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A theoretical model is derived that describes the planar, non-linear response of a
continuous band circulating about two rotating wheels. A closed form analysis of the
non-linear steady response leads to elliptic integral solutions for the equilibrium band
geometry and tension. These solutions, which are evaluated over a wide range of
band/wheel designs, are also used to evaluate the extent of band/wheel contact and the
effect of self-equilibriating wheel torques. The equations of motion are linearized about the
equilibrium solution, and equilibriumn stability and the free linear response are predicted
from a discretized model. Results of a companion experimental study support theoretical
predictions of steady and dynamic response. In particular, results indicate that band/wheel
systems maintain stability at high translation speeds.

1. INTRODUCTION

Band/wheel systems, composed of a continuous band drawn under tension about two
supporting wheels, belong to a class of mechanical systems referred to as axially moving
materials [1]. Other axially moving material systems include belt and chain drives, thread
and fibers winders, paper handling machinery, magnetic tape recording devices and cable
pay-out/reel-in systems. The features common to all axially moving material systems are
discussed in reference [1] and recent developments are reviewed in reference [2].

The earliest treatments of band/wheel systems [3-5] focus on the response of a single
band span, assuming that the wheels effectively isolate one span from the other. The band
is modelled as a straight and tensioned beam translating along its axis with prescribed
speed. Analysis of the steady response [3, 4] reveals that the steady beam tension may
increase with translation speed to a degree dependent on the wheel support compliance.
This tension greatly influences the band natural frequencies, which decrease monotonically
with translation speed. For a simply supported beam with finite wheel support compliance,
the fundamental natural frequency vanishes at the fundamental critical speed, indicating
the onset of divergence instability [3-5). Higher mode divergence and flutter instabilities
exist at supercritical speeds.

The above studies consider the linear repsonse of a band about the trivial {straight)
equilibrium. Recent studies [6-9], which consider the geometrically non-linear band
response, reveal that the trivial equilibrium undergoes a subcritical pitchfork bifurcation
at the first critical speed. This bifurcation generates two non-trivial (buckled) equilibria
which remain stable for supercritical speeds. Higher order bifurcations occur at each
successive critical speed and result in higher order pairs of unstable and non-trivial
equilibria [8]. Qualitatively similar behavior has been predicted for simply supported pipes
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conveying high speed fluids {10]. These facts are illustrated in the bifurcation diagram of
Figure 1(b), which shows the number and stability of all equilibria that exist for a simply
supported beam over a large speed range, see¢ solutions for case m = 0, Furthermore, any
initial band curvature (induced by bending about supporting wheels) unfolds the funda-
mental bifurcation, promotes buckling along the path of the “‘right-branch” equilibrium,
and retards the formation of the “left-branch” equilibrium; see solutions for case m =4.
Thus, a slightly curved band is expected to gradually and continuously buckle outward
as the translation speed is (quasi-statically) increased.

Experiments on band/wheel systems [11] demonstrate that significant vibration
coupling exists between upper and lower spans. This coupling between spans, which
results from small wheel oscillations, derives from the coupling of longitudinal
and transverse band deformations within the individual spans [12, 13]. This latter
coupling mechanism resuits from the initial band curvature. A theoretical model for
coupled span response accurately predicts measured free {12] and forced [13] response for
subcritical speeds. Ap alternative model for span-wise coupling is developed in reference
[14],

The coupled band/wheel model {12, 13] considers the linear band response about a
near-trivial equilibrium. The recent results [6-9] for a (de-coupled) single span, however,
suggest that highly non-linear equilibria may also exist for coupled band/wheel systems,
particularly at high translation speeds. The objective of this investigation is to examine the
general band/wheel system equilibrium and their stability at high translation speeds using
both theoretical and experimental methods.
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Figure 1. (a) Definition diagram for a single translating bear. (b} Muitiple equilibria and solution bifurcations
shown in the %6, plane, where a? is a measure of the translation speed and 6, is a measure of the beam deflection.
Stable (——) and unstable (- - ) equilibria are shown for cases of vanishing (m =0) and significant (m =4)
terminal bending moments. In both cases, n = 100 and the fundamental and second critical speeds are denoted
by ¢, (@ =n? and ¢, (z? = 4n%), respectively.
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(b}
Figure 2. Definition diagram for the band/wheel system. (a) Reference (straight) configuration. (b} Band
centerline profile in buckled equilibrium configuration ¥’ () (—), and final configuration y/ (i) (-——-).

C denotes the band particle translation velocity relative to ali profiles.

In this investigation, a theoretical model is derived that describes the planar, non-linear
response of a coupled band/wheel system. Elastica theory is used to predict the equilibrium
of a continuous band circulating about two wheels. Special attention is paid to determining
the location and extent of band/wheel contact and to the effect of steady applied or
frictional wheel torques. The equations of motion are linearized about the band equi-
librium and local stability is predicted from the eigenvalue problem governing free
response. A numerical stability analysis is pursued using a discretized form of the
eigenvalue problem. Theoretica! predictions of steady and dynamic response are corrob-
crated by results from a companion experimental study.

2. THEORETICAL MODEL

The theoretical model for a single beam developed in reference [8] is presently extended
to describe the dynamic response of a continuous band/wheel system. In Figure 2(a) is
illustrated a (fictitious} reference configuration in which an inextensible band of length,
2(L* + nR), is drawn perfectly straight between two wheels of radius, R, under the action
of an infinite load, N —0. The band circulates with a steady translation speed, C, in a
clockwise direction around the two wheels. The left wheel is elastically restrained in
horizontal translation by a spring of stiffness K. For finite and steady N, the left wheel
recoils slightly to the right by an amount D, as the band forms the curved equilibrium
configuration (solid curves) shown in Figure 2(b). The curve ¥/ (7/) denotes the equilibrium
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profile of the band centerline for the upper (lower) span which has a free length L (L)
between the points of band/wheel contact. The curvature of ¥’ (7') derives principally from
the bending moment Af applied at the band/wheel interface. The extreme of the band/wheel
contact arc on the upper (lower) span is located by the angle 8, (8,). The steady torques
¢ applied at both wheels represent opposing frictional and driving moments which
produce a taut lower span and a (relatively) slack upper span.

