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ABSTRACT

The concept of multiple-input zero-power describing function is intro-
duced and employed to obtain the describing function at high power using
feedback circuit theory. Numerical application of the describing function
to nonlinear stability analysis is presented and the various definitions

of the describing function are discussed.



Introduction

The describing function concept is introduced in stability analysis
as an attempt to extend the methods of linear stability based on the trans-
fer function concept to nonlinear systems. Essentially it is an amplitude
dependent transfer function which accounts for the nonlinearity of the
input-output functional relationship of a physical system.
The first order correction to the reactor transfer function due to
the nonlinearity in the neutron kinetic equations was obtained perhaps for
the first time by Rumsey'!) in 1947. Nelkin{®) in 1955 generalized Rumsey's
approach to include linear feedback processes, but his analysis did not take
into account the change in the mean neutron density from the equilibrium value
in the presence of oscillations. Sandmeier(3) in 1957 presented a corrected
+version of Nelkin's analysis. Akcasu(4) in 1958 showed that, in the first-
order approximation to the instantaneous reactor period, the logarithm of
the neutron density plays the role that the neutron density plays in linearized
kinetics. He also defined and calculated the "nonlinear gain" of a reactor
as the ratio of the amplitude of the fundamental Fourier component (relative
to the average of the periodic power oscillations) to the amplitude of the

(5)

sinusoidal reactivity input. Smets was perhaps the first to introduce

the concept of "describing function" in reactor stability analysis. He
calculated the magnitude of the zero-power describing function without
accounting for the effect of the second harmonic and the variation of the
average power level and consequently concluded that the magnitude was generally

larger than that cf the low-power transfer function. This conclusion was at



variance with that obtained by Akcasu(4) for the nonlinear gain. The dis-
crepancy was due to the oversimplification in Smets' analysis as clarified

by Wasserman(s) in 1962. Waséerman derived low and high power describing
functions using a perturbation analysis which was equivalent to, but more
systematic than, the procedures of Rumsey, Nelkin, and Sandmeier. He com-
pared the theory to the results of an oscillator experiment on the SPERT
Reactor and demonstrated the nonlinearities. He also pointed out the Tlack

of uniform convergence in frequency when the low power describing function

is expanded in powers of the amplitude of the reactivity insertion. In

1964 and 1965 Smets(7’8) extended his earlier analysis removing its short-
comings and presented a block diagram to study stability and limit cycles.

The low power describing function he used in this diagram was obtained by
performing a Fourier analysis in the logarithm of the reactor power in the
presence of linear feedback and contained the effect of the second harmonic

as well as the feedback parameters. In this sense his circuit diagram did not
decouple the feedback effects from the nonlinearities of the neutron kinetics.
Akcasu and Shotkin(g) in 1967 investigated Timit cycles and their stability
in various reactor models in terms of a describing function which was valid for
larger amplitudes than those previously reported. In 1968(10) they proposed
a zero-power describing function based on the 1967 analysis whose convergence
did not depend on frequency. A note by Vaurio and Pu]kkis(]1) in 1970
extended the analysis of Akcasu and Shotkin by retaining the second harmonic
in the logarithm of the reactor power. The zero-power describing function
they obtained was expressed as a ratio of two infinite series of modified
Bessel functions. They compared the various approximate expressions of

the zero-power describing function numerically and determinad the range of



frequency and reactivity insertions for the validity of these approximations.
It can be observed from the above literature survey that the concept

of describing functions in reactor dynamics has evolved continuously since

1947 with each paper extending and refining the previous one. However in

1967 Tan(12)

asserted that all the previous experimental and theoretical
work was incorrect due to the definition of the describing function with
respect to the average power level in the presence of power oscillation
rather than the equilibrium power level prior to the periodic oscillations.
A closer study of the development of the describing function concept
reveals that it has not been possible in the‘past to obtain the high-power
describing function by combining the zero-power describing funcfion and the
feedback transfer function in a closed loop and apnlying only feedback cir-
cuit theory. Such a derivation is desirable because it facilitates the cal-
culations, clarifies the ideas by allowing the discussion of nonlinear
effects and feedback effects separately, and demonstrates the utility of
the zero-power describing function. The main objective of this paper is
to show that such a derivation is possible if a new concept, the multiple-
input zero-power describing function, is introduced. The application of
the feedback circuit constructed by this approach will be demonstrated by
plotting the amplitude-dependent Nyguist diagrams, and the existence and
stability of Timit cycles will be discussed on the basis of these plots.
Another objective of the present paper is to clarify and hopefully

(12) concerning the defini-

settle the controversy introduced by Tan's work
tion of the zero power describing function. In order to achieve these
objectives, particularly the second one, we must review bfief]y the basic
concepts and calculational techniques. For simplicity we shall neglect

the delayed neutrons in these discussions and comment on the effect of



delayed neutrons at the end. without further explanation while presenting

the results.

