Int. J. Human—Computer Studies (1994) 40, 221-241

Solving Sisyphus by design

ArLaN BaLkany, WiLLiam P. BIRMINGHAM AND JAY RUNKEL

Electrical Engineering and Computer Science Department, University of Michigan,
Ann Arbor, MI 48109, USA

This paper demonstrates how the Domain-Independent Design System (DIDS) was
used to solve the Sisyphus room-assignment problem by viewing it as a
configuration-design task. We have developed a general problem-solving method for
configuration design, based on constraint-satisfaction techniques. This method
efficiently solves the Sisyphus problem, and provides strong guidance for knowledge
acquisition. This paper presents both the problem solver and knowledge-acquisition
support created by DIDS to solve the Sisyphus problem.

1. Introduction

Design problem solving finds solutions through a constructive process, where
solutions are generated, rather than chosen as in classification or diagnostic problem
solving. Construction is a more effective paradigm for design problems because the
search space is large; even for restricted design problems, such as configuration, the
search space can be exponential (Mittal & Frayman, 1989; Haworth, Birmingham &
Haworth, 1992). Thus, it is not feasible to enumerate solutions; the process of
creating these solutions is the hard part of the activity. When viewed in this hight,
design is ubiquitous, as many problems can be cast as design problems. For
example, planning and scheduling can be solved very efficiently with design problem
solvers.

The Sisyphus room-assignment problem, in our view, is a design task. The
problem, as we demonstrate later in this paper, has a very large search space.
Furthermore, design problem-solving methods (PSMs) (McDermott, 1988) are very
effective in solving the Sisyphus problem.

In particular, Sisyphus can be modeled as a configuration problem. In a
configuration problem, a set of needed functions is mapped to a part library such
that every needed function is supplied by a part, and constraints are not violated
(Balkany er al., 1993). Preferences (often given in the form of utilities) are used to
rank the solutions. In Sisyphus, rooms correspond to the part library, and people to
the functions. People are placed in rooms consistent with the constraints given in the
original problem statement. For example, if a smoker is assigned to a room, then
only another smoker may be assigned to that room. The preference used in Sisyphus
was to minimize distances between certain group members.

We have developed a model of configuration-design problem solving, called DIDS
(Runkel et al., 1992; Balkany et al., 1993) (Domain-Independent Design System),
that was used to solve the Sisyphus problem. DIDS uses a library of reusable
software elements, called mechanisms [after the work of Klinker et al. (1990)}, and
process models, which integrate mechanisms into an efficient PSM. A constraint-
satisfaction-problem (CSP) model was chosen for Sisyphus, using chronological

221
1071-5819/94/020221 + 21508.00/0 © 1994 Academic Press Limited

222 A. BALKANY, W. P. BIRMINGHAM AND J. RUNKEL

backtracking and constraint propagation (Sussman & Steele, 1980) to find solutions.
It is interesting to note that the same process model and PSM used for Sisyphus
have been used to solve other configuration-design problems.

In this paper, we describe our approach to the Sisyphus problem. We begin with
an overview of the DIDS system in Section 2, which is followed by a description of
the problem formulation in Section 3. In Section 4, we describe the knowledge-
acquisitton process. Section 5 discusses a number of issues, such as reusability and
computation efficiency, and Section 6 concludes the paper.

2. DIDS model

DIDS facilitates the design of knowledge systems through reusability. In studying
configuration-design systems (Balkany, Birmingham & Tommelein, 1993), we have
identified the following elements that were shared among sysiems: knowledge
Structures, operators on those structures that we call mechanisms, and models of
computation called process models. The combination of these elements forms the
DIDS model; a design-tool development environment based on the DIDS model has
been created, but is not described here [see Runkel er al. (1992) and Balkany et al.
(1993) for more information]. Each element of the DIDS model is discussed below.

2.1. MECHANISMS AND PSMs

Mechanisms implement techniques for solving design problems. Two mechanisms
may perform the same function (¢.g. part selection), but may differ in the algorithm
used or the structures of knowledge used. Each mechanism is implemented by a
code fragment, and is associated with a procedure for acquiring the domain
knowledge required for that mechanism to operate. Each mechanism is charac-
terized by a set of task features that describe when it should be used, and a
description of its inputs and outputs. For example, Figure 1 shows the pseudo code
and input and output parameters for a mechanism that performs part selection.

To be useful, mechanisms must be combined within a control structure, thereby
forming a PSM. For example, Figure 2 shows a PSM generated by DIDS to perform

select-part mechanism
Input: Function to be implemented, list of possible parts, constraints
Output: A part, from part list input, that implements the function input without
violating any constraints.
Returns: TRUE if a part was selected.
Algorithm: For each part in the part list:
test to see if it violates any constraints
if part does not violate any constraints,
then select it and return TRUE
If all parts violate a constraint,
then return FALSE.

FiGURE 1. A mechanism for selecting parts.

SOLVING SISYPHUS BY DESIGN 223

1. WHILE (design-not-done (Functions functions-not-assigned-parts)}
Begin
2. get-next-design-task (Functions functions-not-assigned-parts,
Functions function-to-assign)
IF {not (designed (Functions function-to-assign)})
order-domain (Functions function-to-assign, Preferences prefs)

WHILE (get-next-part (Functions function-to-assign, Part part))

Begin
6. add-part {Functions function-to-assign, Part part,
Functions functions-assigned-parts, Constraints consts)
7. IF (designed (Functions function-to-assign)} go to 8.
End
8. IF (not {designed (Functions function-to-assign)))
9. chronological-backtrack (Functions functions-not-assigned-paris,

Functions functions-assigned-parts, Functions function-to-assign)
End

10. display-solution (Functions functions-assigned-parts)

FIGURE 2. Sisyphus PSM.

the Sisyphus task. The mechanisms are highlighted in boldface, and the outermost
WHILE loop defines the loop over which the problem solver iterates. Mechanism
parameters are represented in the form: (parameter-type parameter-name
[, parameter-name...]). Mechanisms that execute conditionally are contained
within the IF and WHILE statements inside of the outer WHILE loop. A complete
description of the functions of the mechanisms used in the PSM, along with their
characterizations, is given in Appendix 1.

