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A rigorous asymptotic spiral solution to an excitable reaction diffusion system is found by separating space into two 
scaling regions: an "outer region", having the same spatial scaling as the overall spiral structure, which exhibits a 
singularity at the spiral tip; and a "core" region around the spiral tip, where space is scaled so as to resolve the tip 
singularity. The stability of the spiral structure is investigated for both the outer region, which is found to possess no 
intrinsic instability, and the core region which is found to be unstable. Both the zero and small diffusion systems are found 
to exhibit qualitatively similar behaviour. The implication of these results for both experiment and simulation, in particular 
within the context of the observed "meandering" instability, are addressed. 

1. Introduction 

Excitability and spiral formation are phenom- 
ena that are found in many physical and bio- 
logical systems. Due to the ubiquity of excitable 
behaviour, there have been many different 
models of excitability in various physical and 
biological systems proposed over the years. 
Some of the most notable examples include the 
Lotka-Volterra predator-prey model and its 
many extensions [1], the Hodgkin-Huxley model 
of signal propagation in the giant squid axon and 
its simplification, the Fitzhugh-Nagumo model 
[2,3], the Oregonator model of the Belusov- 
Zhabotinskii reaction [4], the Martiel-Goldbeter 
model of signal generation in Dictyostelium Dis- 
codeum [5] and the Maple-Turner-Sales model 
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of catalysis of CO on Pt substrates [6]. The 
remarkable thing about all of these models, 
representing as they do, such a wide variety of 
systems, is that they share the generic behaviour 
of spiral formation, selection and stability, in- 
dependent of the details of the particular system. 

Over the past decade, spiral formation in 
excitable media has been the focus of a consider- 
able body of work [7]. As a result, spiral forma- 
tion has been fairly well characterized. It has 
been demonstrated that much of the behaviour 
of excitable media can be reproduced with great- 
ly simplified models of real systems. Two of the 
most successful models of this type are the two 
variable Oregonator model and the two variable 
Fitzhugh-Nagumo model. Both of these models 
consider the dynamics of two fields with greatly 
differing temporal scales-which,  accordingly, 
are referred to as the "fast" and "slow" fields. 
Studies of these models have shown that for a 
given parameter set, spirals select a unique 
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rotation frequency and shape. Both spiral selec- 
tion and plane wave dispersion, which have been 
observed in these simplified theoretical models, 
have also been observed experimentally, par- 
ticularly in experiments on the Belusov- 
Zhabotinskii reaction [8]. It has become clear 
that, for the case of greatly differing reaction 
rates, these phenomena are due to joint effects 
of the dispersiveness of the media and the 
"Gibbs-Thomson" effect [9] which causes a 
decrease in interracial velocity in the presence of 
interfacial curvature. 

Keener [10], and later Keener and Tyson [11], 
used this conjecture to develop a geometric 
model of the spiral interface, which couples the 
dispersive dynamics of planar periodic struc- 
tures, characteristic of the kinetics of the media, 
to a differential expression of the aforemen- 
tioned Gibbs-Thomson relation. In this way, 
they were able to relate the rotation frequency of 
the spiral to the tip rotation radius. Although 
this analysis stimulated much later work, it did 
not fully address the issue of frequency selection, 
nor was it possible to investigate the question of 
spiral stability. Moreover, more rigorous inves- 
tigations have brought into question the validity 
of this model's results, as it depends on the 
assumption of thin, non-interacting interfaces, 
which is invalid near the spiral tip where length 
scales are comparable to those of the interfacial 
structure #1. Similarly, work by Pelce and Sun 
[13] did not include a completely consistent 
theory of the core. This was pointed out by 
Keener [14] who provided a possible resolution 
of this problem for the special case of symmetric 
spirals. Also, Karma [15] showed that the Pelce- 
Sun method could be used to find a solution for 
the weakly-excitable limit. 

Recently, progress has been made in formulat- 
ing a more rigorous description of spiral waves in 
certain models of excitable media. Solutions 
have been found for media having a vanishing 

,1 The same remarks hold for the kinematic approach to 
spirals used by the Russian school [12]. 

reaction rate ratio and either small (a case first 
considered by Bernoff [16]) or zero [17,18] 
diffusion in the core. For these cases, the size of 
the core region is much smaller than the asymp- 
totic wavelength of the spiral. One can then 
show that a rescaling of space in the vicinity of 
the core and matching to the previously de- 
termined far-field spiral allows for a consistent 
solution everywhere in space. As a result, it is 
now possible to calculate the linear stability of 
spiral structures, and to compare the results to 
numerical and experimental studies of spiral 
formation. 

Another phenomenon that has been observed 
in theoretical models of excitable media 
[19,22,20], and experimentally [8], is the transi- 
tion to tip meandering. In this transition, the 
spiral tip, which rotates uniformly for media 
where the ratio e-1 of the fast and slow fields' 
reaction rates is small enough, exhibits, as this 
ratio is increased, a second frequency that is 
almost commensurate with the rotation fre- 
quency, resulting in meandering, "flower"-like 
trajectories of the rotating spiral tip. Recent 
advances in numerical simulations by Barkley, 
Karma and Winfree [20-22] have emnabled a 
rather complete description of these transitions, 
allowing a mapping of the phase diagram of the 
various behaviours in parameter space. This 
transition has been shown computationally to be 
a Hopf bifurcation. Both the spiral's linear 
stability and the eigenmodes of the linearized 
stability operator have been calculated numeri- 
cally by Barkley [23], providing useful checks 
and impetus for analytic work. This work has 
also suggested that these behaviours are inde- 
pendent of the details of the model used and of 
the magnitude of the slow field's diffusion. 
Indeed, it appears that the instability is quali- 
tatively similar for the case of fields with equal 
diffusion and for the case of zero diffusion of the 
slow field. More recently, the phenomenon of 
"hypermeander" has been observed [22]. Here, 
the motion of the tip is more complex than the 
two frequency motion observed in simple mean- 
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dering and the tip traces out an irregular, per- 
haps chaotic, path. The precise nature of the 
hypermeander remains an open area of research. 

In this work, we first review briefly the formu- 
lation of a rigorous asymptotic solution to the 
spiral formation problem for both small and zero 
diffusion in the slow field, in the limit of vanish- 
ing reaction rate ratio, demonstrating that the 
competition between dispersion and curvature 
lead us to an eigenvalue problem for the spiral 
interface and the rotation frequency. The spiral 
core is described in both cases by a rescaled set 
of equations valid in a small region around the 
spiral's center. We then calculate the linear 
stability of both the spiral and its core for each 
case, concluding that in this limit, the spiral core 
is unstable for both systems, while in the outer 
region the spiral itself is stable. We thus interpret 
the meandering instability as a localized core 
instability acting as a source for waves which 
then propagate out along the spiral. Moreover, 
we show that this instability is independent of 
the details of the model used, and should be 
observed in any two variable system capable of 
supporting excitable waves. Some of our results, 
in preliminary form, have appeared elsewhere 
[24]. 

It should be pointed out that our work leaves 
unresolved one important feature of the mean- 

dering instability. As already stated, simulation 
has shown that the transition to meandering is a 
Hopf  bifurcation; our unstable mode, in the 
small e limit, has a purely real growth rate. This 
is not necessarily a disagreement, since none of 
the simulations can be performed in the limit 
accessible to asymptotic analysis. In the conclud- 
ing section, we discuss possible efforts for bridg- 
ing the gap between simulations and asymp- 
totics, by remedying the unphysical decoupling 
of the core and the outer solution which occurs 
to leading order in e 1/3 

2. Background 

In this work we will be considering a two 
variable model of an excitable media given by 
the reaction-diffusion system 

ti = eV2u + f ( u ,  v)  , 0 = 8eV2v + g(u ,  v)  . (1) 

For what we will refer to as the "diffusionless" 
case, 6 = O, and for the "diffusive" case (the 
Bernoff limit), t} < 1. Generically, f and g have 
nullclines as in fig. 1. Since the dynamics of u are 
~(1/e) faster than those of v, we refer to u and v 
as the "fast"  and "slow" fields respectively. As a 
specific example of an excitable system, we will 

U 

Fig. 1. The nullclines f(u, v)= g(u, v)= 0, and a trajectory in phase space. 
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use the Fi tzhugh-Nagumo (FN) model [3]. The 
kinetics of this model are given by 

f ( u ,  v )  = 3u - u 3 - v ,  (2) 

g(u, v )  = u - 3,v + a .  ( 3 )  

We will first review the standard analysis of 
periodic pulses in 1D excitable media [11,25]. We 
move to a stretched travelling coordinate system, 
z = (x - c t ) / e .  Under  this transformation, the 
system (1) becomes 

02u Ou 
- - +  v) = 0 ,  OZ 2 C - o z +  f ( u '  

02V OV 
6 ~ z  2 + c -~z + Eg(u, v) = 0 .  (4) 

To  lowest order  in e, we see that v is indeed a 
constant,  v = v~. We look for a domain wall 
solution with boundary conditions such that as 
z - - + %  u - - > u - ( v O ,  and as z - - - > - %  u - - > u + ( v O .  

This choice of boundary conditions implicitly 
leads to the convention that a front where the 
quiescent phase moves into the excited phase has 
negative velocity and one with the excited phase 
moving into the quiescent phase has positive 
velocity. The system (4) is a nonlinear eigen- 
value problem for c ( v i ) ,  which can be solved 
numerically. It is readily seen that there exists a 

f,,+(o s) "stall concentrat ion",  Vs, when a,-(os) f ( u ,  v , ) d u  

= 0. For  the FN model (3), v, =0 .  A plot of 
c(vi) for the FN model is given in fig. 2. 