The planar motion of the upper (lower) span about the equilibrium configuration
is described by U(S, T) (U(S, T)), where S (5) denotes the arc length co-ordinate
measured along x‘(7) and T denotes time. The motion, U(S,T)= U e + U,e}
(U(S, T)= U,&, + U,&,), describes the final configuration of the centerline profile, ' (),
and is resolved into components aligned with the local tangential direction € (8/) and the
normal direction e (&), defined by ¥ (5’). The equations of motion are derived from
Hamilton’s principle, based on the following assumptions: (1) the beam is a homogeneous,
one-dimensional elastic continuum obeying a linear stress—strain relationship; (2) exten-
sions of the beam are described by the Lagrangian strain of the centerline; (3) the motion
of the beam is restricted to the XY plane; (4) the beam may undergo large static
deflections, and additional deflections from the curved equilibrium are described using a
non-linear rod theory [15]; (5) rotary inertia due to bending and strain encrgy due to shear
may be neglected assuming that the beam cross-sectional dimensions are smalil compared
to its length; (6) gravitational and dissipative forces may be neglected; (7) the beam mass
flux is constant; (8) the influence of the fluid medium (air) may be neglected.

With these assumptions, expressions for strain energy, kinetic energy and work are
derived for use in Hamilton’s principle. The strain energy of the band in its final
configuration is given by [8]

L
f=ml+ f [Pide + 3 EA(AeY + EIA AN + s EI(AX)]dS
0
L —_—
+ J. [PAE +L1EA(AEV + EIX AKX + 3 ENAX Y] dS, 1))
0

where
de = Uy 5— AUy +3[(Ups + AU + (U s — A ULY,

dé = O, s— F0,+(Oys+ X0 P+ (U5 — X0, 2)
AN =ayays, AF =ddygs, (3
a=14+Us~HU,, d=1+Us—XT, 4)
ay=Uy s+ XU, d&=Us+ X0, (5

In equations (1)5), =! is the equilibrium strain energy of the curved bands, P'(P') and
X (Y are the band tension and curvature in ¢’ (), E is Young’s modulus, 4 is the band
cross-sectional area, and 7 is the principal area moment about the out-of-plane axis
through the centroid.

The kinetic energy of the band/wheel system is given by

nh=3pA {J.L (U,r+ Ca))* + (Uyr+ Cay )1 dS
0
L
+I [(O\r+ Ca) + (Uor+ C&) dE}
0

+3(0, P + 1 (dY) +1/,(6,), (6)
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where p is the band density, J, (J,) is the moment of inertia of the left (right) wheel about
its mass center and [, is the mass of the left wheel. The quantities
O = Cos gu[Ul.l"(Oa T) + Ca, (0, T)} + cos 81T, (L, T) + Ca (L, T)]
! R(cos 8, + cos ;) ’

and
0, =[U,7(L, T) + Ca(L, TR
represent the angular velocity of the left and right wheel, respectively, and

- (U0, T) + Ca (0, T — [(71,7'(1: Ty + Ca (E, 7))

4 £
cos 8 + cos G,

is the (horizontal) velocity of the mass center of the left wheel (see Figure 2(b)).

Additionally, the band displacements at the band/wheel interface must satisfy the
following geometric boundary conditions required for vanishing horizontal motion of the
right wheel and vanishing vertical motion of both wheels:

[U\(L, T) — T, (0, T)){cos B, + cos 6,) = 0, (N
sin 8,[Uy(L, T) - U, (0, T)]
cos 0, + cos f,
sin 8,[0,(L, T) — U, (0, T
cos B, + cos 8,

00,7y =

,  and UL, T)=0, (8)

UL, T) = , and  0,(0,T)=0. 9)

The virtual work done by the bending moment M, the applied wheel torques Q and the
net horizontal force at the left wheel is

on, = — Moa,|§; — M3&,|E — 2N + K(4 + D)}o4 + @50, ~ 066,, (10)

where D is again the horizontal distance the left wheel moves during the static deformation
leading to the equilibrium configuration.

Using equations (1)-(10), Hamilton’s principle leads to the following non-linear
equations governing planar motion of the band/wheel system:

tangential direction, upper span,
[(P'+ AEde)a))s — (P’ + AEA) X '@, ) + EI|(A7ay5) s + K (K'ay) 5]
= pA[U, 77+ 2Ca, 1+ CHa, s — K 'a,)); (1)
tangential direction, lower span,
[(P'+ AEAD)A )y — (P + AEADA @} + EI[(H'a,5) 5+ H'(Ka,) 5]
= pAU, 77+ 2Ca, 1 + CHd, 5 — H'5,)}; (12)
norma!l direction, upper span,
{(P'+ AEAe)ay) s+ '\ [P'+ AEAe] + EIKH A 'a, s — (K 7a,) 55)
= pA[U, 17+ 2Cay 7+ CHay s+ A 'ay)); (13)
normal direction, lower span,
[(P'+ AEAE)E,) s+ H'a\ [P + AEAE) + EI[H' T 'a,5— (%78, 55
= pA(O, 40+ 2Ca, 1+ CAG, 5+ X'G)); (14)
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with the natural boundary conditions
LA+ pAC{cos Gy[T, (L, T) + Ca (L, T)]+ sin 6, [T, (L, T) + Ca(L, T)]
+¢0s 6,[U, 7(0, T) + Ca, (0, T)] — sin 65[U, 7(0, T) + Ca, (0, 7))}
+ EIIZY(L, T)sin B, — #7(0, T) sin 8,] — cos 0,[P(L) + EAAe(L, T))
~ o8 8,[P(0) + EAAc(0, T)] + 2N + K(4 + D) =0, (15)

I© 77
R

— [B(L) + EAAE(L, T)| — PY(0) + EA4e(0, T)] — T/R =0, (16)

— pAC{[TU, (L, T) + C& (L, T)] - [U, 7(0, T) + Ca, (0, T)]}

%@z.n“" pAC{[T,1(0, T) + C&,(0, T)] - [U, +(L, T) + Ca, (L, T)]}

+ Pi(L) — P(0)+ EA[de(L, T) — 460, T)] + T/R =0, (17
Eld7a,+M =0, atS=0L, (18)
Ei#’a,+M=0, at8=0L, (19)

and geometric boundary conditions (7}-(9).
For convenience in the subsequent analysis, the following non-dimensional variables are
introduced:

s=S/L*  §=8/L* k=L*X¥", R=L*¥"
d=D/L*  r=R/L* I=LJL*

T=L/L*¥ n=NL%YEI, m=ML*EI k=K(L*/EI
g=QL*EI, x=X/L*  y=Y/L*
y=ALMY,  =pAL*CY[EL, p=P(L*/EL
p=P(L*WEI t=T/EI[pA(L*7,
w=U/L*, a=0/L* u,= Uy/L*,  i,=0T,/L*,

i =h/pAL*,  ji=L/lpALY),  h="{lpAL*)]