As mentioned previously, each mechanism has a procedure for acquiring the
knowledge used by it. These procedures, which are called Mechanisms for
Knowledge Acquisition (MeKAs), define a model-based knowledge-acquisition tool
for acquiring the knowledge structures used by a mechanism (Runkel & Birming-
ham, 1992). MeKAs are model based because they use the mechanism’s assump-

Legend

Abstract

Subfunction
Parts Parts —P

Relation

Single Function Parls Mutti-Function Parts

FIGURE 3. Two alternate decompositions of abstract parts.

224 A. BALKANY, W. P. BIRMINGHAM AND J. RUNKEL

Select-Part MeKA:

Infer: [none

Present:

Acquire: | Decompose the abstract part D into subfunctions]

Verify: I Warn if an abstract part has more than one parent I

FIGURE 4. A MeKA for a mechanism that selects parts.

tions concerning the knowledge structures available in the domain and the
relationships between these knowledge structures to guide knowledge acquisition.
For example, if a mechanism assumes that the domain will use abstract-part
decomposition, like the example in Figure 3, then the MeKA will ensure that all
abstract parts are the subfunction of at most one abstract part. This MeKA is shown
in Figure 4.

A MeKA has four elements (see Figure 4)—infer, present, acquire, and
verify—which correspond to the four-step process used to acquire knowledge for a
mechanism. The infer element uses a MeKA-specific inference procedure to
automatically derive the necessary knowledge. The present element of a MeKA acts
as a filter, presenting only the relevant elements of the knowledge base to the
domain expert. The information displayed provides enough details to give the
domain expert the appropriate context for the knowledge being requested, without
overwhelming him with the complexities of the knowledge base. The acquire
element describes how to acquire knowledge in the context of the currently active
portion of the knowledge base. The verify element describes how to check the
integrity of a newly acquired piece of knowledge.

2.2. KNOWLEDGE STRUCTURES

The DIDS model defines a set of ten knowledge structures that identify what
knowledge is required to perform configuration design. These knowledge structures
were identified by studying existing configuration-design systems (Balkany, Birming-
ham & Tommelein, 1993}, and we believe that they are sufficient to represent all
the domain knowledge necessary for any configuration task. Appendix 2 provides a
complete list of knowledge structures. Of the ten possibie structures, the following
were used to solve the Sisyphus task:

Parts are artifacts (things in the real world) that implement functions of interest
for a particular design. Parts have a name and function, and may have an
arbitrary number of attributes.

Functions define what is required of the artifact being designed. Functions have a
name and may have an arbitrary number of attributes.

SOLVING SiSYPHUS BY DESIGN 225

Constraints restrict the space that is searched to find a solution. Constraints are
defined over the attributes of parts and functions. In DIDS’s problem formula-
tions, the result of the design process cannot violate any constraints.

Preferences define what is preferred in solutions. Preferences provide a gradient
on the space defined by the constraints. DIDS represents preferences as utility
functions.

Note that instantiation of these knowledge structures depends on the process model
chosen. Section 2.3 illustrates how a constraint-satisfaction model uses these
knowledge structures, except for preferences, the use of which is described in
Section 3.2.2.

The knowledge structures also act as a set of primitives that are used to define the
functionality of mechanisms, the knowledge communicated between mechanisms,
and the domain knowledge that is used by mechanisms. All mechanisms are defined
by the operations that they perform on the knowledge structures; the inputs and
outputs of mechanisms must be in terms of the knowledge structures. For example,
a mechanism may take an abstract part (i.e. a function) as an input, and return a
part that implements it, or a mechanism can be given a set of parts and determine
the connections among them.

Defining mechanisms in this way has two advantages. First, the mechanisms will
be reusable and combinable. The definition ensures reusability, because it places no
restrictions on the specific domain concepts that must be supplied, or on the source
domain of the concepts. The only requirement is that the knowledge-type
classification of domain concepts is the same as the inputs to the mechanism. This
guarantees that a mechanism can be applied to any configuration task where the
domain contains the appropriate knowledge structures. The knowledge structure
definition also ensures the combinability of mechanisms since all the mechanisms
share a common representation of these structures. Therefore, any two mechanisms
that use the same knowledge structures can share information, and can be easily
combined. Second, this definition makes clear exactly which knowledge must be in
the knowledge base for each mechanism to operate. This information can be used to
guide the selection of mechanisms when constructing a PSM and to guide the
construction of a knowledge-acquisition tool for the method.

2.3. THE PROCESS MODEL
The process model provides both a mapping from knowledge structures to data
structures, and basic inference techniques to support a PSM. The mode! describes
how each knowledge structure is best represented for a particular problem. The
inference techniques support mechanisms, but are not usefully represented as
mechanisms because they do not require domain knowledge for their operation, and
they rely on a particular knowledge representation that is not portable. The
relationship between mechanisms and the process model is illustrated in Figure 5.
Different process models can be used for the same task. For example, configura-
tion design can make use of either a table (Haworth, Birmingham & Haworth, 1992)
or a constraint-network representation. Tables are best used for problems where
parts are easily organized as a hierarchy, and finding parts to cover high-level
functions is the primary consideration. The constraint network is applicable to
problems where problem solving is dominated by constraint satisfaction.

226 A. BALKANY, W. P. BIRMINGHAM AND J. RUNKEL

Process Model

Interface defined
by the knowledge
types

FIGURE 5. Relationship between the process modet and mechanisms.