One can easily construct a periodic train of 
excited and quiescent zones separated by alter- 
nating positive and negative-velocity interfaces. 
This is done by integrating the slow field equa- 
tion, using the steady train boundary conditions, 
C(Vb) =--C(V 0 = C. TO zeroth order in E and 6, 
the dispersion relation between period and ve- 
locity is given by 

0 b Of 

T = g(u+(v), v) + g(u-(v) ,  v) " (5) 
Vf V b 

Let  us now turn to two dimensions. As is 
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Fig. 2. Plot of the wavefront velocity, c, vs the slow field 
concentration in the front, v. 

shown in [10,11,25], the Laplacian operator  in 
this coordinate system is given by 

V 2  0 2 
= + eK(S) + ~?(2) (6) 

0/~ 2 

where r is the curvature of the interface, and A is 
the derivative along the interface normal. If we 
assume that the interface is moving steadily with 
velocity Cn, the time derivative is given by 

0 0 
O t -  c.(s) 0A ' ( 7 )  

where we label the curve by the arclength s. In 
this coordinate system, our system (1) becomes 

02U OU 
0a2 + [c.(s) + ~K(s)l-ff +f(u, v) = e(~2). (8) 

Comparing this to (4) we see that the interface 
velocity is related to the value of the v field on 
the interface by 

C n(r l )  = C(v(rI)  ) -- E K ( r I )  , ( 9 )  

where r I is the position of the interface. This is 
analogous to the well known Gibbs -Thomson  
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(with kinetic coefficient) relationship for interfa- 
cial velocity in solidification [26]. 

The fact that • is vanishingly small might lead 
one to believe that the curvature term in (9) can 
be dropped. Fife [27] suggested the alternate 
hypothesis that the curvature term must be 
included so as to give a meaningful theory. This 
led him to postulate that spiral formation will 
occur on spatial and temporal scales such that all 
the terms of (9) are of equal magnitude. Note 
that this is not the only logical possibility; den- 
dritic crystals choose their growth velocity in 
such a way as to make the curvature contribution 
vanishingly small for the actual solution, even 
though one must include this term to get a 
physically meaningful theory [9]. 

In this Fife scaling, v - v  s = •1/36, x = e 2/3 £ 
and t = el/3~. Under this scaling, c(v 0 = el/3co6i, 
where co=[dc(v) /dv][o= o and the interfacial 
equation (9) becomes (after dropping the tildes) 

c,(r ,)  = cov(ri) - K(ri). (10) 

The equation of motion for the v field, (1), 
simplifies tremendously under the Fife ansatz. In 
particular, whereas in general g(u, v ) =  g(u+-(v), 
v) is a complicated nonlinear function of v, in the 
Fife ansatz v ~ v s everywhere, so that g(u, v) ~- 
g(u+-(G), G)=-g  +-, is (a different) constant in 
both the excited and quiescent regions. The 
remaining field equation to lowest order in • is 
then, after Fife rescaling and dropping of the 
tildes, 

Ov 
6V2U + g*- - Ot " (11) 

This, in conjunction with the Fife-rescaled inter- 
facial equation (10), gives a free-boundary prob- 
lem for the shape of the interface and the fields 
u(r) and v(r). 

Finally, we follow the work of Bernoff [16] 
and Karma [17], to obtain a steadily rotating 
spiral solution to the system (10,11) in the small 
6 limit. In this limit, we may drop the 6 term in 
(11) except in a small region around the origin. 
Transforming to the frame corotating with the 

spiral at the large angular frequency to - - - • - 1 / 3 ( ~ ,  

(10) and (11) become 

Cn(ri)  = CvV(ri)  -- K ( r i )  , 

3v 
to - ~  + g-+ = 0.  (12) 

To solve this system, we first integrate the 
second equation obtaining 

v+- (r, O) = -g+- O/to + b+- (r) , (13) 

where b -+ are constants of integration. The 
excited and quiescent regions will be separated 
by two interfaces, 0-+(r), whose shapes will be 
asymptotic to Archimedean spirals, O(r)~ r. We 
determine the angular width of the excited zone, 
AO(r) =-0 + (r) - 0 - ( r )  by imposing continuity at 
the interfaces, v + (0 + (r)) = v-  (0 + (r)) and 
v+(O-(r)) = v-(2"rr + 0-(r)) .  This yields 

2~g - 
A 0 -  _ + , (14) 

g - g  

which is independent of r. We see that the spiral 
consists of two interfaces differing only by a 
constant angular shift. Since the spiral is a steady 
structure, c,[O +(r)] = -c , [O-(r ) ] .  The symmetry 
of O+(r) and O-(r) imply that K(0 +) = - r ( 0 - ) ,  
so we are left with the condition vi(O+(r)) = 
-v i (O- ( r ) ) .  This, together with (13) leads to the 
condition that v~ on the front and back interfaces 
are constants independent of r, given by 

( g+g-)'rr 
Oi(0  -+(r)) ~- 13; = -I- . (15) 

to(g+ - g - )  

As the two interfaces come together at the spiral 
tip, the v field has a discontinuity, and the 
interface is cusped. This unphysical behaviour 
can be resolved by rescaling space near r = 0, 
and will be addressed in section 3. 

To determine the shape of the spiral, we write 
down the curvature and normal velocity 
operators for an interface parametrized by 0+ (r): 

1 dqJ ¢ 
K =  (1+¢2)3/2 dr r 1 ~ ¢ 2 '  (16) 
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t o r  

c, - V~ + 02 , (17) 

where qJ(r) ~ r(d0+/dr). Inserting these relations 
into the first equation of (12), using (15), and 
making the rescaling p = v ~  r, we arrive at the 
following nonlinear ordinary differential equa- 
tion for the interface: 

do - O - (1 + ~b z) - B(1 + ~b2) 3/z , (18) 

where B cov[/V--~ + - , 3/2, + = = c o g  g ~r/to t g  - g - ) .  
For the FN model, g-+=--+V3 + A, c o = - 1 / V ~  
and so B = "rr(3 - A2)/2V~to 3/2. Spirals will be 
those solutions which satisfy the boundary con- 
ditions q , ( p ) - - - p  as p--->~ and ~b(p)- -p  as 
p---> 0. These solutions can be calculated numeri- 
cally by shooting. The selected eigenvalue, 
B -  1.738, determines the spiral's rotation fre- 
quency, which in Fife-scaled units, is 

to* ( cog+g-.rr ]2/3 
= \ B ( g  + _ g _ ) /  . (19) 

A plot of the solution, O + ( p ) =  f (O /P)do  is 
given in fig. 3. This equation and the resulting 
quantization condition for the frequency ap- 
peared first in the work of Keener and Tyson 
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Fig. 3. Spiral  so lu t ion  to (18) ,  p lo t t ed  in x - y  space.  

[11]; (actually in a different context this equation 
was first written down by Burton, Cabrera and 
Frank [28]). However, it was not clearly stated in 
this work that this equation is only (asymptoti- 
cally) exact for the case of small or zero & 

3. Core solutions 

As previously mentioned, the spiral solution in 
the outer regions exhibits a singularity as r---> 0. 
This problem can be resolved by rescaling the 
system (1) near r = 0 and asymptotically match- 
ing the solutions of the resulting equations to the 
outer region solution just described. Since the 
term ~V2v in (1) is a singular perturbation of the 
system, the rescaling we use will be determined 
by w h e t h e r 0 < 8 ~ l  o r S = 0 .  

3.1. The dif fusionless core 

Singularities develop at the origin in the outer 
solution because the assumptions made during its 
derivation break down near this point. In the 
diffusionless case [18], the assumption that the 
width of the excited and quiescent regions (which 
scale as r A0), is much greater than the width of 
the reaction zones (which scale as e) breaks 
down as r---> e; here, all the fields are changing 
over a spatial scale of ~. This suggests that we 
should introduce the new scaling t ~ = er in (1). 
The frequency to is that given by the outer 
solution, to = e - 1 / 3 t o  *. We also expand u and v 
in power series in E1/3: 

U = U 0 "1- ~ l / 3 u  1 "1- [~(E 2 /3)  , 

V = V 0 -1- E1/301 -1- e ( E 2 / 3 )  . (20) 

At zeroth order, this leads to the system 

Ov o 
VZUo+f(uo ,  v o ) = O ,  o9"--~- = 0 ,  (21) 

which immediately yields the fact that v 0 is only 
a function of r. At  first order, 
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v,=0,  
U0,V 0 UO,O 0 

0 o  1 
o,* - ~ -  = g(Uo, Vo). (22) 

A solvability condition arises in that o 1 must be 
single valued in 0. This implies that 

2~r 

~g(u  o, v0) dO = 0 .  (23) 
0 

This equation, valid for all r, implicitly deter- 
mines Vo(r ) as a functional of Uo(r, 0). 

In the outer  region, o ~ 6(E 1/3) and u = u -+, 

where f(u +-, 0 ) =  0. This leads to the boundary 
conditions 

lim Uo(r, O) = _ 

lim Vo(r, O) = O, 
r ~ o o  

0-<0 -<A0,  
A0 < 0  <2~r ' 

(24) 

where we have in addition fixed the rotational 
phase of the spiral. The system (21), (23), (24) 
determines the solution in the core region for the 
case of diffusionless media. 