3. EQUILIBRIUM ANALYSIS

The equilibrium of an axially moving beam was partially analyzed by Chubachi [3],
whose linear analysis was used to predict the critical speeds of a simply supported beam.
Extensions of this equilibrium problem, which consider geometrically non-lincar beam
deflections, have been analyzed recently using closed form [6, 8] and approximate [9]
solution methods (refer to Figure 1). All models used consider a single beam of fixed length
(L) which approximates the response of one span in a band/wheel system. For steady
response, this approximation remains valid, provided that the lateral band deflections do
not significantly alter the free span lengths and the band/wheel contact points, Thus, for
small deflections of a highly tensioned band, the points of band/wheel contact are
approximately, diametrically opposite (i.e., 8, = 8, = 0), and the free span length (L ~ L)
can be prescribed as in previous models for band/wheel systems [11-14]. The present model
offers a more complete description by considering geometrically large deflections of a
continuous band wrapped about two wheels. For large deflections, the free span lengths
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(L, L) and the location of the band/wheel contact points (65, ) are not known g priori.
Instead, they must be determined from the equilibrium conditions governing the steady
response of the entire band/wheel system.

The equations of equilibrium are extracted from the response model equations (7)—(9)
and equations (11)—(19) by equating the dynamic displacement components U, 0,, U,and
T, to zero. This procedure provides the following non-linear boundary value problem for
solution of the (non-dimensional) equilibrium band curvatures x(s), £(s) and tensions

p(s), pi)

p +rx =0, O0<s <, (20)
K'4(ct—pk =0, O<s<l, @21
p+Re’=0, 0<i<l (22)
K'+(c? - K =0, 0<s<], (23)
with the boundary conditions
k0)=x()=—m, #0) =k = —m, (24, 25)
p(0) cos 8, + (1) cos B, — x’(0) sin 8, + & '(I) sin B, = 2n + kd + c*(cos 0, + cos Gy), (26)
5 —p©)] =g. 27

The boundary conditions (26) and (27) describe horizontal force and moment equilibrium
of the left wheel, respectively. These two boundary conditions and the inextensibility
constraint,

[+T+2r(r —6,—6,)=2(1 + =r), (28)

couple the static deflections of the upper span to those of the lower span.

Closed form solutions of equations (20)—(28) are obtained in terms of elliptic integrals
as follows. Integrating equations (20) and (22) and substituting the results into equations
(21) and (23), respectively, leads to

K"+ (e~ B + 3Nk =0, 0<s <], 29
K"+ (P —B+ic)k =0, 0<i<l (30)

subject to boundary conditions (24) and (25). The constants § and B are first integrals of
equations (20) and (22), given by

|2 (2n + kd)cos Bycos 8, g cos G, s
= & = — —_ — 5 1
B =p)+3x°6) cos 8, + cos 8, © T Hcos 8, + cos 90)+2m . GY
- oy (2n +kd)cos B, cos B, g cos B,
— 12y = ha 2 a1y
B =5 +37°6) cos B, + cos 0, r{cos 8, + cos BD)+2m (32

and were evaluated using equations (24)—(27). Let 0(s)(8(5)) denote the angle of
inclination of the equilibrium tangent e{ (8]) above (below) the horizontal. Then the
(terminal contact) angles 6, = #(0) and 8, = (0} and the free span lengths / and 7 depend
on the equilibrium curvatures k (s) = 6’(s)} and kK (s) = #(5) through the static displacement
of the left wheel

I r
d=1+2r(sinf;,— 0,)— J cos B(s) ds, d=1+2r(sin8,—8,) — j cos 8(5) ds,
0

1}

(33, 34)



466 $.-J. HWANG AND N. C, PERKINS

and the inextensibility constraint (28). In addition, the constraints x’(0), x’(/) >0 and
€’(0), '(7) > 0 must also be imposed to ensure that the equilibrium band solution does
not penetrate the wheels.

Note from equations (31) and (32) that ¢ — § and ¢* — B are dependent of ¢ and, thus,
the entire boundary value problem governing the equilibrium geometry (29) and (30) with
equations (24), (25), (28) and (31)-(34) is independent of the translation speed ¢. By
contrast, the equilibrium boundary value problem for the single axially moving beam
model is translation speed dependent [8] due to the change in character of the horizontal
force balance boundary condition (26) [16].

In this study, attention is focused on the equilibrium solution which resembles the
fundamental buckling mode of a simply supported beam. This solution is symmetric about
the mid-spans, s* =1//2 and §* =7/2. Following the procedure in reference [8], the
curvature extrema k(s*) and £(5*) are given by

.8 o+kd - g ”
o _ _ 2_0 —_ _—_—— z 4 35
k6T {43"1 2[ cosBo+cosﬂncosa°+r(00890+00590)]+m} &
3 M+ kd q "
(ER) = — pof P T R 8, — - ? 3
%(5%) {4 sin 2[ cos 8, + cos GOCOS ®  r{cos @+ cos 90)]+m } - 09

and are used in the change of variables leading to elliptic integral solutions to equations
(29) and (30). Using the change of variables

_Cos—l KZ(S)-—KZ(S*) Iz
T 4B =) 2x%sh)

in equation (29), and

- = cos-! RAS)—R¥WE™ |~
1= 4F = D - 27%5%)

in equation (30), and integrating, provides general solutions for x(s) and £(§) in terms of
incomplete elliptic integrals of the first kind:

=/2 dﬂ
2—s= — . 05 =1)2, (37
f2-s éaz(s)\/lw,uzsinzn £se /
n-5=¢ m-—di——, 0gigar =12, (38)
3@ /1 —palsin’g
where
¢ = 2 , I — (39
VB — D) —x¥s®) 4B —cH—RGY)
2 4B =) =276 L, MB— Y= 267G 40)

TAE-—D—rasm . PTG H RGN

" KZ(S) _ ICZ(S t) 1/2 —— r 'Ez(s—.) . PEZ(.S-‘*) 172
¢(s) = cos [4(;3 - 2x2(s*)] r P8)=cos [4(;‘3 )yt z;z!@*)] - @b