For the Sisyphus problem, the constraint network was chosen because of the
simple, relatively non-hierarchic part library (set of rooms) structure. The constraint
network represents a dynamic constraint-satisfaction problem with preferences
(DCSPP), which is a variation of the dynamic constraint-satisfaction problem (Mittal
& Falkenhainer, 1990).

The DCSPP can be viewed as a graph, where variables are nodes and constraints
are arcs. Each variable has a domain, which is the set of values that the variable can
assume. Each constraint and variable has a predicate, called an in-list, that
determines when it is active. Thus, constraints and variables can change as the
design progresses. In our formulation, functions are variables, and have domains
corresponding to the ser of parts that implement that function. As described earlier,
functions and parts have attributes. Constraints are formed over these attributes. A
simple DCSPP network is given in Figure 6 for two functions and a part library,
which correspond to people and rooms, respectively, in the Sisyphus example. The
constraint is applicable it both people share a room, making its predicate TRUE.

Specifically, the network performs a special form of arc consistericy (Mackworth,
1977) called constraint propagation as variables are assigned values. It uses the
constraints and the known values of attributes to compute values of attributes whose
values are not known. Furthermore, arc- and node-consistency operations ensure
that the network is consistent; i.e. all values that are provably infeasible are
removed from domains. These operations, which are assumed by mechanisms, and
hence the PSM, provide supporting inference techniques. As node- and arc-
consistency operations are tightly linked to the DCSPP representation, they are not
especially reusable for other process models. Hence, these operations are not made
into mechanisms.

{113 ... 123b} {113 ... 123b}
Hans. . Marc
In-list: True Constraint: In-list: True

X ion: = r (Mar

FIGURE 6. Simple DCSPP network.

SOLVING SISYPHUS BY DESIGN 227

3. Problem formulation

In this section, we discuss how Sisyphus was solved using the DIDS model elements
described in Section 2. We begin with a list of assumptions about the problem
statement.

3.1. ASSUMPTIONS

The Sisyphus problem is intended to model a real-world situation. As such, there
are a number of statements that require interpretation. The following are the
assumptions made:

1. All problem requirements can be classified as constraints or preferences.
Constraints are conditions that must be satisfied, such as ‘““a smoker and a
non-smoker may not share a double office”. Preferences are desirable solution
characteristics that can be partially satisfied, such as “the heads of large
projects should be close to the head of the group and the secretaries”.

The central offices are C5-116, C5-117, and C5-119.

Doorways are assumed to be in the middle of the wall between the office and

the hallway. For room C5-119, the doorway is in the left wall, and for C5-123,

it is on the bottom wall in the floor plan (see Section 3.2.2 for ficor plan).

4. The hacker attribute is irrelevant; it is not explicitly mentioned in any of Siggi
D.’s annotations. In addition, in the two pairings that are said to create
synergy (Werner L./Jirgen L., and Harry C./Michael T.) both are hackers.

5. The works-with attribute is irrelevant. It does not appear in any of the
constraints or preferences, and crosses project boundaries.

Wt

3.2. FORMING THE DSCPP

Each person is modeled as a function whose part library consists of the rooms in the
chateau. The function (people) and part (rooms} models are given in Figure 7.

Names are used to identify people and rooms. The role, project, room size and
smoker attributes on people, and the central and size attributes on rooms appear in
constraints. These attributes are determined during knowledge acquisition, making
the system robust with respect to changes in the function or part models.

3.2.1. Constraints
All constraints used in our formulation of the problem are given in Figure 8. (The

numbers in square brackets refer to Siggi D.’s annotations.) As constraints are
dynamic, each has an in-list.

Function attributes: Part attributes:
Name Name

Role Central

Project Size

Smoker

Room size required

FiGure 7. Function model and part model in the Sisyphus problem.

228 A. BALKANY, W. P. BIRMINGHAM AND J. RUNKEL

a) The room should not already be occupted.t

b} Small rooms can hold only one person

¢) The group head should have his/her own large room [1a]
d} A secretary should have a large room. [2a]
€) A manager should have a central room. [3a]
f) A manager should have a small room. [3a]
g) A project leader should have small room [Note 1]

h} If a room is large, both or neither occupants should be secretaries. [2a]
i} If a room is large, both or neither occupants should be smokers. [7a}

j) Researchers must have a large room

FiGuRe 8. Constraints of the Sisyphus problem. ¥ Large rooms were represented internally as a pair of
single rooms, ¢.g. 117a and 117b. This representation had no impact on the solution.

In the constraint network, both variables and domain values may have attributes.
A variable has a special attribute, called velue, that represents the value that has
been assigned to it. Some examples are the following: Monika.=smokes refers to
the smokes attribute of the variable representing Monika. Monika.value
represents the value (the room) that has been assigned to the Monika variable.
Finally, Monika.value.central refers to the central attribute of the value
that has been assigned to the Monika variable, i.e. whether Monika’s room is
central.

At the beginning of the problem, each persen can potentially go into any room;
the domain of each person is all the rooms in the chateau. During problem solving,
the domains are pruned using the operations discussed previously.

We now consider the representation of three of the Sisyphus constraints in DIDS,
(The others are formulated in a similar manner.) The constraint that the group
head must have a large room is represented as follows:

{Thomas.value.size is-equal ‘'large'"')

This constraint would be repeated for every group head, if there were more than
one. The *value™ attribute of the variable, Thomas, represents the room that
Thomas has been assigned to. The “size’ attribute of this room is, of course, the
room’s size. A similar constraint is used for project leaders, as shown below:

(Katharina.value.size is-equal '*small'’')

The constraint that a room should not already be occupied is implemented by
testing if any two people occupy the same room after each room assignment, such
as:

{Thomas.value not-equal Monika.value)

Through constraint propagation, a person would never actually be assigned to a
room that is already occupied. This constraint is duplicated for every possible pair of

15
people. Since there are 15 people, there are ()) =105 constraints of this form.