As an example,  we consider the FN dynamics. 
In this case, (23) becomes 

21r 

f [Uo(r ,O) -  TVo(r ) +A] dO = 0 .  (25) 
0 

This in turn implies 

21r 

1 f oo(r) = 2- v [Uo(r,O)+aldO. (26) 
0 

Evaluating both sides at r---~o¢ by use of (24) 
leads to the relation 

AOu + + (2w - AO)u- + A = 0 ,  (27) 

which gives the same value A0 = 2 ~ ( u - + A ) /  
(u -  - u +) as we determined for the outer  region, 
as it must. 

In the general case, the system (21), (23), (24) 
can be thought as the minimization of the 
Lyapunov functional 

f d2x[(VUo) + F(uo, v0)],  (28) 

where f(u, v) = OF(u, v)/ Ou. In this formulation, 
the condition (23) plays the role of a constraint. 

Solutions to (21), (23), (24) were generated 
numerically using a simple relaxational solver. 
Uo(r ) was first discretized over a 100 x 100 rec- 
tangular grid of size R and grid spacing Ax = 
110R. R was typically 12.5, 15.0 or 25.0. To do 
an update of the u 0 field it was necessary to 
calculate Vo(r). This was done using (26), em- 
ploying a spline interpolation of the u o field. The 
integral at radius r was performed via the 
trapezoidal rule, with 2~rr/Ax points. The o o field 
was calculated for 50 evenly spaced points in the 
interval [0,R] and Vo(r) determined by cubic 
spline interpolation. 

Solutions were actually calculated on a circular 
subdomain of radius R m = 0.8R (40 lattice spac- 
ings). Once Vo is calculated for a given site, an 
updated value of u 0 could also be calculated. 
This was done using the differencing scheme, 

given by 

Ut+l=[Ut+At(L[ut]+f(ut,  ot) O f ( u t ' o t )  OU Ut)] 
Of(u,, o,) ~ 

/ ( 1 - A t  ~u u / .  (29) 

Here  L[ut] is a discretized version of the Lapla- 
cian, which, for this simulation, was a five point 
formula: 

1 
L[ut(x,, yn)] = ( - - ~  [Ut(Xn+l, Yn) 

ql- Ut(Xn_l, y,) + u,(x,, Y,+I) 
"t- Ut(Xn, Y n - 1 )  -- 4Ut(Xn" Y . ) ] "  

(30) 

+ 
The lattice was initialized by setting u 0 = u 
within a sector of angular width A0, and u 0 = u -  
everywhere else. Note that this implicitly sets the 

~ U  -+ boundary condition to be u 0 (depending on 
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Fig. 4. Con tour  plots of  tip solutions for the diffusionless case. Plots (a), (b), (c), (d) are for A = 0.4, 0.6, 0.9 and 1.1. 

the angular position of site) on the circumference 
of the subdomain,  since updates were not done 

exter ior  to it. In fig. 4, we plot these numerical 
solutions for several values of A. 

We can predict some of the solution's quali- 
tative features. For  A = 0, (21), (23), (24) re- 
duces to a 1D problem,  with Vo(r ) = 0 and Uo(X, 
y) = V~tanh(~/~x) .  Note  that for this solution, 
the " in ter face" ,  which may be associated with 

the contour  line Uo(r ) = 0, is a straight line which 
passes through the origin. As we increase A away 
f rom zero,  two interfaces come together  in a tip, 
breaking the translational symmetry  in y. The 
Laplacian te rm in (21) "smooths  out"  this tip, 
causing it to recede f rom the origin, and the core 
radius r c (the point of closest approach of the 
contour  line Uo(r ) = 0 to the origin) to increase. 
As A is increased, the tip becomes sharper and 
this "melt ing back"  effect more  pronounced.  In 
fig. 5 we plot r c as function of A for several 
different domain sizes, rc is an increasing func- 
tion of A, independent  of the domain size for 
reasonable  values of  A. For  larger zl, r~ ap- 
proaches  the domain size and boundary  effects 
become  important ,  making impractical our nu- 
merical  procedure  in this limit. 

E 
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I I I I I I 

..R = 25  .," 

/i 

/ e  

/ 
,,/ 

R = 1 5  . . . . . . . . . . . . . .  " . . . . . . . . . .  " 

o ...... I . . . . . . .  F ............. I I I i I L 
0.2 0,4 0.6 0.8 1 1.2 1.4 1.6 1.8 

{d imensionless) 

Fig. 5. A plot of  the selected core radius, r c, vs A for two 
different domain  sizes, R = 15, 25. The  results are identical 
except  for high ,:1, where  boundary  effects become important .  

3.2. The small diffusion core 

Let us now consider the case 1 >> 6 ~> E, where 
it will turn out that it is still possible to formulate  
the core problem as an interracial equation. 
Here ,  the diffusionless equation solved above is 
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inappropriate at the core, since the ~V2V term 
becomes relevant at a length scale large com- 
pared to e. For  this case, analyzed by Bernoff  in 
[16], the procedure is to first use the Fife scaling, 
yielding the system (11), and then make the 
additional rescaling ~= ~'~1/3 and / ) = ~ - 1 / 3  
After  expanding u and v in a power series in 

1/3, the system (11) becomes, at zeroth order  in 

t o  * Ov° --~- = 0 .  (31) 

At  first order,  single-valuedness of v I in 0 yields 
the solvability condition 

f dO (VZv0 + g ± )  = 0 .  (32) 

In this scaling limit, the Gibbs-Thomson  bound- 
ary condition (10) becomes 

CoVo(rl) - r(rx) = 0 .  (33) 

In general, since the two interfaces, 0-+(r) will 
come together  and meet  at some radius rc, the 
solvabi l i ty  condition, (32) will reduce to two 
different differential equations for r < r~ and r > 
re. For  r < re, there is only the quiescent region, 
so (32) becomes 

d2v0 1 dv o 
dr 2 + r - - - d r  - g  (34) 

The solution that remains finite at r = 0 is given 
by 

v o = - l g - r 2 + v ~  ( r -<r~) ,  (35) 

where v~ is the value of v 0 at the origin. For 
r > rc, (32) becomes 

dEvo 1 do o - - +  
dr z r dr 

- ( g +  - g - )  [0 +(r) - 0 - ( r ) ]  (36 )  = - g  2"rr 

The interfaces, 0 *-(r), and the slow field Vo(r ) for 
r---re, are determined by (33) and (36), sup- 
plemented by boundary conditions at r = r c and 

r = oo. Continuity of v 0 and v~ at r = re, implies, 
using (35), that 

Vo(rc)= 1 - 2 (37) - ~ g  rc + v c , 

v~(rc) = - ½ g-r~ . (38) 

Fur thermore ,  by symmetry,  0 +(r) = - 0  -(r)  -= 
O(r) if we choose O(r~)=0. Also, as r---~o0, the 
core solution must match to the outer solution, 
i .e. ,  O(r)---, ½aO. 

It is instructive to reformulate the diffusive 
core problem in terms of O(r). Using the Green  
function for the operator  O2 /Or 2 + (1/r)(O/Or), 

~ ' ln r ,  r ' < r ,  (39) 
G ( r ' r ' ) =  l l n r ' ,  r ' > r ,  

we are led to the following expression for v0: 

Vo(r)=lnr  i R ( r ' ) r '  dr' + i lnr '  R ( r ' ) r '  dr' , 
0 r 

(4o) 

where 

1 
/~(r) = 

27r 

f dO g+- 
0 

g -  , r < r c  , 
= (41) 

2(g+ - g - )  O(r) + g -  r > r c . 
2"rr 

Note that the boundary condition limr__,= Vo(r ) = 
0 implies that the selected interface will have the 
property that So R(r')  r '  dr '  = 0. Geometrically,  
this means that the area of the excited tip will 
equal the area subtended by a sector of angular 
width a0. 

For numerical purposes, there are some tech- 
nical difficulties with this formulation of the 
interface. In particular, O'(r) diverges as r--+rc. 
It is more convenient to reformulate the problem 
in terms of the interracial arclength, s. In this 
formulation, s is the independent  variable and r 
becomes a new dependent  variable. We also 
replace the variable 6 with the angular coordi- 
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nate th, the angle that the normal  to the curve 
makes  with the negative x-axis (0 = ~r). The 
curvature K is given simply in terms of th by 

K~) = ~ , .  (42) 

Here ,  the s subscript denotes differentiation with 
respect  to arclength. In these coordinates,  we 

define dvo/ds =-w, and make  the rescalings 

t-% - g ) -  s ,  

~ =  - g )  r ,  

(+  
~CuqT.~ 2 ~1/3 

= ( (g+ _ g - ) Z /  w ,  (43) 

(33) and (36) are then equivalent to the system 
(dropping the hats for clarity) 

cos(4, + 0) 
r ~ = s i n ( ~ b + 0 ) ,  0~ r ' 

~ s = - - O ,  U s = W  , 

w, (½AO O)r  wrs wrO  
. . . . .  + 4,s). r r s 

(44) 

We commence  solving this system by first deriv- 
ing its asymptotic  behaviour.  At  s = 0, r = re, 

1 2 ~b = 0 = w = 0 and v = -gAOr~ + v~. The deriva- 

tives at s = 0 are also easily calculated: r~l~= o -- 

vsl~=o=0,  O~[s=o=l/r~, tk~l~=o=-U(rc), and 
wsls= o =¼A0(1 + tk~r~). This is sufficient to de- 
te rmine  the solution in terms of the parameters  
r c and v c. 