The general solutions, equations (37) and (38), contain the five unknown constants 6,,
8,, 1, Tand d, which must be selected to satisfy the two boundary conditions x(0) = —m,
£(0) = —m, and the thre¢ constraint equations (28), (33) and (34). (The remaining two
boundary conditions x({)= —m and £(J)= —m are satisficd by solution symmetry.)
Application of these boundary conditions in equations (37) and (38) and substitution into
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equations (28), (33) and (34) leads to three non-linear equations in the three unknowns
0,, B, and 4:

¢ Jm Wz rz Y 4@+, @)

a0 /1 — pu?sin’n 30y /1 — Asin*f

- "2 (1 — 2sin’y) dy
1—d)2+rsinf;= T ganty @
( )/ r 0 éJAMO) \/l_-___—#lm

2 (] — 2sin? /) d7f 44)

(1—d)/2+rsinf—90=ZJ‘ ———
#o /1 — @i sin’g
The constants @,, 8, and d are then determined by simultaneous (numerical) solution of
equations (42)-(44), and 7 and / are determined by evaluating equation (37) at s =0 and
equation (38) at § = 0, respectively. The example solutions below were obtained from
equations (42)—(44), using Newton—Raphson iteration.

3.1. EXAMPLE EQUILIBRIUM SOLUTIONS

A first example is considered for which k =0, m =4 (r =1) and g = 0. This example,
referred to hercin as the “baseline case”, describes a symmetric (¢ = 0), free-center (k = 0)
band/wheel system where the wheel radius R is one-quarter of the reference free span
length L* (r =1 and m = 4). The computed equilibrium solution in the 8,(=28,)-n and d-n
planes is illustrated in Figure 3. As the static load increases slowly (quasi-statically), both
the contact angles 6, and 8, and the wheel displacement o approach zero (refer to Figure
2(a)). As the static load decreases slowly from »n = 80, the band buckles further away from
the trivial reference configuration (6, = 8, increase) in a smooth and monotone fashion.
The band/wheel model assumed ideal (no-slip) band/wheel contact and the contact angles
6, and 8, would approach the limiting value 8, = 8,—x/2 for a vanishing contact arc in
the limit # —9. In actual band/wheel systems, the band would lose traction before this limit,
and the current model could no longer apply.
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Figure 3. Equilibrium solutions for the baseline case (k =0,m =4,r =} and g = 0) in (a) the d—n plane and
(b) the 8,(=0,)-n plane. Equilibria are shown for: (1) n = 10; (2) n = 20-25; (3) n = 36; (4} n = 56-25; (5) n = 80.
(—), Free span length; - - - -, wheels.
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——)k=0m=3(-- ). In all cases, g = 0.

Representative band/wheel equilibrium configurations are shown in Figure 3 for five
values of the static load n. The equilibrium configuration is readily obtained from the
determined equilibrium curvature solutions x(s) = 8°(s) and &(§) = #'(s), using

x(s)= I cos B{n)dn +d + r(l —sin b,), y{s)= -[ sin 8(n)dn + r cos &,
o 0

x5 = —J. cosB(m)dn +T+r(1 +sind,), §@E) = fjs sin 8(n) dn + r cos 6.
0 0

An evolution of band/wheel equilibria is illusirated in Figure 3(b} by the sequence
numbered (1) to (5). The solid curves represent the free span lengths and the dotted curves
represent the wheel perimeters. In the absence of any wheel torque ¢, the two spans are
equally tensioned and are symmetric images about the x-axis. As the static load decreases
from n = 80, the band buckles away from this line of symmetry and partially unwraps from
the wheels, while the left wheel recoils slightly to the right. Consequently, the free span
lengths increase with decreasing static load as the band/wheel contact points slowly migrate
towards their limiting position 6, = 8,—~n /2.

The sensitivity of the equilibrium to changes in either support stiffness or wheel radius
(bending moment} is illustrated in Figure 4. The previous solutions for the baseline case
(k =0, m = 4) are reproduced in Figure 4, where they are compared with those of two
other band/wheel systems described by (1) non-zero support stiffness (k = 100, m = 4), and
(2) reduced bending moment (k =0, m = 3). The comparison reveals that, as expected,
either increasing the support stiffness or reducing the bending moment reduces the
magnitudes of the wheel and band displacements for a given static load.

The addition of steady wheel torques g breaks the system symmetry and leads to a taut
lower span and a (relatively) slack upper span. This conclusion is apparent in Figure 5,
which compares the baseline case (g = 0) to the case of a small wheel torque ¢ = 2. In the
latter case, 8, < 6,, and the free length of the (slack) upper span slightly exceeds that of
the lower span; see the illustrated equilibrium configuration for case n = 16. Note again
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Figure 5. Sensitivity of the equilibrium solution to small steady wheel torques. Results shown in (a) the d—»
plane and (b) the 8,, 6,-n plane. Two cases are considered: g =0 (——, §;=8) and ¢ =2 (---—-, 6,>8,). In
both cases, &k =0 and m = 4. The equilibrium configuration is shown for the case n = 16.

(e}

Figure 6. Torque-induced asymmetry. The equilibrium configuration is shown for five values of steady torque:
@ g=0byg=1€)g=2(d)g=4; (&) g =5.In all cases, k =0, m =4 and n = 234,
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that the contact arc would ultimately vanish with decreasing static load; that is,
[0, + |8,| == as n—0. The gradual distortion of the symmetric equilibrium configuration
(g = 0) under increasing torque values is illustrated in Figure 6. For the five cases shown,
the static load is kept constant (n = 23-4) while the torque is slowly (quasi-statically)
increased. The asymmetry induced by the applied torque is clearly visible for the larger
torque values considered in cases (d), ¢ =4, and (e), ¢ = 5.

The above examples illustrate how the equilibrium geometry of the band/wheel
system depends on the steady applied load, n, the wheel radius of curvature, (r = 1/m),
the support stiffness &, and the steady wheel torques g, These results are not affected by
the band translation speed ¢, since, as shown above, the boundary value problem for the
equilibrium curvature is independent of c. However, the translation speed does affect the
equilibrium tension. As seen from equations (31) and (32), the equilibrium span tension
p(s) and p(s) increase as the square of the translation speed. A similar result is obtained
in references [3, 4], where the degree of speed tensioning is controlled by the support
compliance. The result of references [3, 4], however, follows from considering the linear
extension of a perfectly straight band, The present results (31) and (32) follow from
considering the non-linear inextensible deformation of a curved band. In the case of a
buckled band with a compliant support, the additional deformation due to band extension
is negligible [17}.