SOLVING SISYPHUS BY DESIGN 229

Finatly, the constraints on pairs of people in large rooms must be duplicated for
every possible pair of people in every large room. For example, to ensure that both
roommates are or are not smokers, we use constraints of the form:

{Thomas .smokes is-equal Monika.smokes)
with the following in-list:

({{Thomas.value is-equal Rmll7a) AND (Monika.value is-equal
Rmll7b)) OR

{ (Thomas.value is-equal Rmll7b) AND (Monika.-value is-equal
Rmll7a)))

This means that if Thomas and Monika share a large room (which makes the in-list
TRUE), we test if both or neither are smokers. Since there are 105 possible pairs of
people, and six large rooms, we must use 105 * 6 =630 constraints of this form.
Because of the in-lists, however, only a small fraction of these constraints are active
at any one time.

Two things need to be considered: acquiring the constraints and checking them
(run-time efficiency). These constraints are generated automatically by a knowledge-
acquisition tool from a simple format, as discussed in Section 4. Furthermore, not all
constraints will be checked during a design, only those that are active. Thus, it is the
number of constraint checks that is important to run-time efficiency, not the actual
number of constraints. The number of checks made is a function of the problem.
Thus, the size of the network is not a significant issue. A more detailed discussion is
given in Section 5.2.

When backtracking is used in a CSP, a given domain value may be tried and
retracted many times. If it can be determined in advance that this domain value
cannot be used successfully, considerable time may be saved. Constraint propaga-
tion accomplishes this, using constraints between variables to determine domain
values that can never satisfy them, and pruning these values. In some cases,
constraint propagation prunes variable domains so drastically that no search is
required to produce a solution. (See the discussion in Section 5.2.)

3.2.2. Preferences

The preferences in this problem specify the closeness of the rooms assigned to
various people. All preferences are of the form “A should be close to B”.
Preferences provide a way of ranking the desirability of different room assignments
that satisfy the constraints. The preferences used are given in Figure 9, with
references to Siggi D.’s annotations given in square brackets.

) Group head should be close to group members. [1a]
b) Group head should be close to secretaries, [2a]
¢} Manager should be close to group head. [3a]
d} Manager should be close to secretaries, (3a]
e) Project heads should be close to group head. [4a-6a]
) Project heads should be close to secretaries. {4a-6a)

FIGURE 9. Preferences of the Sisyphus problem.

230 A. BALKANY. W. P. BIRMINGHAM AND J. RUNKEL

C5-123 C5-122 C5-121 €5-120

CS-IE_ C5-114] C5-115 | C5-116 C5-117

FiGURE 10. A path on the chateau’s floor plan.

In order to reason about preferences involving closeness, we need a numerical
representation of how well the close-to preference is satisfied. We define the
distance between offices as the length of the shortest path through hallways from one
doorway to the other, as shown in Figure 10.

Let p; be the closeness preference that applies to person [and person j. Each
preference p;; states that person i and person j should be assigned rooms that are
close to each other. We define the wiolation level for person i as the sum of squares
of the distances between person i and person j, for each preference concerning
person i:

violation level, = 2 [distancei.jlz
Pij

The violation level is a measure of how many and how severely the room assignment
for person i “violates” preferences. This is a least-squares criterion that tends to
favor room assignments without severe preference violations. In our solution to the
Sisyphus problem, a greedy algorithm was used, in which rooms with lower violation
levels (that minimize the preference violations) are tried first. This ordering
guarantees that the first value found for a variable that satisfies the constraints will
be the most preferable in the domair.

For a complete solution that satisfies all constraints, we define the total violation
level as the sum of the violation levels over all the preferences. The total variation
level gives us a metric for comparing different solutions that satisfy all the
constraints.

Note that since this is local optimization, it is valnerable to the horizon effect, so
global optimization is not guaranteed. Still, the algorithm uses preferences to
produce a solution that is probably better than a solution produced by an algorithm
that did not take preferences into account.

SOLVING SISYPHUS BY DESIGN 231

Qur results, described in the next section, indicate that preferences have little
effect in a highly constrained problem, such as room assignment. This is because
constraints have precedence over preferences. Thus, as the number of solutions
approaches one, the effect of preferences degrades to having no effect at all. On
other runs of the room-assignment problem with fewer constraints, and therefore
more solutions, preferences did improve the solutions.

3.3. SOLUTIONS AND RUN TIMES

A discussion of the solution to the original problem is given in the following
sections.

3.3.1. The original problem
The solution to the Sisyphus problem produced by DIDS is given in Figure 11,
which is the same as Siggi D.’s solution.

3.3.2. The extended problem
A second problem was given in which Katharina N. left and Christian I. joins the
group. Christian I. works on the same project as Katharina N. did, and smokes.
Replacing Katharina N. by Christian I. renders the original problem unsolvable
without violating a constraint, as either a researcher must be placed in a single room
or a smoker and non-smoker must share a room. To solve the extended problem, we
decided to place the smoking managers in the same large room, and leave all other
constraints the same.

Changes to the data to handie the change in personnel were trivial. The following
changes were made through the knowledge-acquisition tools:

1. Katharina's name was replaced by Christian’s in the list of variables. (The
domain remains the same as Katharina’s; all of the rooms.)

2. Christian’s attributes were defined by setting his role to researcher, his project
to MLT, and his smoker attribute to TRUE.