The  asymptotics as s---~oo are a bit more  
involved. In this limit, r---~s + Ar, where Ar is a 
constant ,  0---~½a0, ~b---~½('rr- A0), and v, w---~ 0. 
We denote  the variations of the dependent  
variables f rom their asymptotic  values as ~0, ~th, 
~w and ~v. We linearize (44) in these quantities, 
and obtain the asymptotic  system 

~0 + 8 ¢  
~°s s , ~ ¢ s - - ~ v ,  

3w 
5v s - 8w,  3w s - - ~ 0  - T (45) 

The r equation just allows for the constant shift 
Ar. This system is equivalent to the fourth order  
O D E  

sO .... + a s ~  + O = 0 ,  (46) 

where Q = s 8 0 ,  ~ b = - Q s ,  8 v = Q ~ s  and 8 w =  

Qsss. (46) has found asymptotic  behaviours 

Q(s) ~ s 1/8 exp( 4 as3/4) , (47) 

where a = ( + l - + i ) / V 2 .  The final solution, in 

the large s limit, will be a linear combinat ion of 
these four modes.  Since two of these modes  are 
unbounded in this limit, we need to ensure the 
absence of these bad modes by adjusting the two 

parameters  r c and vc appropriately.  We thus 
expect a discrete spectrum for these parameters .  
We represent  the total solution at infinity in 
polar form, replacing the two unknown coeffi- 
cients for the good modes by an amplitude,  A,  
and a phase v, 

Q(s) ~ As  1/8 e x p ( -  4S3/4) [4S3/4 
-~--~]  COS~--~--~ + V) .  (48) 

We solve the full system by shooting. Af ter  
making an initial guess for the five unknown 
quantities, r c, v c, Ar, A and v, and using the 
asymptotic behaviour,  (48), as an initial con- 
dition, we integrate the system from a large 
value of s, s . . . .  to some intermediate value of s, 

smatc h. We then integrate out f rom s = 0 to Smatc h- 
The differences in the dependent  variables at 
s =Smatc h are functions of the five unknown 
constants. At  values of  the constants corre- 
sponding to an actual solution, these functions 
will vanish. This scheme is implemented  by a 
Newton solver, seeded with our initial guess, to 
determine the solution. 

In fig. 6, we plot r~ as a function of v~, and in 
fig. 7 we plot a typical tip contour,  correspond-  
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Fig. 7. A plot of  a spiral tip solution for the Bernoff  case 
a0 =¼~r. 
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Fig. 8. A plot of  a spiral tip super imposed on a sector of  the 
same angular  width. A0 = ~ .  

3.3. The general case 

The two solutions described above, corre- 
sponding to 6 = 0  and e ~ 6  ~ 1 ,  are very 
s imi la r -  so similar in fact that the core problem 
begs a more general formulation. We begin such 
a formulation by first writing down the equations 
with the spatial scaling, x = e.f, and File's tempo- 
ral scaling OlOt=--e-1/3o.)(O/00). The relevant 
parameter  distinguishing the diffusionless and 
Bernoff  cases is the ratio of e to tS, 7/-- 6/e. The 
Bernoff  case corresponds to r/--~oo and the 
diffusionless case corresponds to r/--~ 0. Using 
the explicit form of g(u, v) for the FN model,  
setting 6 = "qe and dropping the tildes for clarity, 
we have 

2/3 0U 
- e  to ~-~=V2u +f(u, v), (49) 

ing to A0 = ¼"rr with v c = - 0 . 6 7 3 ,  r c = 0.804. In 
fig. 8 we plot a tip contour for A0 = ~0Tr, with 
v 0 = - 1 . 7 1 4  and r~=4.819.  Superimposed on 
this plot is the angular sector 0 = ~ ' r r - t h i s  
demonstrates graphically the area conservation 
relation J'or' d r ' /~ ( r ' )  = 0. 

- 1 /3  OU 
- e  w O-d = n VZv  + u - ~,v + z l .  (50) 

Considering the second of these equations, we 
have, to zeroth order,  

o~o o 
= 0 ,  (51) 80 
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which implies that v0(r, 0) = vo(r ). At first order, 
we obtain the equation 

OV 1 
O0 --  ~ V 2 v 0  + u 0  - -  3 'v0 + A .  (52) 

Single valuedness of v 1 implies that  the integral 
of the left-hand side of this equation over 0 must 
be O. 

2'rr 

f ( ~ V 2 V 0  "-[- U 0 - -  3'V0 -]- A )  dO = 0 .  

o 

(53) 

This leads to the equation 

2"~ 

----Yv = 1 f V2vo .q o 2~vO [uo(r, 0 ) + A ] d 0  
0 

= R(r) .  (54) 

The general solution to this equation is given by 

v°(r) = i G(r, r') R(r') r' dr', 
0 

(55) 

where G(r, r') is the Green function of the 
operator 02/Or 2 -k (1/r)(O/Or) - 3,/77, and is given 
by 

[,-lo(7'  )Ko(r'), 7 > 7 ' ,  
G(7, 7') = [ _ i o ( ~  Ko(7,),  7 '> 7. (56) 

Here ,  7 =  r~cr3"l~7 and I 0 and K 0 are modified 
Bessel functions of the first and second kind. We 
now reconsider the two limiting cases previously 
analyzed. For the diffusionless case, r/--->0, 
which causes the arguments of the Bessel func- 
tions, ~/(y/r/) r, to become very large. Using the 
asymptotic behaviours, Io(x ) ~ eX/ ~ ,  Ko(x ) 
X/(w/2x) e -x (x >> 1), we obtain 

v°(r) = - 2 V ~ r  

× [ i  e x p ( - W ~ ( r - r ' ) ) R ( r ' )  V~Tr' dr' 
0 

r 

(57) 

To find the behaviour of the above equation in 
the limit of vanishing ~7, we note that the only 
significant contribution to the integrals will occur 
in a neighborhood of r of size ~/~//3', meaning 
that the integral form 0 to r can be replaced with 
one from -oo to r. We then use the identity 

J'~ e x p ( ' ( x '  - x)/e) f (x ' )  dx' 
lim = f ( x ) .  
e--~.O E 

As ~/-->0, both integrals approach the limit 
~/(,/r/y) R(r). Thus we have 

Vo(r ) = - ~--- R(r).  (58) 
3' 

Inserting the explicit expression for R(r), (54), 
we finally obtain 

2"~ 

Vo(r ) = ~ y ~  [u0(r, 0) + A l dO. (59) 
0 

This is just (26). 
For the Bernoff core, we proceed by noting 

that lengths should be rescaled by ,/1/3 and v by 
- 1 / 3  7? and ~7---~oo. Under  this scaling, the argu- 

ments to the Green function, (56), F'0 -I/3, be- 
come very small. Using the asymptotic behav- 
iours, I 0 - 1, K 0 - - l n ( l r )  (r ~ 1), we obtain the 
following expression for v0(r): 

v0(r ) = In (½r) f r' R(r') dr' 
0 

+ f ln(½r') R(r') r' dr' 
r 

oo 

+ l n ( V ~ )  f R ( r ' ) r ' d r ' ,  (60) 
0 

where R(r) = (1/2"rr) J'o 2= g(Uo, Vo) dO. In this sca- 
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ling limit, it is easily demonstrated that u and 
R(r) approach the values of their corresponding 
functions from the Bernoff case. In addition, the 
last term in (60) vanishes, since finiteness of v(r) 
as r---->o0 implies that f o R ( r ' ) r ' d r ' = O .  Thus 
(60) is seen to be identical to (40). Lastly, it 
should be noted that a minimum principle similar 
to that described for the diffusionless case can be 
formulated, guaranteeing a solution of the inner 
problem in this more general case. 

4. Spiral stability 

Having determined steady spiral solutions of 
(1), we can now investigate their stability. In the 
limit we consider, the stability calculation will 
break up into two parts: the stability of the outer 
spiral solution and the stability of the core 
solution. Since the outer solution is identical for 
both the diffusive and diffusionless case, we need 
only calculate it once; however the stability 
analysis of the core region (though as we shall 
see, not the qualitative results) will be quite 
different for the two models. For the diffusion- 
less case we must deal with the stability of the 
solutions of a set of coupled nonlinear field 
equations, whereas in the diffusive case, the 
problem involves an eighth order linear ODE. 