Definitions of the Zero-Power Describing Function

In the absence of delayed neutrons the point kinetic equations can be

written as
(¢/8)d P/dz‘) = k) PG ()

where k(t) is the reactivity insertion measured in dollars, f is the prompt
generation time, and 8 which is introduced here to convert the reactivity
to dollars is the effective delayed neutron fraction. This equation is a
Tinear, homogeneous equation with variable coefficient whose solution is
determined within an arbitrary factor. To define the zero-power describing

function, we consider a sinusoidal reactivity input as

bty = Sk Sin wt (2)

and determine the periodic power response. Since we are interested only
in the stationary solution, the origin of time is irrelevant and can be

chosen as desired. It is easily shown that the solution of (1) is

P(EY=C exp[-($ sk /4w) cos wt | (3)

where C is the arbitrary factor mentioned above. This constant can be
calculated in terms of the value of P(t) at some t = t, or in terms of the

average power PAV defined by



By= (1/7) [dt P

where T = (27/w), the period of the sinusoidal reactivity. In the latter

case which will be used below, P(t) is given by

P =Ry /A,(sk B/0)] oxp|- (Bskw) coswt | (o

where Io(x) is the modified Bessel function of zeroth order defined by

JU
T, (0=(1/70) | dy exp(x cosy) (5)

If we just observe the periodic power oscillations induced by a sinusoidal
reactivity insertion without any knowledge of the initial conditions, then
we can use (4) to analyze the harmonic composition of the oscillations.
Note that the equilibrium power level prior to the application of the sinu-
soidal reactivity insertion does not enter the analysis.

We may also relate the arbitrary factor C to the initial conditions

an cnitial value

if they are available. In this case we regard (1) aév/’prob1em in which the
reactor power is assumed to have an equilibrium value Po prior tot =0,

at which time the sinusoidal reactivity input is turned on with a phase

angle o8, i.e.,

Rit) = Sk Sin(wt+86)

The solution is readily obtained as

PE) = R exp[(psk/2a)cos ) expl- (85k/ow) o3 (wt+8)] ()



It should be noted that (4) and (6) represent the same periodic function,
i.e., the same harmonic composition. The phase angle 6 in the time-dependent
exponential factor in (6) does not affect the wave form of the periodic
solution. Therefore by comgdring (4) and (6) (or evaluating the average

of both sides of (6) directly) we can relate the average power to the equi-

1ibrium power level as

av = Q(Sk) w,0) B (7a)

where

Qsk,w,e)=T, (B sk/¢w) wp[(ﬁék/é’w}cose] (7b)

It should be noted for future reference that (PAV/PO) depends on the initial
insertion as well as its magnitude and frequency. Consequently one may
obtain the same periodic power oscillations (the same .....,. power and
harmonic composition) starting from different equilibrium power levels by
adjusting the initial phase. The fact that PAV varies with the initial
phase for a fixed P0 implies that the reactor in the absence of feedback
has a "perfect memory" and remembers the initial phase even after infinitely
long times.

We now focus our attention on the harmonic composition of the power

oscillations using (4). By using a Fourier expansion we obtain:

Pt )= Ry [1__ 21, (M sk) cos wt + ZIZ(N'Sk? cos 2wt
To (N, SR) To (N 8k)

o] (52



where

N = (Bftw)= 1w

(8b)

Z(iw) = (8/Tiw) being the zero-power transfer function in the absence of
delayed neutrons. We can express this expansion in a more compact form
by introducing the complex amplitude X of a sinusoidal function defined

in general by
A sin (wt+)= )(@(p(éwt)-k cC (9a)

where

Xz (A/2¢)emp (o) (95)

and cc denotes the complex conjugate of the first term. Introducing
Y, ={z T (M 5k),/C T, (4 5k) (20)] (100)

with the convention

JG;:’ Yn , = |

(10b)

we obtain from (8a)

+00
{p(f)/pﬂvlz Z Y, exp(cnwt) | o
N=-o0

h Fourier component

We note that Yn denotes the complex amplitude of the nt
of the power oscillations relative to the average power level PAV and the
actual complex amplitude of each component is PAV Y The complex amplitude

of the input sk sin wt is of course Xq = sk/2i.



The conventional definition of the zero-power describing function is
Dy (Ek) W)=, /x)= 2T, (N,sk)/zs/e I,(Nsk)  (12)

which is the ratio of the complex amplitude of the fundamental component
of the power oscillations (relative to the average power) to the complex
amplitude of the sinusoidal reactivity input. It should be noted that the
describing function defined in (12) is a function of the magnitude and fre-
quency of the reactivity input. When sk >~ O, Dz(ék,w) approaches Z(iw)
= g/ Tiw which is the zero-power transfer function in the absence of delayed
neutrons. It can be measured in an oscillator experiment by observing the
periodic power oscillations and comparing with the sinusoidal reactivity
input. One does not need to know how the periodic oscillations are produced
initially. Interpreting the experimental results using (12), one can for
example determine the zero-power transfer function using N] and (8b) without
using the linearized kinetic equations. (This point will be discussed later.)
We can also define a describing function measuring the complex amplitude
of the fundamental relative to the initial power level which existed before
the periodic power oscillations were induced. Using the relationship between