3. The preferences that involved Katharina were removed from the knowledge
base. These specified that Katharina had to be close to Thomas D., Ulrike U.,
and Monika X,

There was a change made to the PSM. The PSM requires that all constraints be
satisfied for a valid solution. Since this is not possible, we decided to turn off various
constraints, thereby relaxing the problem and allowing a solution. Turning off a
constraint is simple: a variable (valid) is created for each class of constraint, and is
added to the in-list of each constraint; the truth value of this variable is controlled

Katharina_N Rm113 Hans_W Rm114
Joachim_1 Rmil15 Eva_l Rmllé
Michael _T Rml23 Harry_C Rm123
Angi W Rm122 Marc_M Rmi122
Jurgen L Rmi21 Werner_L Rmi121
Uwe_T Rm120 Andy_L Rm120
Ulrike_U Rm119 Monika_X Rmll9
Thomas_D Rmi17

FiGure 11. DIDS solution to the Sisyphus problem.

232 A. BALKANY, W. P. BIRMINGHAM AND J. RUNKEL

Christian_I Rmi123 Hans W Rm123
Joachim_I Rml15 Eva_l Rmlle
Michae] T Rm122 Harry_C Rm122
Angi_W Rmi21 Marc M Rm121
Jurgen_L Rm120 Werner_L Rm120
Uwe_T Rmi114 Andy_L Rm113
Ulrike_U Rml19 Monika_X Rm119
Thomas_D Rmil7

FiGURE 12. DIDS solution to the extended problem.

by the PSM. Thus, making valid false for a class of constraints will effectively
remove them from consideration during problem solving. This change was made by
hand.

To produce a solution for the extended problem, the PSM, when it has
determined that there is no solution, turns off constraints j (programmers in large
rooms), and—for smokers only—g (project leaders in small rooms). The new PSM
yiclded the solution shown in Figure 12.

4. Knowledge acquisition

The process model and knowledge structures provide a strong model for the
knowledge-acquisition task. In particular, a knowledge-acquisition tool is associated
with each knowledge type. Each tool provides an interface that facilitates capturing
the knowledge type with which it is associated. Further, in some cases, inferences
can be made to check the correctness and completeness of the acquired knowledge.
The process model defings how the acquired knowledge should be represented as
specific data structures that the PSM can use.

The assistance provided by the DIDS knowledge-acquisition tools, as dem-
onstrated in this section, is substantial. For example, only a few high-level
constraints need be entered, instead of the hundreds required by the constraint
network. Design problems are generally more knowledge intznsive than the
Sisyphus problem. As described by Runkel and Birmingham (1992), DIDS requires
a sophisticated set of heuristics to create knowledge-acquisition tools with the power
of modei-based tools typically used in design problems, such as CGEN (Birmingham
& Siewiorek, 1989) and SALT (Marcus, 1988). This is an area of ongoing research.

In the following sections, we describe how knowledge was acquired for the
Sisyphus task. In each case, we show a representative piece of each knowledge type
acquired using the DIDS knowledge-acquisition tools. The following sections
assume that the knowledge engineer has determined the knowledge structures
required to solve the problem. Each knowledge-acquisition tool is then invoked
from a menu. We are currently developing task-level modeling tools that will
automatically determine both the knowledge structures required for a problem and
the sequence in which to invoke the knowledge-acquisition tools.

4.1. DEFINING ROOMS AND PEOFPLE

The first step of the knowledge-acquisition process is defining the rooms and people.
This includes specifying the attributes and providing instances. Figure 13 shows
Werner’s definition. Since people are considered functions in the DCSPP model,

SOLVING SISYPHUS BY DESIGN 233

Constraints
[InList
TRUE
I
5
Attribmte Type Domsin Valup
smoker CHARACTERISTIC NIL Ko %
Pt GHARACTERISTIC NIL RESPECT
rale CHARACTERISTIC NIL RESEARCHER
name CHARACTERISTIC NIL WERNER L
\ O A

FIGURE 13. Defining a person.

they have an in-list. Like all occupants of the castle, Werner’s in-list is TRUE since
he must always be considered in the problem.

The knowledge-type functions has attributes, and the Function knowledge-
acquisition tool allows the knowledge engineer to define attributes for each person.
In an earlier step, not shown here, the class of attributes that are apphed to all
people was defined. In Figure 13, Werner’s attributes are defined. A frame like the
one in Figure 13 is generated for each person in the castle.

Rooms are defined in a similar way to people. A frame is generated for each
room, similar to the one in Figure 14, where room 117a is defined. The figure
assumes that the attributes for each room have been previously defined. As explained
in Section 3, rooms that hold two people are split in two, denoted as ‘a’ and ‘b’

During the knowledge-acquisition process, the person and room instances can be
accessed in several ways via a collection of browsers, as shown in Figure 15, The
function and part browsers organize information alphabetically by instance. Clicking
on an instance provides access to a part or function frame.

In addition, the relationships between people and rooms can be shown. In Figure
16, the rooms that Hans can be assigned to are displayed. The tool that displays

r ’ Cut Aow] [Now Row | (Paste How)(0K)
Altribule Type Dagmain Value
yize CHARACTERISTIC NIL LARGE O
reatrl CHARACTERISTIC HIL) 1]
oame CHARACTERISTIC NIL CS_117A
n
\ o

FIGURE 14, Defining a room.

234

A. BALKANY, W, P, BIRMINGHAM AND J. RUNKEL

Parts Functions

c5_113 andy_I |7

c5_114 angi_w

c5_115 eva_i

t5_116 hans_w

c3_117a harry_c

cS_117h joachim.i

€¢5_119a Jurgen_l

c5_119b katharina_n

c5_120a marc_m

c35_120b michael_t

c5_121a monika_x

¢5_121b thomas_d

cS_122a ulrike_u

c5_122h uwe_t

¢5_123a werner_| | |

<

([New][Delete) (Formats) |(New] (Delete) (Formats)

A, D A

FIGURE 15. Part and function browsers.

these relationships is the Hierarchy Browser; so called because parts and functions
commonly form a hierarchy in the design domain (Haworth & Birmingham, 1992).
In general, the hierarchy may be arbitrarily deep, and the browser is able to display
For the room-assignment problem, however, a two-level

any such hierarchy.
hierarchy is sufficient.