4.1. Outer solution stability 

In the outer region, we consider [34] perturba- 
tions of the steady state interface of the form 
~0-+(r) exp(g2t). Such a perturbation will also 
induce changes in the v field, 8v+-(r, O)exp(Ot).  
Linearizing the (Fife-scaled) equation of motion 
for the outer region (11), we obtain the follow- 
ing equation for the dynamics of By(r, 0): 

O~v ± 
- to - - - -~-+Yl~v  ± = O. (61) 

The solution to this equation is 8v(r, O)= 
~A+-(r) exp(~20), where g)=O/ to .  Now, the 

change in the value of the fields at the two 
interfaces 8v~ will have two parts, one part given 
by 8v -+ (0 -+ (r)) and another induced by the shift in 
the interface: 

~v x = 8v+-(r, 0 +-(r)) + O--~O o=o ±(r) ~0 +-. (62) 

This shift obviously must wind up being indepen- 
dent of whether it is evaluated using fields from 
the excited or quiescent sides of either of the two 
interfaces. Imposing these conditions leads to 

(g+ - g - )  

~0- = exp ( -g )a0 )80  + , 

~A- = ~A + - e x p ( - O A 0 )  

(63) 

~0 + 
tO 

(64) 

Our perturbed interracial equation (10) be- 
comes 

~c 2 = c o ~v I - gK -+, (65) 

where the operators 8c,[~0(r), 0(r); g), to] and 
gK[~(r) ,  0(r)] are the linearizations of the 
operators K[0(r)] and c,[O(r); to] given in (17). 
~c, and gr  are linear in ~0 and have opposite 
signs on the two interfaces. In light of (63), this 
implies that 

~K- = - e x p ( - / 2  A0) ~K + , 

~c~- = - e x p ( -  f i  aO) 8c + . (66) 

Using these relations in the two interfacial ex- 
pressions (65), we find that the ~v I terms drop 
out, yielding the single equation 

~c.[~0(r); g2] + ~K[~0(r)] = 0.  (67) 

Inserting the explicit expressions for ~K [ ] and 
~n[  ;O], and making the rescaling p = ~ r, we 
obtain the following eigenvalue problem: 

_3q~'qJ ~] 1 

= 0 ,  (68) 

with the boundary conditions that ~0 remain 
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finite as p ~ o0 and p ~ 0. The second of these 
conditions is chosen so that the modes we are 
considering here do not alter the structure of the 
core. The stability of O(r) is determined by the 
sign of the largest real part in the set of selected 
eigenvalues 12. 

This eigenvalue problem has been solved nu- 
merically by both shooting and by explicitly 
diagonalizing the discretized operator.  In the 
shooting method,  we calculate the asymptotic 
solutions of (68) as p---> c¢, which can be shown 
to consist of a decaying mode,  ~ - exp(-Op/B) 
and a growing mode ~9-exp(p3/3B). After 
picking a complex number  g/, we integrate from 
" large"  initial value of p (typically between 4.0 
and 10.0) with initial conditions that correspond 
to the decaying mode,  towards p = 0. We repeat 
this procedure for a grid over the complex 12 
plane. Generically, both the real and imaginary 
parts of ~0 diverge at p = 0. We segregate the 
complex O plane by the signs of the divergence. 
In this way, we obtain two sets of contour lines 
in the O plane, one set where the imaginary part 
of ~9 remains finite and one set for the real part. 
A plot of these contours is given in fig. 9. The 
selected values of 12 occur where these contours 
cross. We find that the largest real part of the 
selected eigenvalues is zero, which corresponds 

A B 

-5 5 10 -5 0 5 10 
C 

-5 0 5 10 

Fig. 9. Plot of  the contours  where  limo~ 0 p gO = 0 in the 
complex ~ plane.  (A) Nullclines of  the Real  Part,  (B) 
Nullclines of  the Imaginary Part,  (C) Superposit ion of (A) 
and  (B). 

to a constant rotational shift of the entire spiral. 
In the explicit diagonalization approach, we 
approximate the stability operator  with a matrix 
obtained by replacing the differential operators 
by their discrete analogues, and diagonalize. 
Again, the all eigenvalues are stable, except for 
the rotational zero mode. Spatial translation zero 
modes are ruled out by our insistence on finite N9 
as p--* 0; these are more properly thought of as 
core modes and will play an important  role later. 
We conclude that the outer  solution to the 
excitable system is stable. Thus any observed 
instabilities must be a consequence of in- 
stabilities in the core region. Similar results have 
been obtained by Pelce and Sun [31]. 

4.2. Core stability 

Having determined that the outer  region of 
the steadily rotating spiral is stable, we now 
investigate the stability of the core region. Clear- 
ly, any stability analysis of a spiral structure that 
is predicated on splitting space up into two 
scaling regions must consider the coupling be- 
tween one region and the other. In calculating 
the stability of the outer  region, we found that 
the outer  structure had no inherent instabilities 
of its own assuming that the core region was not 
per turbed,  i.e., the boundary condition at p ~ 0 
was p ~O ~ 0. Similarly, in calculating the stabili- 
ty of the core region, we must account for the 
coupling between it and the outer region as 
r---> oo. Such a coupling will determine the bound- 
ary condition of the stability operator  in the 
inner region in the limit r--* co. 

As we shall soon see, disturbances in the inner 
iNtot 

region, to leading order,  depend on time as e 
where N is an integer. Imagine solving the outer  
region equations (68), with this value of O and 
using the decaying mode as a boundary condition 
at ~. As we integrate in to p - -0 ,  ~ is governed 
by 

¢32~ 2 ¢3 
8p2 p Op ' p ~ 1. (69) 
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If N # 0 ,  the fact that J2 N=iNto  is not an 
eigenvalue of the outer  problem means that the 
solution diverges at the origin, with ~N ~ aN/P + 
bu, where a n and bN are constants. If we rescale 
space to the core coordinates, in either the 
diffusionless or the Bernoff  cases, we find that 
that the constant term will be down by either a 
factor of e 1/3 o r  6 1/3, and thus negligible in the 

limit of either vanishing e or 6. So, for the case 
N # 0, we find that coupling between the inner 
and outer  regions implies that the modes of the 
core region stability operator  must asymptoti- 
cally behave as 1/p. For the case N = 0, a 0 = 0, 
since O 0 = 0 is in fact an eigenvalue of the outer 
problem corresponding to rotation invariance of 
the original equations. 

4.2.1. Stability o f  the Bernoff  curve 
We first examine the stability of the Bernoff  

core solution. In this case, we are investigating 
the stability of the solution to the set of ODEs  
(33), (35) and (36). We begin by considering 
the dynamics of a small perturbation of the 
form v(r)-->v(r) + ~v(r, O) e at, O±(r)--->O ±(r) + 
~ ± ( r )  e n', subject to the boundary conditions 
that By(r), ~0 ±---> 0 with the correct asymptotics 
as r--->~. After  using Bernoff 's  scalings and 
linearizing (11), and then expanding By(r), ~O(r) 
and O in power series in 61/3, we obtain at 

zeroth order  the following equation for Bv0(r): 

O~v o 
- t o  - - ~  + g20 ~v 0 = 0 .  (70) 

This implies that ~Vo(r, O)= 6(r)e  iN° and Oo = 
iNto, where N is an integer. At first order,  
orthogonali ty o f  7 2 ( v 0  4- ~v0)  4- g ±  t o  the adjoint 
null-vector, v~(r) + ~v~(r) e -iNe, leads to the 
equation 

Or 2 r Or 

O, r < r  c , 

g+ ~_~g - - (80 + e - i s °  +(r) ( 7 1 )  

- -~0  - e iN° +(r)) , r > re . 

Linearizing the inteffacial equation (33) leads to 
the two equations 

d2~)0 ± d~0 ± 

1 + ~02} 

c° ~02)3/26(r) e ±is°+ = 0 (72) + - - - ( 1 +  
Y 

where qJ(r) = r[dO +(O/dr]. 
The stability problem is greatly simplified by 

realizing that the system ( 7 1 ) ,  (72 )  is Hermit ian,  
even for N ~ O. To see this, we can explicitly 
solve (72) for the interface shift B0+(r). We 
rewrite (72) using an integrating factor 

r 2 d~50 ± 
+ d (1  + L[~0-(r)l--d-~r qj2)3/2 dr / 

= -W- cor6(r ) e ±iNO +(r) ~ R±(r ) .  (73) 

The general solution to this equation is given by 

~O±(r) = - R±(r  ') d~ B(P) 
r e m a x ( r , r ' )  

oo 

+ a  ± 1  B ( 0 d ~  + f l ± ,  (74) 

where B(r )=  [1 + qjE(r)]a/2/r2 and a ± and /3 ± 

are arbitrary constants, representing the am- 
plitude of the homogeneous part of the solution, 
and are determined by requiring that B0±(r) 
satisfy the correct boundary conditions at r = r c 
and r = ~. At  0% we require that ~9 ± vanish, 
which implies/3 ± = 0. At  r - - r e ,  the square root  
singularity of 0 ±, 0 ±(r) ~ +_2b~/r - rc, implies 
that B0 ± have equal and opposite inverse square 
root singularities, induced by the shift in the tip 
radius, re. Th i s ,  together with the equality of 0 ± 
at the tip, implies the conditions that 

C1 
_ - -  + C 2 (75) ~O(r) ± 4 x / r _  rc 

as r---~ r~, where C 1 and C 2 are constants. Ex- 
amining (74) near r=r~ ,  we see that the 
homogenous term indeed possesses the requisite 
singularity. Separating out this singularity, 
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2b3rc 
B(r ' )  dr' - ~ + BR(r' ) d r ' ,  

r r 

(76) 

where the second term is finite as r---> r~, we find 
that the boundary condition (75) implies 

+ f(r . a = f~  B R ( f  ) d~ ) cos[NO(r')] 
r c 

r '  

Substituting back in to (74), we can now use that 
equat ion to rewrite (71) entirely in terms of 0(r). 
Af ter  making the transformation Q(r) = v 7  6(r), 
the eigenvalue problem, (71), becomes 

d2Q N 2 _ 
2 4 Q  

dr 2 r 

+ - i  
g - g  

2~r Q(r ' )  X/-~rr' F(r, r ')  dr' 
r c 

= 121 Q ,  (78) 

where 

F(r, r ' )  = 2c~ (cos[N[O(r') - 0(r)]] 

× J B(P) dP 
m a x ( r , r ' )  

(79) 

- cos[NO(r')] cos[NO(r)] 

f~, B(P) d~ f~  B(~) d~)  
× :. (80) 

Since F(r, r ' ) = F ( r ' ,  r), and F is real, the 
opera tor  is Hermit ian,  implying that the eigen- 
values, 121, are real, even for N # 0. 