4. ANALYSIS OF FREE LINEAR RESPONSE

To investigate the local stability of the equilibria, the non-linear equations of planar
motion (11)—(14) are linearized about an arbitrary equilibrium that is described by its
curvature x (£) and tension p (5). The linearized (non-dimensional) equations governing
frce, planar response are as follows:

tangential direction, upper span,
(7 +p — N, — k) + [k(c? — Pl [, + Fergy ] + K [uy + 111
+ [kay, ], + kK (@, — 1)+ k2a,, = uy,, + 2¢[u, . — ki3], (45)
tangential direction, lower span,
(v + 5 — By — &id)); + [R(e® — P[5 + Ril ) + Rl + ity ] 5
+ [Ray 5] s+ KR Ad) — 1) + 24, ; = thy ., + 2¢it, s — Kiby] 13 (46)
normal direction, npper span,
[k(y +2 — N, — xi] + [P — %) (g + x0)), — [+ 510 L,
—[x(a, = D), + k%, =y, + 2c[uy, + k] 5 47}
normal direction, lower span,
[R(y + 8 — eIt s — &)+ [(F — ) (s + Ril) )]s ~ [ s + Rl ] 5
—[R(@, — D]+ Ray; =y, + 2c[ihy; + 8’4\ 1, (48)

The linearized boundary conditions are extracted from the boundary conditions (7)—(9)
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and (15)—(19), after incorporating the boundary conditions for the equilibrium equations,
(24)—(27). The linearized boundary conditions are:

i, + cleos B, (I, t) + cos Bu, (0, )] + (¢* = 1)
x {cos B[a,(f, 1) — 1] + cos 8]a, (0, 1) — 11}
— sin 8{c(u,, (0, 1) + ca, (0, ] + a,,(0, 1)}

+ sin B{c[ity, (T, 1) + cdr(l, O+ @51, 1)} + x{ =0, 49)
H8ufr +clu, 0, 1) — i (] + (c* = 1)
x (14,0, 1) — K (0,0, ) — &, (. ) + (DL, 1)) =0, (50)
F2@aufr + el 0, ) —u (I, O} + (P~ 1)
x [, (0, 1) — K(0)i, (0, 1) — u, ,(/, 1) + k(D (1, )] =0, (31)
(up, + w0 M =0, (G + &), =0, (52,53)
w, (I, 8)=1,(0, 1), w(l, ty=14,(0,1)=0, (54, 55)
w(0,1) = b @@ -uw@©n0, &EH)= __smbh () — w, (0, 1),

cos B, +cos 0 cos B, +cos §

(56,57)

where { ()= A(t)/L* is the (non-dimensional) translation of the left wheel,

Mation about a specific equilibrum is examined by prescribing the equilibrium curvature
k (%) and tension p (#), which appear as (non-constant) coefficients in equations (45)—(48).
Exact expressions for k (K), in terms of ¢lliptic integrals, are obtained from equations
(37)—(44). The equilibrium tension follows from the solution for x (£) by evaluating
equations (31) and (32).

4.1. NUMERICAL ANALYSIS

A numerical method is adopted 1o compute the free response about the band/wheel
system equilibrium. The Ritz method is used to discretize the linear equations of motion,
and vibration and stability characteristics are determined from the eigensolutions of the
discrete model.

Consider the H-term representations for u,, #,, ¥, and 4, of the form

H H
(s )= 3 ¢, (0P,(5),  HE D= dy()Dy(3), (58, 59)
j=o i=0
H H
(s, )= Z By (1) Py(s), Hh(5, 1) = Z ¢y ()P4 (3), (60, 61)
i=i i=1

where  ®,;(s) =cos (jrsfl), ®,(5)=cos(nf/), By(s)= sin (jrs/l)+ cos ((2j — Dns/2!)
and &,,(%) = sin (jn{ ~ 5)/T) + cos (2f — Va(l — 5)/2]. Note that ¢;, &y, D, and P,; are
almost admissible functions which satisfy, a priori, the geometric boundary conditions (55).
Note also that ¢,,=&,,,j =0, 1, ..., are the eigenfunctions for a free—free rod and include
the rod rigid body mode (j =0). Substitution of equations (58)-(61) into Hamilton’s
principle (retaining quadratic energy terms only) and elimination of three co-ordinates
using the three remaining geometric boundary conditions (54), (56) and (57), provides a
set of 4H — 1 coupled, ordinary differential equations for solution of 4H — 1 generalized
co-ordinates ¢,;(¢):

Mé +Gd +Kd=10. (62)
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The elements of the matrices M, G and K, which are given in reference [16], are evaluated
by numerical quadrature. These matrices depend on the equilibrium state under consider-
ation and are evaluated using the elliptic integral solutions for x (%) and p (5), given in
section 3. The matrices M and K are symmetric, while G is skew symmetric and
proportiona! to the translation speed ¢. Furthermore, M is positive definite while K is, in
general, sign indefinite.

Using ¢(f) = Q ¢ in equation (62) leads to the discrete eigenvalue problem governing
free response

[0™ + G +KJ@ = 0. (63)

The natural frequencies and mode shapes for the band/wheel model are obtained
numerically from equation (63). In this discrete formuiation, the natural frequencies of the
translating band/wheel model are given by the imaginary parts of the eigenvalues,
Im[w]),/=1,2,...,4H — 1, and the eigenfunctions are obtained from the eigenvectors
Q0,1=1,2,...,4H — |, through equations (58)-(61). In general, these eigensolutions are
complex.

