they choose not to do so, it must be because the 
dominating allocation violates their budget constraint, 

xii + piG’ > wi. 

Summing over the agents and using the fact that CC= 1 pz = 1, we have 

which contradicts the assumption that the dominating allocation is feasible. 
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