of the perturbed interface curves in terms of its 
arclength, with the shifts ~0-+(s), 8r-+(s), and 
8~b-+(s). There  is a subtlely in treating the po- 
tential v0 + By0, since they are most naturally 
expressed in terms of r, not s. The potential at a 
given point along the interface is given to first 
order by 

Vo(r(s ) + 8r +-) + O(r(s)) e iN° +-(s) 

do0 ÷ 
= v°(r(s)) + ~ r  8r-  + 6(r-+(s)) e -~iu°(') . (81) 

Now, Vo(r(s)) is just what we denoted as v(s) in 
our solution of the steady-state problem. Similar- 
ly, ~0(r), the shift at fixed r, is related to ~0(s), 
the shift at fixed s, by 

d O  -+ + 
~0 -+ (r) = ~0 -+ (s) - ~ 8 r - .  (82) 

If we denote 6(r(s))=-Sv(s),  and w =-dSv/ds  we 
obtain, upon making the rescalings in (43), the 
following eighth order  system: 

8r~ = ---(~9 -+ + 8~b -+) cos y , 

+ + C O S  T 80~- = - ( ~ 9 -  + 8 ¢  -+) sin Y w- 8r-'- 2 
r r 

8 ¢ j =  ~ 8 r e  -+iN° + Sr-+ w , 

8v s = 8w , 

+ --7-)r~ z 
\ r s 

2 

2 ~0 + - 8r + e 

- (~O- + Sr +~s  eiu° ' (83) 

4.2.2. Numerics  o f  the Berno f f  stability 
p rob l em  

Armed  with the knowledge that the selected 
values of 121 will be real, we can now proceed to 
implement  a numerical scheme for finding 121. 
As with our base solution, (44), we express each 

where y -= 0 + ~b and ~1 =- [~r / -co(g  + - 
g-)]2/301. 

As s ~ 0, r -- re + (1 - vcrc)(s2/2rc) =- re + ~7s2/ 
1 2 2r¢, O--s / rc ,  ¢ - - - V ( r c ) S  , v - - v ~  + gAO(rc + 

~7s2), w ~ ¼AO~Ts and y ~ rls/r~. In this limit, (83) 
takes the asymptotic form 
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8r~ ~ __(80 -+ + 8~b-+), 

÷ 8r -+ 

8~b 2 ~ ~ ( S v  + 8r +- J r c A O )  , 

8v  s ~ 8 w  , 

8 w  
8w~ ~ (84) 

s 

The  boundary  conditions at s = 0 are that 8r + = 

8 r - ,  ~0 + =  ~0 - ,  8~b + =  8~b-. In addition, the 
condition that 6(r) and its derivative are continu- 
ous at r = r c gives a condition relating ~v and 8w 
at s = 0. For  r < r c ,  (71) has the regular solu- 

tion ~ = 6 o l o ( V ~ r  ) .  This implies that,  as s---> 

0, 8 w ( s )  .~- - ( ~ s / r ~ ) [ ~ r ~ 1 1 1 i ( V r ~ l l  r¢ ) / lo (V~-~ l  r¢)] 
80(0). We exploit the f reedom in choosing the 
origin of s by choosing 8~b+-(0)=0. These five 
conditions leave three degrees of  f reedom in the 
solution, which we can identify as 8r-+(0), ~0-+(0) 

and 80(0). As this is a linear problem,  we can 

equally well think of the solution as a linear 
combinat ion of three modes,  with ampli tudes/xl ,  
/% a n d / z  3. 

As s--> 0% (83) has the asymptotic form 

8r~ ~ 0 , 

B0-+ + 8~b -+ ÷ 

~0;- s ' 

849s ~ -T- 80 e +iNa°/2 , 

8v~ ~ 8 w  , 

8 W  s ~ 121 8V --  1 ( 8 0  + e - i N a O / 2  - -  8 0  - e + i N a ° / 2 )  . 

(85) 

The equat ion for 8r -+ decouples,  and corresponds 
to independent  constant shifts in 8r-+. The rest of  
the system simplifies if we introduce the vari- 
ables y+- --- ~0 + e -iNa0/2 "+- ~0 - e iNAO/z and z -+ --- 
8(b + e -iNaO/2 + 8q~-  iNaO/2 

- -  e . Reexpressed in these 
variables,  the rest of  (85) becomes 

-+ Z + -- _+ Y + .y$ - -  , 
s 

+ 
Z s ~ 0 ,  

z ~  ~ - 2 8v , 

80 s ~ 8W , 

8Ws  ~ ~'~1 8U --  l y -  . (86) 

We see immediately  that y +, z + decouple f rom 
the rest of the modes.  The condition that these 
vanish as s - - ~  eliminates one of the modes,  
leaving the mode  y + s-1 + , z = 0 .  The  other  
equations give rise to four modes ,  with asymp- 

totic behaviours e ±x~l" and e -* 'x/2~. For  positive 

real 121, two of these are growing modes  and 
therefore  unacceptable,  leaving us with an addi- 
tional two modes.  There  is thus a grand total of  
five modes,  counting the constant ( to leading 
order  in s) shifts in 8r -+, which we can paramet -  
rize by the amplitudes vi, i = 1 . . . . .  5. 

We have seen that as s--->% (83) has five 
independent  modes,  which we can label ~(s),  
with amplitudes v i. Note  that each of the v~(s) is 
an eight-dimensional vector,  corresponding to 
the eight functions in (83). Likewise, as s---~0, 
there are three independent  modes ,  ~j(s) with 
amplitudes,  /xj. An e igenmode of the system 
exists [30] if, for some values of  the v /de termin-  
ing the solution at large s, after integrating in 
f rom infinity to some arbitrary intermediate  

value of s, Smatch, the solution is continuous with 
the result of integrating the system out f rom 0 to 

Smatc h for some choice of the /zj. Since this is a 
linear problem,  we can express the results of  the 
integration in f rom infinity as a linear combina-  

tion of the v e c t o r s  V/(Smatch). Similarly, the result 
of integrating in f rom 0 is a linear combinat ion of 

the ~[,~j(Srnatch ) .  Continuity requires that eight 
equations be satisfied 

E / ] / ~ ( S m a t c h ) :  E ~l . j i~ j (Smatch) .  (87) 
i j 

As this system is homogenous ,  it must be 
degenerate  for a non-trivial solution to exist. 
This degeneracy requirement  

~(121) ~ det[/tl,/~t2,/x3, Vl, 1°'2, v3, v4, lPS](Smatch) 

= 0 ( 8 8 )  

gives a selection criterion for the eigenvalue 121. 
Our  major  result is presented in fig. 10, where 
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Fig. 10. Plot of the selected eigenvalues for the Bernoff core 
stability problem vs g+. 
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Fig. 11. Plot of the selected eigenvalues at g+ = 0.75, 0.85 as 
function of N. Note the zero crossing at N = 1. 

we have plot ted the positive values of  121 for 
N = 0 at different values of g ÷; for simplicity, we 
have scaled - c  v = g+ - g -  = 1, leaving g÷ as the 
only parameter .  There  is one mode  which is 
always unstable and whose growth rate diverges 
as we approach g ÷ =  1, which is of course the 

symmetr ic  case 0÷ = - 0 _  =-rr, r c = 0. There  are 
no instabilities for other N; in fact, if we artifi- 
cially extend the integer N in the stability 
opera to r  to be a real number ,  the real part  of the 
growth rate of  the N = 0 unstable mode de- 
creases uniformly as N increases, crossing zero at 
precisely N = 1. A plot of the growth rate vs N is 
given in fig. 11. The existence of a mode at 
precisely 12 = iw is due to the translation in- 
variance of the underlying dynamics. This pro- 
vides a highly non-trivial check on the details of 
our  calculation. The upshot of all this is that the 
core exhibits one unstable mode! 

v---~ u + gv(r, O)e at. We expand the per turba-  
tions in a power  series in E a/3, 

~U ~-- ~U 0 "~- E 1/3 ~U 1 "~ ( ~ ( 2 / 3 )  , 

~I.) = ~I.) 0 "{- t51/3 ~O 1 "[- ~ ( ~ . 2 / 3 )  , 

12 = 120 + el/3121 + ff(ez/3) • (89) 

Using (1), and the spatial and tempora l  sca- 
lings appropriate  to the core region, this yields at 
zeroth order the linear system: 

V2 ~uo + ~u ,o,vo~Uo + ~v ,o,vo~Vo=O, (90) 

O ~v o 
--w ~ -t- 120 ~v0 = 0 .  (91) 

Eq. (92) implies 

~bo(r,O ) =SVNo(r) e x p ( - ~ O )  . (92) 

4.2.3. Stability o f  the diffusionless core 
The  diffusionless core is described by (21), 

(23), (24). To  examine the stability of this 
solution, we consider the effects of  a small per- 
turbat ion of the form u- -~u+~u(r ,O)e  at , 

Single valuedness of  v 0 implies that O 0 = 
iNto --- 12~, where N is an integer. Thus,  finding 
the spectrum of this system decomposes  into a 
separate eigenvalue problem for each value of N. 
The eigenmodes will either grow or decay at a 
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(slow) rate proport ional  t o  1 / 3 ,  depending upon 
the sign of O 1 for the given mode. 