4.2. COMPARISON WITH PREVIOUS BAND/WHEEL MODEL

An important comparison is made with the previous band/wheel model of Wang and
Mote [12, 13]. Four qualitative differences distinguish the current model from that used
in reference [12, 13]. First, the current model considers large static band deflections and
therefore include the possibilities that (1) the points of band/wheel contact may not be
diameterically opposite (6, # 0, 8, # 0), and (2) the free span lengths are not necessarily
equal to the center-to-center distance between the wheels (7 # 1,7 # 1). These consider-
ations lead to a more complex coupling between the upper and lower spans, as shown by
the boundary conditions (49)—(51) and (56)}-(57). These boundary conditions reduce to
those used in references [12, 13] for the special case 8, =, =0 and [ =7= 1. Second, the
large static band deflections considered herein are described using inextensible elastica
theory. This is in contrast with the model of references [12, 13] which considers relatively
small, but extensible, static band deformations. As a result, the equilibrium curvature
provides the speed-tensioning mechanism in the current model, while small band exten-
sions provide this effect in the model of reference [12, 13] (refer to discussion in section
3.1). Third, the current model accounts for (self-equilibriating) steady torques (g) which
provide a mechanism for tension detuning. Finally, the discretization employed in
references {12, 13] differs from that used hergin. The present description of longitudinal
response (58) and (59) includes the rod rigid body modes (@, and @,,), which are omitted
in references [12, 13]. The effects of these differences are addressed in the examples of this
and the following two subsections.

The current model is similar to that of references [12, 13] under the conditions of: (1)
vanishing steady torque (g = 0); (2) small wheel moment and/or large steady end load
(m <1 andjor n » 126, ~8,~0, | ~ [ = 1); (3) vanishing support stiffness (k = 0); and
(4) vanishing rod rigid body mode terms (f =1, 2, ..., H in equations (58) and (59)). The
first four mode shapes computed under these conditions from the current model for the
indicated stationary band/wheel system are illustrated in Figure 7. The small angle formed
between the radial segments shown on the wheels illustrates the degree of rotational motion
experienced in a particular vibration mode. Notice that the first and third (second and
fourth) modes involve span deflections that are antisymmetric (symmetric) about the x axis
and induce pure rotation (translation} of the left wheel, in agreement with the findings of
reference [12).
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Mede

Figure 7. Comparison with the previous band/wheel model: the first four modes of the stationary band/wheel
system having m =0-0275, n =285, k=0, i, =32 and j =f=1. Equilibrium (------ ), and band at the
beginning of (—) and mid-way (——:- ) through one natural period of oscillation.

4.3. CONVERGENCE AND EFFECT OF ROD RIGID BODY MODES

Attention is focused on the rod rigid body mode terms, @, and &,,, used in the current
band/wheel model. In Figure 8 it is illustrated how these terms influence eigenvalue
convergence for the indicated stationary band/wheel system. The solid (dashed) curves
show the convergence of the first four eigenvalues when the rod rigid body modes are (are

120 —

100+

e ——

, Imi [wy]

20 —

Natural frequencies, Im [w,], . ..
-
o
T

0 1 I 1 ! I I L 1
0 2 4 6 8 10 12 14 16 18 20

Number of series terms, H

Figure 8. The effect of rod rigid body mode terms: convergence of the first four eigenvalues when the terms
@, and &, are (—) and are not (- ——-) included in ecquations (58) and (59). In this example, ¢ =0, m =4,
k=0,g=0and n =234
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(a) (b}

Figure 9. Mode shapes of the stationary band/wheel system. Results are shown for two cases; (2) ¢ =0 and
by g=5 (- ), Equitibrium; (—-), mode shape. In both cases, m=4, n =234, k =0, i, = 100-85 and
h=h=1745

not) included in the discretization. As shown in Figure 8, including the rod rigid body terms
improves the converge rate and leads to a “new” fundamental frequency. The mode shape
associated with this new fundamental natural frequency describes a near rigid body mode
of the entire band/wheel system, and is discussed in the next section. Also, note that for
the case in which the rod rigid body mode terms are included, the four eigenvalues have
converged reasonably well for H > 16. Eigenvalue convergence was also tested for
numerous other cases and, for the series size H = 19 employed in all examples to follow,
the reported eigensolutions have converged fully.

4.4. STATIONARY BAND, ¢ =0

For future reference, a baseline system is defined by the following system parameters:
n=234, m=4(r=5), c=0, ¢g=0, k=0, i = 10085 and j, =j, = 1-745. These par-
ameters, which correspond to those of the test stand described in section 5, describe a
stationary (¢ = 0}, symmetric (g = 0), free center (k = 0) band/wheel system with signifi-
cant wheel inertia.

The first four modes for the baseline system are illustrated in Figure 9(a). The solid
curves represent the mode shapes of the entire band/wheel systent, and the dotted curves
represent the equilibrium band profiles. Note that the mode shapes of the band have been
enlarged for clarity. The fundamental mode (n = 1) represents a near rigid body mode,
involving substantial wheel rotation and very little elastic deformation of the band. The
second mode induces moderate rotation and light translation of the left wheel and elastic
deformation of both bands. All higher modes are dominated by elastic band deformation
and involve very small, though important, wheel rotations and translations.

The first six natural frequencies of vibration as the static load » is varied from the
baseline case are shown in Figure 10. The second and higher order natural frequencies
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. Im [wsl

Natural frequencies, Im [w,], . .

1) i 1 " | 1 i |

10 15 20 25 30 35 40 45 50
Static load, n
Figure 10. The effect of static load on the frequency spectrum for the stationary band/wheel system. The plot

shows the first six natural frequencies of vibration for the case ¢ =0, m =4, k=0, ¢ =0, i, = 100-85 and
o= jp= 1745,

increase rapidly with increasing static load due to the (membrane} stiffening of the upper and
lower bands. However, this stiffening has little influence on the fundamental frequency, since
the fundamental mode is a near rigid body mode involving littie elastic band deformation
(refer to Figure %(a)).

Similarly, the fundamental frequency is largely insensitive to any static torque, g, as shown
in the frequency spectrum in Figure 11. The static torque induces a tension difference
between the bands, and this tension difference leads to stiffening of the lower (taut) span and
softening of the upper (slack) span. These changes in static tension significantly influence the
second and higher order modes involving elastic band deformation. For example, the first

72 T T

., Im [wg)

Natural frequencies, Im [w,], . .

0 1 I
\] 2 4 6 8

Static torque, g

Figure 11. The effect of static load on the frequency spectrum for the stationary band/wheel system. The plot
shows the first six natural frequencies of vibration for the case ¢ =0, m =4, k =0, n = 234, i, = 100-85 and
h=h=1745.
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0 2000 4000 6000 8000 10000
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Figure 12. The effect of support stiffness on the frequency spectrum for the stationary band/wheel system. The
plot shows the first six natural frequencies of vibration for the case ¢ =0, m =4, g =0, n = 23-4, §, = 100-85
and j, = j, = 1-745.

four mode shapes for the case g =5 are shown in Figure 9(b). Note that, like the
band/wheel equilibrium, the modes are asymmetric (with respect to the x-axis) due to the
tension and curvature detuning.