E[J=— Hierarchy Browser =01

&l

[

FIGURE 16. Function-part relationship.

SOLVING SISYPHUS BY DESIGN 235

Fornmla (hamy_r.value &= thomas_d.vele)

. TRUE
In-List

L)

Ficure 17. Person incompatibility defined as a constraint.

4.2. DEFINING CONSTRAINTS

Once people and rooms are defined, constraints can be defined. As defined by the
constraint knowledge structure, there are two parts to the constraint definition: the
in-list and the formula. Thus, the knowledge-acquisition tool provides facilities for
both parts.

Figure 17 shows a constraint stating that Harry.C and Thomas_D cannot be
assigned to the same room position. Remember the two positions in a double room
are represented by decomposing it into two parts. The constraint in Figure 17
ensurcs that Harry_C and Thomas_D are not assigned to the same part, i.e.,
room position.

A compatibility constraint is defined in Figure 18. It was generated from the
problem statement requiring that the two secretaries share the same large room.
The constraint in Figure 18 represents a portion of this problem statement by
requiring that when Uwe__T and Thomas_D share room C5-123, they must either
both be secretaries or neither of them may be secretaries. The in-list specifies that
the constraint applies only when Uwe_T and Thomas_ D are assigned to room
€5-123, and the formula specifies that either both or neither of them must be
secretaries. In order to completely represent the problem statement, a similar
constraint must be generated between every pair of people and all possible large
room assignments of these people.

5. Discussion

In this section, we discuss the adequacy of DIDS’s representations, the computa-
tional complexity of the solution technique, and reusability issues.
5.1. REPRESENTATIONAL ADEQUACY

The DIDS model has been shown to be general enough to represent and solve not
only the Sisyphus problem, but also a wide range of other configuration-design

Formula {(themes_d. 101 = 'secietary) AND {uwe_1.10le = 'secrtry)) OR
((tomas_g mle |= 'sacmetary) AND {use_{.mle k= 'secretary)))

. ((domes_d.velie = ¢5_1238) AND (uwt_Lyelue =c5_123)) OR
In-List ((tomeas_d value=¢5_123b) AND (uve_tvalue =¢5_L23¢)))

FIGURE 18. Person compatibility defined as a constraint,

236 A. BALKANY, W. P. BIRMINGHAM AND J. RUNKEL

problems, although some customization was needed for this problem. This cus-
tomization regarded the preferences. DIDS assumes a piecewise linear utility
function, and the room-assignment problem’s preferences are not conveniently
represented this way. So, the closeness preferences were modeled s a list of pairs of
people who should be close to each other. The sum of squared distances was used
for selecting the least-squares alternatives, which required a table of the distances
between rooms.

It is possible that a small set of preference criteria could provide good coverage of
this general type of problem. Minimizing and maximizing distances are natural
preferences when a problem involves positions. In other domains, minimizing the
cost of the components is a commonly used preference. The DIDS approach allows
these preferences to be encapsulated into mechanisms, which can then be
incorporated into the PSM. Knowledge acquisition for preferences would then
involve selecting the preference criteria from a list of alternatives, and then using
the selection to retrieve the corresponding mechanism(s).

5.2. COMPUTATIONAL COMPLEXITY

We did not solve the problem the way Siggi D. did. A more search-intensive
approach was used, with chronological backtracking through the search space
defined by the CSP formulation. Constraint propagation was used to prune
variables’ domains of values that could never participate in a solution. This reduced,
or eliminated in some cases, the amount of backtracking required, making the
search more efficient. We provide an analytic formulation of the run time of our
approach below.
The running time of our algorithm depends on the sum of two factors:

A the cost to enumerate solutions, and
B. the cost to prune domains.

The worst case for a general CSP, where a sizeable portion of the search space is
searched with backtracking (factor A}, has been shown to be NP-complete (Mohr &
Henderson, 1986). Pruning domains is quadratic in the size of the domains in the
worst case (Mohr & Henderson, 1986). There is also an interaction between pruning
and search: successful pruning will drastically reduce the size of the space to search.
The running time will fall somewhere on a spectrum between two cases: the general
problem where pruning is not performed, and the DIDS case where pruning is
aggressively performed. We examine each case in turn.

Case 1: The general problem

In the general problem, constraint propagation is not performed so there is little or
no pruning. Here, the cost for factor B is eliminated, and since the search space is
exhaustively searched, factor A gives the running time. We can calculate the size of
this space for the Sisyphus problem with no pruning (the size corresponds to run
time with some constant factor). There are 15 people, six double rooms, and four
single rooms. The number of ways of filling the first double room is:

(5) wrere () =mew

SOLVING SiSYPHUS BY DESIGN 237

which is the number of ways of choosing k items from a set of n, without regard to
order.
For the second double room, there are 13 people left, so the number of ways of

2

After the six double rooms have been filled, there are 4! ways of putting the last 3
people in the 4 single rooms. Thus, the size of the search space in Sisyphus is:

(15)x(lB)x(ll)X(Q)x(?)x(5)x41_15!><13!x11!x9!><7!><5!x4!
2 2 2 2 2 2 T2 13X 111X 9 X 7! X 5! x 3!
151 X 4!

=E§Z;zsq7xm”

In general, for n people (n even), and all double rooms, the size of the search space

is:
w2 o2 a1 (n —4)!
I}l(z) X0 2 X2 xzzx(n-ﬁ)l

< (n—2)! « n!
2Ax(n—4)" 2(n-2) 2"’2

= O(n!)