To  explicitly obtain the relevant problem we 
first determine ~vN(r) by expanding (1) to first 
order ,  

08v ~ 
- --O-ff- + a 'o" 7 

=fO~U,o,vogU~+(-dO~Vuo,%--ONx)gV o . (93) 

We have appended the superscript N to both ~u 0 
and 01 to denote  that we are considering some 
fixed N. We use (92) to substitute for ~v 0 and 
multiply by e x p ( - i N 0 ) .  Integrating over 0 leads 
to the solvability condition 

2"rr 

f dO (e-iN° Og 8U N) 
\ Ou uo,oo 

0 

Og 
= ( O ~ - - ~ v -  v uo,Vo) gVNo(r). (94) 

Specializing now to the FN model,  we obtain 
the following expression for ~v0N(r): 

27 

6VNO(r)= (___~+T) f ug(r,O,) dO' 2~r " 
0 

(95) 

Using this expression for ~v~(r) in (90), we 
obtain the following eigenvalue problem for the 
perturbat ion N ~U o (r, 0): 

2 N _ ~  N 
V ~u 0 ~u 0 

u0,o 0 
2rr 

( )f = 1 e -iN°' 8u~(r, 0') 21r " O N + y  
0 

We would expect that any spiral solution, and 
hence any core solution would be translationally 
symmetric,  since there is nothing that distin- 
guishes the medium in the vicinity of the core 
f rom the medium in the rest of space. This 
implies that the perturbations ~u0, ~v o corre- 
sponding to translations should exhibit vanishing 

growth rates. Since the core solution is rotating 
with an angular velocity oJ, such a translational 
mode will when viewed in the rotating frame 
have N = I .  In fact, it is easy to see that a 
translational mode will have the explicit form 

eio ( Ou o i OUo \ 
~u°(r'O)~ \ Or +r - -~ ' ) "  (97) 

If we now insert this quantity into (96) and set 
~ N  

0 1 = 0 ,  we can verify that the equation is 
satisfied identically. 

One important  consideration for this 
eigensystem is the issue of the expected asymp- 
totic behaviour for ~u~(r) as r--~ ~. The answer 
to this question is similar to that discussed in the 
last section for the perturbation to the Bernoff  
core. That  is, the perturbat ion must match 
smoothly onto the outer  perturbation,  which 
consists of the motion of the thin interface by an 
amount  that varies as 1/r at small r in the outer  
variables. This implies that our perturbation 
must behave as ~u ° ~ i(eiN°/r)(OUo/O0) for large 

r. This provides a boundary condition for the 
perturbat ion ~u 0 for all cases with N # 0. Note 
that the translation mode given above clearly 
obeys this boundary condition (for N = 1) since 
Ou o /Or approaches zero exponentially for large r. 
The  coefficient of the above relation can be fixed 
so as to normalize the eigenfunctions. Again the 
situation is different for N = 0; here the outer  
solution at 00 corresponds to a pure rotation 
zero mode and does not couple to the non-trivial 
N = 0 modes; these modes should decay rapidly 
to zero. For these modes,  we simply set ~U°o(r, O) 
to zero on the edge of the (large) domain of 
integration. Using these boundary conditions, 
the solution to (96) will determine the eigen- 
values O~,  for each value of N. 

We proceed by expanding u ~u 0 (r, 0) and Of(r, 
O)/OU[uo,Oo in a Fourier  series in 0: 

k Of(U, V) = E fro(r)  eimO , 
c~u uo,v o m= - ~  

oo 

5UNo(r, O) = E yNm(r) e ira° (98) 
rn = --or 
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Eq. (97) then becomes 

2 N 
~ m Y m  + E N N fm-/Yi = (99) A N Y N 6 m N  , 

i 

where au=a/(oU+y), V2m is the Laplacian 
operator for the mth angular mode and ~rnU is 
the Kronecker delta. We can write this equation 
in bra-ke t  notation as 

LIy N) = ANIN)(NIyN),  (100) 

where (ml t lY  N ) =V~(mlY N) + Xm' frn-m' × 
(m' l yU). Operating on the left with L -1 and 
taking the inner product with (m'  I yields 

(m'IL-11N)(NIy N) = )~N(m'lyN) , (101) 

where AN = 1~AN = ~1N + Y- This is an infinite 
number of equations for the modes (m']  yN) and 
the eigenvalue AN- We determine them by con- 
sidering the Nth equation 

(NIL IIN)(Nly N) = AN(NIyN) . (102) 

This is a standard eigenvalue problem for )~N and 
(NIyN).  We may then use (101) to determine 
the rest of the (m l yN). The stability problem 
then reduces to determining the NN diagonal 
elements of the inverse operator L-~,  and solv- 
ing the eigenvalue problem (102). 

Eq. (100) is very much like a Schr6dinger 
equation, except that the right side is a projec- 
tion onto the Nth component of the eigenvector, 
rather than the full eigenvector itself. Neverthe- 
less, we shall make an analogy to quantum 
mechanics to help understand the nature of the 
problem. In this analogy, the Hamiltonian corre- 
sponds to the operator - L ,  with energies given 
by E = - l / ( g 2 1 + y  ) which corresponds to a 
particle moving in the potential described by 
-Of(u, v[u])/Ou. Geometrically, this potential 
takes the form of a "ditch" dug out along the 
interface, as shown in fig. 12. Unstable modes 
should correspond to the bound states of this 
potential. Moreover, as in problems in cylindri- 
cal geometry in quantum mechanics, we should 
find the states with the lowest energy, i.e., the 

most unstable modes, have the lowest value of 
N. As we have already seen in the Bernoff case, 
this is precisely what we observe. 

To solve this eigenvalue problem numerically, 
we map the problem (102) to a matrix inversion 
problem. We begin by truncating the Fourier 
expansions (98) at a maximum mode number M, 
and discretize the interval [0,Rm] into N~ pieces 
of size Ar = R m/Nr. The asymmetric terms in the 
Laplacian are then removed by the transforma- 
tion (m ly  N) = N N ym=---Qm/VT. This leads to the 
following linear system for the eigenvalues: 

(NIA-1IN)Q~ ~ N = A N Q  N • (103) 

The matrix A is just the similarity transformed 
L;  it is a sparse, symmetric, block structured 
matrix of size (2M + 1)2Nr 2. There are (2M + 
1) × (2M + 1) blocks, A ran, each of size N r × N r. 
The off-diagonal blocks are diagonal, with ith 

mn element A u =fm_n(ri) where r i = i Ar. The di- 
agonal blocks are tridiagonal, with elements 
A,m2l = 1/(Ar) 2 and Ai mm = f 0 ( r ; ) -  2/(Ar) 2 + 
( ¼ _ 2  2 m )/rg. The exceptions to this are the 
corner elements, A71  and A~rNr. Here, the 

N values are chosen such that the ratio, Qm(rl+l)/ 
QUm(rz), satisfies the correct boundary condition. 

N In the case of I =  1, this is given by am(r2)~ 
N 2 m + I / 2  mm Q m ( r l )  = and A l l  = 2m+l/2/(Ar) 2, which 

corresponds to the small r behaviour QUm(r ) 
r m+1/2. The case I =  N~ is a little more compli- 
cated. If N # 0, the large r behaviour is 

( Uo. , 04, 
On(r) ~ X/~ Or 

where urn(r) is the mth Fourier mode of the base 
solution uo(r, 0). In this case, we set A~vr~vr = 

N 2 N Qm(rNr_l)/(Ar) Qm(rNr) and the off diagonal 
mn elements ANrNr were all set to 0. If we are 

interested in the N = 0 modes, then we simply 
0 set Qm(rN,+l)=O, in which case the corner 

matrix elements are unchanged. 
In order to determine the stability of the Nth 

mode, the matrix A was first inverted using the 
sparse equation solver ma28, from the Harwell 
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Fig. 12. Plot of the potential "ditch" whose bound states 

software library [32]. For input data, core solu- 
tions were generated on grids of radius, Rma x = 

8, 15 and 20 spatial units using the simple 
relaxational solver described in section 3.1. The 
stability program calculated the Fourier modes 

of the base solution, urn(r), and f m ( r ) = ( O f /  

Ou)(r) ,  and then calculated the matrix elements 
m n  A,.j . Then  ma28 was called to generate A -1 .  

The  EISPACK [33] library was used to calculate 
the eigenvalues A N = O~ + y and eigenmodes 
Q~ of the Nth diagonal block of A -1. Finally, 
the remaining components  of the QN vector are 
found by substituting back into eq. (101) for 
rn'  # N .  

The stability program itself operates only on a 
sub-domain of the input base solution of radius 

- - 1  R, which would generally range from R -  ~Rma x 
4 to R = ~ R m a  x. Using too much of the domain of 

the base solution was avoided to prevent bound- 
ary effects. In addition to operating over differ- 

will correspond to the unstable modes of the diffusionless core. 

ent domains, the program also used different 
discretizations in r, A r = R / N  r and M, the 
truncation number  of the Fourier  modes. Nr was 
typically 40, 60 or 80. We used M = 30 almost 
exclusively, since we found that increasing M 
above this number had little effect on the final 
answer. 

Ideally, the calculated growth rates could be 
extrapolated to infinite domain size with infinite 
resolution to given precise answers. Unfortuna-  
tely, we found this to be well beyond the limit of 
our computational capability, Instead we will 
satisfied with determining the generic behaviour  
of our stability operator ,  specifically with regard 
to the N dependence of the eigenvalues. We then 
argue, using the analogy with the Bernoff  calcu- 
lation, that the diffusionless core also exhibits 
one N - - 0  unstable mode. 