The fundamental mode is sensitive to increasing support stiffness as shown in
the frequency spectrum in Figure 12, which illustrates the first six natural frequencics as
the support stiffness is varied from the baseline case. Since all modes induce some
translation of the left wheel, all the natural frequencies increase as the support stiffness
increases,

., Im [wg]

Natural frequencies, Im [e, ], . .

Translation speed, ¢

Figure 13. The stability of the band/wheel system: the first six natural frequencies vs. the translation speed
for the band/wheel model (—); and the first two natural frequencies for the siraight beam model with fixed
support (- - - , n = 0) and free support (————, # = 1). For the band/wheel model, m =4, n =234,k =0,9 =0,
i, = 100-85 and j, =, = 1-745.
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-, Im [wg]

Natural frequencies, Im [w1], . .

Translation speed, ¢

Figure 14. The effect of static torque g on the frequency spectrum for the translating band/wheel system:
(@) (—), ¢ =0, (b) (--—-), ¢ = 5. In both cases, m =4, n =234, k =0, i, = 100-85 and j, = j, = 1-745.

4.5. TRANSLATING BAND, ¢ %0

_ The stability of the translating band/wheel system at high translation speeds is now
considered. The first six natural frequencies of vibration as the translation speed ¢ is
increased from the baseline case (¢ = 10) are shown in Figure 13. As discussed in section
4.1, the band tension increases with the translation speed and therefore influences the
second and higher modes which induce elastic deformations. The fundamental natural
frequency, however, is largely unaffected by the translation speed and maintains a near
constant value, A comparison is made in Figure 13 with the natural frequency spectrum
computed from the single straight beam model. Following references [3, 4], the first two
natural frequencies are shown for the limiting cases of a fixed-center system (# = 0) and
a free-center system (n = 1) for the same load » considered in the band/wheel model. For
the case y =0, the fundamental frequency vanishes at the first critical speed, signalling a
divergence instability. No such instability exists for the free-center system (n == 1). In this
case the stabilization derives from speed-induced band extension. By contrast, the
speed-tensioning mechanism in the current mode develops from the equilibrium band
curvature (see equations (31) and (32)). While both models predict substantially different
frequencies (and modes), they both indicate that the band/wheel system can operate in a
stable manner over the large speed range considered.

The addition of the applied torque g leads to tension detuning and may significantly alter
the frequency spectrum, as seen in Figure 11 for a stationary band/wheel system. This effect
is also observed in translating bands as seen in Figure 14, in which the frequency spectrum
for the baseline case, ¢ =0, is compared to that for the case g = 5. Comparison of these
two cases reveals that the torque preferentially stiffens those modes (numbers 2, 4,6, ...)
that induce elastic deformation in the taut (lower) span (refer to Figure 9(b)). The
frequencies of the odd order modes (numbers 3, 5,7, ...) decrease as they induce elastic
deformation in the (relatively) slack upper span. Again, the static torque has little influence
on the fundamental mode.

The free response of the translating band/wheel model (¢ = 10) is illustrated in Figure 15
for the two cases (a) ¢ = 0 and (b) g = 5. The solid curves represent the free band/wheel
response over a natural period of oscillation and the dotted curves represent the
equilibrium band profiles. For the translating system, the free response has non-uniform
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Figure 15. The free response of the translating band/wheel system at ¢ = 0. Results are shown for two cases;
(a) ¢ =0 and (b) ¢ = 5. The band profile (——) is shown at times ¢ =0, 0-25¢, 0-5¢ and ¢-75t, where t is the
associated natural period of oscillation. (----- ), Equilibrium band profile. In both cases, m =4, 1 =234, k =0,
iy = 100-85 and j, = j, = 1-745.

phase and is described by complex eigenfunctions. As with the stationary systems
(Figure 9), the detuning generated by the applied torque g leads to an asymmetric band
response for the translating system.

5. EXPERIMENTAL STUDY

An experimental study is performed to validate theoretical predictions of band/wheel
system response. A schematic of the experimental apparatus is shown in Figure 16. The

Structural dynamics analyzer

@ Proximitor
Impact

hammer Proximity
probe

B ——

¢ Speed

controller

Linear motion
transducer

Dead weight Band
pulley system

Figure 16, Schematic of band/wheel test stand and instrumentation.
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Figure 17. The experimental (8) and theoretical (—) static response of the left wheel. Baseline case; g =0,
k=0andm=4(r=}.

test stand consists of two (127 mm radius) wheels, a butt-welded steel band, a dead weight
pulley system, and a (3 hp) d.c. motor. The right-hand wheel, the drive wheel, is stationary,
whereas the left-hand wheel is free to translate horizontally on two lingar motion guides.
The dead weight pulley system, attached to the left-hand wheel, is used to adjust the span
tension. The motor is equipped with a speed controller which provides controlled speeds
in the range of 0~1750 rpm. The geometric and material properties of steel band are listed
in Table 1. A linear motion transducer (potentiometer) detects the horizontal displacement
of the left wheel. An impact hammer is used to excite lateral band vibrations, which are
measured using a proximity probe near the right wheel. Force and response signals are
recorded to disk on a structural dynamics analyzer (GenRad 2515), which performs
standard signal processing functions.

5.1. STATIC RESPONSE MEASUREMENTS

Attention is first focused on the static response of the band/wheel system. The
displacement d of the left wheel is measured for various applied loads n. A range of values
of d are measured for a given load » due to the frictional forces acting on the linear motion
guides. These frictional forces create a “dead band” in which small increments in »
produced no increase in d. Although such variations exist, the experimental results agree
with the theoretical predictions obtained from equations (42)—(44), as shown in Figure 17.
For each of ten values of », both high and low values of 4 are reported to indicate the
total variation due to friction. This variation is greatest in the range of low static loads

TasLE 1
Band geometric and material properties

Steel band Dimensions
Total length 1814 mm
Thickness 0:599 mm
Width 60:325 mm
Young’s modulus 2375 x 10" Pa

Density 7833-41 kg/m®
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Figure 18. The experimental (o, ) and theoretical (——) natural frequencics for the stationary band/wheel
system. Baseline case; ¢ =0,k =0, m = 4(r = 1), i, = 100-85 4 n{(EIjpAg(L*)), where n is the static load due to
the dead weight, and j, = j, = 1-745. (»), Experimental average; (O), one standard deviation away from average.

where the frictional forces are a significant fraction of the applied load ». At higher static
loads, this effect of friction diminishes. The system examined corresponds to the “baseline
case” of section 3.1; a symmetric (g = 0), free center (k = (), band/wheel system for which
m=4(r=3}).