Case 2: DIDS
In this case, there is extensive pruning, with a corresponding reduction in the
amount of search required. Thus, factor A is greatly diminished, and factor B
dominates the running time. Two types of pruning are done: node consistency and
arc consistency (constraint propagation). Node consistency involves pruning do-
mains of values that violate a constraint on a single variable; a unary constraint. This
takes O{nua), where n is the number of nodes (variables), u is the number of unary
constraints, and a is the average domain size. Pruning using arc consistency is shown
by Mohr and Henderson (1986) to be o(ea?), where e is the number of constraints.
O(ea”) and O(nua), both worst case running times, are a vast improvement over
the O(n!) running time in the general case. Empirical evidence from our runs of the
Sisyphus problem indicate that the running time of the DIDS solution is dominated
by pruning.

5.3. REUSABILITY

Much of the power of the DIDS approach comes from the reuse of mechanisms,
MeKAs, and PSMs. Reuse is facilitated by two factors. First, the domain-
independent nature of mechanisms and PSMs allows them to be reused for different
domains, with a knowledge-acquisition tcol to supply the needed domain knowl-
edge. Second, the atomic functionality of the mechanisms and standardized
knowledge structures allow mechanisms to be recombined in different ways for
different problems, thus facilitating reuse.

An example of mechanism reuse can be seen in the DIDS solution to the VT task.

238 A. BALKANY, W. P. BIRMINGHAM AND J. RUNKEL

The VT elevator-configuration task {(Marcus, Stout & McDermott, 1987) involves
selection of models of parts to construct an elevator, subject to constraints and cost
preferences. The PSM for this sclution was composed entirely of mechanisms taken
from the PSM used to solve Sisyphus. {The mechanism to reorder domains from the
Sisyphus PSM was not used in the VT PSM, because the knowledge-acquisition tool
preordered VT's parts by cost.) We are continuing to apply the mechanisms to new
tests to determine the degree of reuse.

6. Conclusion

Solving the Sisyphus room-assignment problem requires searching a large space; the
size of this space is O(n!) where »n is the number of people. Thus, the problem is
ideally cast as a design problem, since design techniques are created specifically to
deal with large search spaces.

The PSM described in this paper formulates the Sisyphus problem as a
constraint-satisfaction problem. People are variables, and rooms are values that can
be taken by people. By exploiting properties of the constraint network that results
from this formulation, we are able to solve the room-assignment problem very
efficiently (search space of approximately O(ea”), where e is the number of
constraints and « is the number of rooms}.

Furthermore, this formulation provides a strong model of problem-solving
behavior that can be used by knowledge-acquisition tools to ease the knowledge-
acquisition task. The combination of the knowledge-acquisition tools and the
constraint network provide a powerful system for solving complex design tasks.

The knowledge-acquisition tools and the PSM were constructed from a library of
reusable elements in a framework called the DIDS system. The eclements are
composed of mechanisms, common knowledge structures, and a process model. The
process model provides a set of basic inference methods and data structures to
facilitate mechanism and knowledge structure reusability. In fact, the PSM (which is
a combination of mechanisms that solves a family of tasks) has been used for a
variety of other design problems.

This work was funded, in part, by a gift from Digital Equipment Corporation and by the
National Science Foundation Grant MIPS-905781. The opinions expressed in this paper are
those of the authors, and do not necessarily reflect those of Digital Equipment Corporation or
the NSF. Manjote Haworth was instrumental in developing the constraint network.

References

BarLkany, A., BIRminGHAM, W. P., MaxiM, B. R., Runker, J. T. & TommELEIN, 1. D.
(1993). DIDS: rapidly prototyping configuration design systems. The Journal of
Intelligent Manufaciuring (in press).

BALKANY, A., BirMiNgHAM, W, P. & TommMEerein, 1. D. (1993). An analysis of several
design tools. Artificial Intelligence in Engineering, Design, and Manufacturing (in press).

BirMmINGHAM, W. P. & SiEwiorek, D. (1989). Automated knowledge acquisition for a
computer hardware synthesis system. Knowledge Acquisition, 1(4).

Haworte, M. §. & Birmingram, W. P. (1992). Towards optimal system-level design.
Technical report CSE-TR-144-92, The University of Michigan, Department of Electrical
Engineering and Computer Science, Ann Arbor, MI, USA.

SOLVING SISYPHUS BY DESIGN 239

HaworTH, M. S., Birmingiam, W. P. & HawortH, D. E. (1992). Optimal part selection.
Technical report CSE-TR-127-92, The University of Michigan, Department of Electrical
Engineering and Computer Science, Ann Arbor, MI, USA.

KLinkER, G., BrorLa, C., DaLLEMAGNE, G., Maroues, D. & McDermoTT, 1. (1990).
Usable and reusable programming constructs. Proceedings of the 5th Knowledge
Acquisition Workshop, American Association for Artificial Intelligence.

MackworTH, A. K. (1977). Consistency in networks of relations. Arifficial Intelligence, 8(1),
99-118.

Marcus, S. (1988). Automating Knowledge Acquisition for Expert Systems. Boston, MA:
Kluwer.

Marcus, S., Stout, J. & McDermorT, J. (1987). VI: an expert elevator designer that uses
knowledge-based backtracking. Af Magazine, pp. 41-57.

McDEermoTT, J. (1988). Preliminary steps toward a taxonomy of problem-solving methods.
In S. Marcus, Ed. Automating Knowledge Acquisition for Expert Systems, Boston, MA:
Kluwer.

MitraL, S. & FaiLkennainer, B. (1990), Dynamic constraint-satisfaction problems.
Proceedings of the Eighth National Conference on Artificial Intelligence, pp. 25-32,
Menlo Park, CA, American Association for Artificial Intelligence.