Typically for N = 0 and N = 1, there is one 
eigenmode with AN > 0. For  N = 1, we would 
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Table 1 
The following sampling of data was taken over a domain of 
size R = 15.0, with 3' = 0.5. In almost all cases, A 0 > A 1. For 
almost all observed N > 1, )~ < )~1. 

A Rmax Nr ~1 h'O 
0.6 10.0 60 3.569746 18.033898 
0.7 6.0 80 1.328298 11.295523 
0.7 10.0 60 1.701528 6.582514 
0.8 6.0 40 1.022715 4.665024 
0.8 8.0 60 1.240349 4.068006 
0.9 5.0 60 0.845676 4.074401 
0.9 10.0 80 1.201626 2.538839 
1.0 10.0 80 1.089761 1.804864 
1.1 6.0 80 0.747468 2.714109 
1.2 8.0 60 1.977321 1.968943 
1.2 10.0 60 1.021205 1.356067 

expect  this to correspond to the translational 
mode  and to have eigenvalue A = y. As can be 
seen from table 1, this is clearly not the case at 
any degree of accuracy. One could try to pos- 
tulate convergence in Nr and the radius cutoff, 
but  our  data is not really accurate enough for 
that either. As already mentioned,  we will in- 
stead focus on qualitative features. Most im- 
portantly,  N = 0 has a selected eigenvalue that is 
(almost) always greater than the N = 1 eigen- 
value. The only anomalous case occurs for very 
large A, (see (3)) at too small a value of R; at 
large zl the core "melts back" to the large r outer  
solution by a large amount  and R = 8 is not 
sufficient for even qualitative b e h a v i o u r - t h i s  
can be seen by examining the effects of increas- 
ing R which restore the standard behaviour. 
Also, taking very large a brings us close to the 
limit for which we expect the two eigenvalues to 
be extremely close in value. Hence,  if we assume 
that for  a given set of numerical parameters that 
the value of Aa corresponded to J21 = 0, then we 
could infer that the N = 0 modes are unstable. 
To check this supposition, we have also calcu- 
lated the eigenvalues for higher N values. In all 
cases where the numbers can be trusted, A N < 
L. 

In order  to provide additional evidence that 
the N = 1 modes really can be associated with a 
translational mode,  we note that the first Fourier 

component  of the translational mode (98) will be 
given by 

f Ou ° 
Ylt(r) ~ J W ~ 0 .  (105)  

Therefore ,  we should find that mode yl(r)  pro- 
duced by the stability program with N = 1 and 

translational boundary conditions should just be 
the r derivative of J" u°(r), Ur" In fig. 13, we see 
superimposed the first Fourier component  of the 
translational mode and y11(r ). They are almost 
identical. A comparison of some of the other 
Fourier  components  is given in fig. 14. Note that 
although the qualitative match is good, the 
quantitative one is not. This is not surprising if 
one considers how these modes are generated. In 
addition to errors in yl(r)  (i.e., because of errors 
in the diagonal block (A-l) 11) affecting the 

determinat ion of other  solution modes, we 
would also expect errors in the ( ln)  off-diagonal 
block of A -1 to influence the nth component  of 
the translational mode; this follows directly from 
eq. (101). One can verify that this latter effect is 

r (dimensionless} 

n=1 

I I 

0 , 2 5  
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0 . 2  

~ .1 5  
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0 

Fig. 13. Superposition of first calculated Fourier mode vs the 
true translational mode. The upper curve is the calculated 
mode, the lower the true mode. 
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Fig. 14. Comparison of several different components of the calculated Fourier components of the calculated translational mode 
and the true translational mode. The axes are the same as in fig. 5. For n = 2 and 3, the true mode is the lower one. For n = 0 and 
- 1 ,  the true mode is the upper one. 

dominant  by comparing the Fourier  components  
of  the computed  translational mode  to those 
genera ted  by operat ing on the exact translational 
mode  with (A-  1) 1,. 

One  crucial question concerns why our compu- 
tat ion suffers f rom quantitative inaccuracy. We 
surmise that  the inaccuracy of the selected eigen- 
value is due to two factors. The first is discretiza- 
tion error ,  which tends to make  the selected 
eigenvalue too large. We see in table 1 that as N r 
is increased, the selected eigenvalue decreases. 
Note  that we cannot decrease this error indefi- 
nitely: for values of N r too large, numerical noise 
in the base solution begins to overwhelm the 
selected modes.  In practice, it was found that 
N r = 8 0  was the maximum value that gave 

reasonable behaviour.  The second factor is error  
due to the truncation of the Fourier  expansion at 
some finite number  of modes.  This error  is 
intimately related to the size of  the domains,  
since at large r the solution becomes  a step 
function in 0, which necessitates the inclusion of 
many  higher modes,  as well as infinite spatial 
resolution in the base solution. Thus for increas- 
ing R . . . .  we expect a degradat ion in the accura- 
cy of the solution. So, we basically cannot  get a 
domain large enough to give accurate answers 
since the number  of points and number  of  
Fourier  modes  that would be needed to discret- 
ize the opera tor  in that domain is too large. 
Nevertheless,  we do feel that  our  answers are 
qualitatively valid and that trends such as the 
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decrease with N and the existence of a transla- 
tional mode should be believed. 

By itself, a numerical calculation of such an 
imprecise nature as this would not be a compel- 
ling piece of evidence supporting the claim that 
an N = 0 mode is the only core-localized in- 
stability of a spiral structure. However ,  one must 
consider these results in tandem with the numeri- 
cal results of the small diffusion core. Although 
the numerical techniques used to generate them 
were completely different, the structure of the 
resulting eigenvalue distribution winds up being 
rather  similar. It is therefore reasonable to 
assume that the highest N =  1 mode would be 
precisely at 01 = 0 if we could get a quantitative 
extrapolation,  and that the modes uniformly 
grow with N. Therefore ,  the diffusionless core 
exhibits an real instability which is similar to the 
one observed in the Bernoff  limit. 

5. Discussion 

To summarize, we have discussed solutions to 
two component  reaction-diffusion systems gov- 
erning excitable media. We have worked in the 
limit of vanishing ratio of the reaction rates for 
the two species and in the cases of either zero or 
small diffusion in the slow field. At the crux of 
the both solutions is the splitting up of space into 
two regions: the outer region, which consists of 
the spiral proper,  is independent  of slow field 
diffusivity, exhibits a singularity at the spiral tip, 
and obeys the Fife scaling; and the inner region, 
whose scaling is small enough to smooth out the 
singularity exhibited by the outer region and 
which must asymptotically match onto it. A 
stability analysis was performed on the outer 
region of the spiral, assuming a stable core, with 
result that no instability was found. The stability 
of the core region was then calculated for both 
the small and zero diffusion cases, with result 
that both regions were found to have unstable 
modes,  with purely real growth rates. Other  core 
modes,  characterized by an integer mode 

number,  N, and frequency Nto, were also investi- 
gated and found to be stable. 

An important implication of this work is the 
lack of dependence of the spiral's behaviour on 
the precise details of the excitable media kinet- 
ics. The core solution and its stability are quali- 
tatively independent of the particular chemical 
kinetics chosen. In addition, our solutions for 
two different types of media, diffusionless and 
small-diffusion, are qualitatively almost identi- 

cal. 
Let  us now return to the question first touched 

upon in the introduction, namely how do these 
results fit into other  research on spiral formation 
in excitable media? Simulations [23] have shown 
that the meandering instability is peaked about 
the spiral tip. One can even develop a phe- 
nomenological approach to the nature of the 
bifurcating mode [34], which agrees quantitative- 
ly with this numerical work. It has further  been 
shown that the behaviour of spirals in doubly- 
diffusive media are virtually identical to those 
with zero diffusion. Finally, meandering has 
been observed in a variety of both models and 
experimental systems, lending support to the 
claimed universality of the instability. 

However,  a shortcoming of the current theory 
is that it has little to say about the precise nature 
of the transition to meandering. This is due to 
the fact that the theory relies on a perturbation 
expansion in the parameter  e. As such, ~ effec- 
tively "drops out"  of the problem. Strictly speak- 
ing, the current theory is only valid for e = 0; 
however,  in real spirals, ~ is the bifurcation 
parameter.  Thus, this theory is incapable of 
reproducing the transition. 

Coupled with the previous remark,  is the fact 
that numerical work has shown the meandering 
transition to be a Hopf  bifurcation. In this study, 
we have found that the only unstable mode 
corresponds to N = 0 ,  which implies that the 
mode has a purely real eigenvalue. We surmise 
that what must be happening is that as ~ be- 
comes larger, the eigenvalue of the N = 0 mode 
must collide with some other  N = 0 mode (stable 
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at E = 0) becoming complex. If this is true, the 
complex nature of the bifurcation depends speci- 
fically on the coupling between the inner and 
outer  regions which is absent in the limit solved 
here.  One possibility is that this can be studied 
by going to finite diffusivity ratio (instead of 
finite E) where the core is not decoupled from 
the far field [29]. Alternatively, one will have to 
face up to finite E corrections, a task which may 
be extremely difficult. 

In summary, we have provided the first rigor- 
ous calculation of the structure and stability of 
spiral core in excitable media. We found that the 
core is generically unstable to a tip-localized 
mode,  as •--> 0. Further  progress in bridging the 
gap between our asymptotic analysis and the 
behaviour  of spirals as seen in simulation studies 
must await extensions of our  work to either finite 
• or finite diffusivity ratio; in both of these cases, 
the spiral cannot be broken down into outer and 
core regions since these regions are not of 
different spatial scales. 
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