Similar tests are performed to measure steady response when the band is translating.
For a given static load, however, the position of the left wheel remains unaltered over the
entire speed range 0 < C < 2394 m/s. Thus the equitibrium geometry is observed to be
independent of the translation speed in agreement with theory (refer to section 3). Note
that, for a typical static load, n = 33, the highest speed C = 23-94 m/s, corresponds to a
non-dimensional speed of ¢ = 12-75, which is 221% of the critical speed, ¢, = 6-54, defined
by the fixed-center (3 = 0) translating beam model [3--5].

5.2. DYNAMIC RESPONSE MEASUREMENTS

Dynamic characteristics of the band/wheel system are determined by measuring the
natural frequency spectrum. The instrumented hammer is used to impact the band or wheel
at locations selected to excite specific modes. For example, the elastic modes are best
excited by impacting the bands near their mid-span. By contrast, lower order modes
involving wheel translation and rotation are best excited by impacting the left-hand wheel
directly. In these latter cases, 2 soft rubber tip is placed on the impact hammer to better
excite the low frequency response. The proximity probe is positioned near the band/wheel
contact point at the right-hand (stationary) wheel. Force and response signals are recorded
by the structural dynamics analyzer and system (resonances} natural frequencies are
determined from the computed transfer function. The transfer function was typically
computed over a 32 Hz bandwidth.

The following preliminary observations are noted. The largest resonance corresponds
to the fundamental torsional mode of the band; note the significant aspect ratio of the spans
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(width/length = 12%). The torsional band response is unmodelted. The second mode is
difficult to excite due to the large inertia of the left wheel. The dead weight, used to provide
the static load, also contributes to the translational inertia of the left wheel. This additional
inertia is included in the theoretical model by combining it with that of the left wheel.

The first four measured natural frequencies of the stationary band/wheel system, as a
function of static load n, are shown in Figure 18. Five static loads in the (non-dimensional)
range 20 < # < 50 are used in the experiment. At each value of n, multiple tests were
conducted and the average of each natural frequency (solid symbol) and one standard
deviation about the average {open symbol) are reported in the figure. The solid curves, which
represent the frequencies predicted by the band/wheel model, are generally within the range
of the experimental values. In particular, note the good agreement between measured and
predicted fundamental frequencies (near rigid body mode).

For the case of a translating band, several additional observations are made. The motor
excitation frequency always corresponded to a peak in the measured transfer function in the
range of obtainable motor rotation/frequencies (0—29-83 Hz). The passage of the butt weld
connecting the ends of the continuous band also induced a peak in the transfer function ata
known percentage of the motor frequency. The butt weld provides a dominant source of
excitation, as observed in reference [13].

Qualitative experiments are performed to observe the stability of the band/wheel system
while operating at high translation speeds. For reference, the intermediate static load value
n =33 is again used, and the classical critica! speed for a fixed-center system ( = 0) is
¢, = 6-:54. During operation, the band/whee! system responds in a stable manner up to the
maximum obtainable translation speed, ¢ = 12-75. Aside from resonances produced by the
motor and weld frequencics, the band exhibits little dynamic response and maintains a stable
{and constant) equilibrium shape.
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Figure 19, The experimental {o, ») and theotetical ( } natural frequencies of the translating band/wheel
systern for the case g =0, k =0, n =32:936, m =4 (r =), i, = 10085 = n(EljpAg(L*)?), where n is the static
load due to the dead weight, and j, = j, = 1:745. (s}, Experimental average; (Q), one standard deviation away
from average.
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A quantitative experiment was performed on the above system to study how the natural
frequency spectrum is affected by translation speed. The first four measured natural
frequencies, as a function of translation speed ¢, are shown in Figure 19. Frequency
measurements are made at ten translation speeds in the range 0 < ¢ < 12-75. The solid
curves, which show the frequencies predicted by the band/wheel model, are again in good
agreement with the experimental values.

6. SUMMARY AND CONCLUSIONS

A theoretical model was derived that describes the non-linear, planar response of
coupled band/wheel systems. The model, which considers geometrically large band
deflections, is used for the analysis of system equilibrium (steady response), vibration and
stability.

For the steady band/wheel response, the model describes a continuous elastica that is
drawn under finite tension about two supporting wheels. An exact (elliptic integral)
solution for non-linear steady response is derived for the equilibrium band curvature and
tension. This solution is used to evaluate the equilibrium band geometry (speed indepen-
dent) and tension (speed dependent) over a wide range of band/wheel designs and
operating conditions. It is noted that: (1) the band partially unwraps from the supporting
wheels (8, # 0, G, # 0) as it buckles outwards under finite applied load #; (2) steady wheel
torques destroy equilibrium symmetry (6, # 6,) and lead to tension detuning; (3) the
speed-induced tensioning resulis from equilibrium band curvature.

The equations of band/wheel motion are linearized about the equilibrium, and the linear
response and stability are determined from the eigensolutions of a discretized model. The
fundamental eigensolution describes a near rigid body mode dominated by in-phase wheel
rotations. The second and higher order cigensolutions, which invelve substantial elastic
deformations of the band, are sensitive to all parameter changes leading to changes in band
tension. In particular, the steady wheel torque has a significant influence on the band/wheel
frequency spectrum and leads to asymmetric vibration modes. The results show that the
band/wheel equilibrium remains stable at high translation speeds due to the aforemen-
tioned speed-tensioning effect.

A companion experimental study was performed to measure both the steady and
dynamic response of band/wheel systems. Measurements of the steady wheel displacement
are in very good agreement with theoretical values. Modal tests were performed to measure
the natural frequencies of low order vibration modes over wide ranges of static loads and
translation speeds. The overall agreement between the experimental and the theoretical
frequency spectra supports the band/wheel model. Observations confirm that the
band/wheel system maintains stability over the large range of translation speeds obtainable
in the experiment.
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