MirtaL, 5. & Fravman, F. (1989). Towards a generic model of configuration tasks.
Praceedings of the 11th JICAL

Monr, R. & Henperson, T. C. {1986). Arc and path consistency revisited. Artificial
Intelligence, 28(2), 225-233,

Runked, I. T. & BirmingHam, W. P. (1992). Knowledge acquisition in the small; issues in
building knowledge-acquisition tools from pieces. Proceedings of the 7th Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Canada.

RunkEL, 1. T., Birmingnam, W, P., Darr, T. P., Maxm, B. R. & TommMeLEIN, 1. D.
(1992). Domain-independent design system: environment for rapid development of
configuration design systems. In I. S. Gero, Ed. Proc. 2nd International Conference on
Artificial Intelligence in Design, AID 92, pp. 21-40, 22-25 June. Pittsburgh, PA: Kluwer.

SussMaN, G, J. & SteeLe, G. L., Jr. (1980). CONSTRAINTS—a language for expressing
almost-hierarchical descriptions. Artificial Intelligence, 14, 1-39.

Appendix 1: the mechanism library

add-part

input: Constraints consts, Part part

both: Functions function-to-assign, functions-assigned-parts

Description: Attempts to use a part to cover the given function (function-to-assign).
If part satisfies the constraints, it is associated with function-fo-assign, and the
function is added to functions-assigned-parts. If part does not satisfy the constraints,
function-to-assign remains undesigned.

chronological-backtrack

input: Functions function-to-assign

both: Functions functions-not-assigned-parts, functions-assigned-parts

Description: Retuins function-to-assign to the set, functions-not-assigned-paris,
because no part could be found for it, and removes the last function added to
functions-assigned-parts. This last function becomes the new function-to-assign.

designed

input: Functions function-to-assign

returns: TRUE if the function represented by function-fo-assign has been assigned a
part, clse FALSE.

240 A. BALKANY, W, P. BIRMINGHAM AND J. RUNKEL

Description: In the Sisyphus PSM, this mechanism is used to determine whether to
reorder the parts that make up the function’s domain. This is only done before any
parts have been tried, so that the parts that satisfy the preference the most are tried
first.

design-not-done

input: Functions functions-not-assigned-parts

returns;: TRUE if the set, functions-not-assigned-parts, is non-empty, indicating that
there are tasks remaining.

Description: In the Sisyphus PSM, this mechanism is used to control the outermost
loop.

display-solution

input: Functions functions-assigned-parts

output: The part (room) assignments that have been made

Description: This mechanism is invoked when the design prcblem has been
completed.

get-next-design-task

input: Functions functions-not-assigned-parts

output; Functions function-to-assign

Description: Selects and removes the next task to perform from the set of pending
tasks.

get-next-part

input: Functions function-to-assign

output: Part part

Description: Selects the next part from the function’s domain.

order-domain

input: Preferences prefs

both: Functions function-to-assign

Description: Orders the parts (rooms) in the function’s domain in order of
decreasing preference.

Appendix 2: the knowledge structures
The ten knowledge structures are described in the paragraphs below.

1. Parts: The part knowledge structure represents the elements in the part library.
Parts are defined by a set of attributes and ports. The attributes of a part define the
properties of a part that can be expressed by a name and a scalar value, and the
ports define where it can be connected to other parts. The attributes, which are
called characteristics, and their values, are defined before problem solving begins
and cannat change during problem solving. Each part provides a function.

2. Functions: Functions define what is required of the artifact being designed for a
particular problem instance. This knowledge structure is needed for the part-
selection subtask of design. It drives the design process, as parts are selected to
provide the functions required.

SOLVING SISYPHUS BY DESIGN 241

3. Abstract Parts: Abstract parts represent all the functions and subfunctions that
an artifact being designed may perform. Abstract parts are defined by their
characteristics, ports, and specifications. Specifications are attributes whose values
depend upon the design problem being solved, and, therefore, their values must be
computed during problem solving. This knowledge structure provides a hierarchical
decompasition of the functions required of the artifact,

4. Subfunction: The subfunction knowledge structure successively decomposes the
artifact being designed along functional lines. It describes the functional relation-
ship between the parts and abstract parts in the domain. This relationship describes
how abstract parts may be realized by combining sets of lower-level functions, which
may include parts.

5. Reqguired Functions: Parts and abstract parts often require functions performed
by other parts to support their operation. This information is contained in the
required-function knowledge structure. Associated with each function performed by
a part is a list of required functions that must be realized by the artifact. The part
will not realize its intended functions unless the artifact realizes the required
functions. Required functions do not add any desired functionality to the artifact;
rather, they perform a function that is necessary for other parts to operate.

6. Constraints: Constraints specify algebraic relationships among the attributes of
parts and abstract parts that must be maintained. Constraints enable the problem
solver to distinguish acceptable from unacceptable solutions and to compute
attributes’ values.

7. Preference Knowledge: Preference knowledge enables a design system to choose
between sets of acceptable design alternatives. Preferences differ from constraints in
that constraints eliminate alternatives, while preferences rank a set of acceptable
alternatives so that optimal designs can be produced.

8. Ordering Knowledge: Problem solvers use task-ordering knowledge to determine
the most effective order of designing the various abstract parts in the domain. For
some problems, the order in which subtasks are performed affects both the quality
of the resultant design and the speed at which the design is generated.

9. Connection Knowledge: Connection knowledge constrains the set of possible
connections that can be made among the ports of parts and abstract parts. It may
either specify illegal connections or sets of connections that have been found to be
useful in the past.

10. Arrangement Knowledge: Arrangement knowledge specifies how parts can be
geometrically or topologically arranged. It constrains the positions parts may
occupy, and is used in conjunction with part boundaries.