PAV and Po in (7a), we obtain
DT(BP)M,Q): Q(gk,w,e) DZ(S‘QJCU) (13)

The describing function defined in this way not only depends upon the mag-

nitude and frequency of the sinusoidal reactivity input but also on the
Because of thi's depencdence on the initial value,

initial va]ueJVDT(sk,w,e) cannot be determined by observing only the periodic

power and reactivity oscillations. The initial phase angie must be known as



well as the manner in which the final stationary periodic oscillations are

reached. As an illustration, assume

ort) = g?ﬁf sin(wt+6) , t <t, |
) Sk sin(wt+6) , t 21, J

with yto = §k. This represents a linear increase in the magnitude of the
reactivity input during the time interval 0 < t < to. We can easily verify
in the absence of delayed neutrons that the factor Q in (13) depends in this
case upon the reactivity insertion rate y, the insertion period to’ and the
phase angle 6. The value of Q given in (7b) corresponds to a sinusoidal
reactivity insertion with constant amplitude for t > 0.

It appears from the previous discussions that the describing function
Dy defined with respect to the initial power level does not characterize
the periodic response of a reactor to a periodic input in terms of the
kinetic parameters of the system, but rather it depends critically on the
initial conditiohs. Since different initial conditions may give rise to
the same periodic power oscillations with the same periodic reactivity input,
it cannot be measured by observing only the periodic oscillations. Because

(4)

of these drawbacks, it was abandoned as early as 1958 in the literature'"’.

In 1967, Tan(12)

proposed this describing function as the "correct" defini-
tion and asserted that all the previous theoretical and experimental work
which did not use this.definition was "wrong". It seems that this assertion
is based on the discrepancy between the zero-power transfer function and

the zero-power describing function when the latter is calculated using the

"linearized" point kinetic equations.



-10-

Connectijon Between the Describing Function

and the Zero-Power Transfer Function

The kinetic equations are linearized by introducing the incremental
power p(t) from some reference power level P, as P(t) = Pp ¥ p(t) and then
ignoring k(t)p(t) in the original kinetic equation. In the absence of
delayed neutrons the "linearized" kinetic equation reads as p(t) = k(t)(e/f)PR.
The various choices of PR will be discussed presently. Assuming that the
reactbr is at an equilibrium level Po prior to t = 0, the solution of this

equation is obtained in the transformed domain as

P(s)/ P :E(s)Z<s)+('/5>[(%/PR)"'] (14)

where p(s) and k(s) are the Laplace transforms of p(t) and k(t) respectively
and Z(s) = 8/0%s. In the presence of delayed neutrons (14) is still valid
provided Z(s) is the conventional zero-power transfer function with delayed

neutrons, i.e.,

ze-[s(4+) 2)] -

=/

The response to a sinusoidal reactivity input of the form k(t) = sk sin (wt+e)

which is introduced at t = 0 follows from (14) after Tong times as

PE) /R = sk|Z(w)|sin(wt+6+8) + (Bsk /W) wse

+[(R/R)-1] (16)
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ere (B/6%)=[ (L5, (0 /3:)] e b= g [20i)]

In (14) and (16) the reference power Pp is still aribtrary. Conventionally

Pr is chosen as the equilibrium power level so that (14) reduces to p(s)-

= POZ(s) k(s) which yields the conventional definition of the zero-power frcrns{kr'
function as the ratio E(s)/P&F(s). In this case the last term in (16)

vanishes so that the response to a sinusoidal input becomes after long times

P(f)/e = Sh lZ(za))I S/n(wz‘+@+¢) +(Bék GOS@/Z*CU) (17)

The last term accounts for the change in the equilibrium power level in
the presence of periodic oscillations. The average power level in the presence

of oscillations is
_ ¥ \ 1
a\,:elu(@gkwse/éw)_} (18)

which depends on the initial phase angle s.
We can compute the describing function from (17) using the definition

(12) relative to Ppy s
D7 = Z(z'w)/[\+(ﬁ8kcos 8/(?*40)] (19)

which differs from the zero power transfer function. One would expect the
definition of the describing function to yield Z(iw) when it is evaluated
from the linearized point kinetic equations. This seeming contradiction

led Tan(]z)

to conclude that the conventional definition of the describing
function must be "wrong". Tan also observed that Dy = Z(iw) as it should
if the describing function is defined relative to the initial equilibrium

power level PO.
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However, two points are overlooked in this conclusion. First, the
linearized kinetic equations are valid only when !P(t)l<<P0 which requires
|Z(iw)|sk<< 1 to hold for all w. This inequality becomes (gsk/T*w)<<1 for
small.frequencies. Therefore, the denominator in (19) must be replaced
by unity to be consistent with the limitations of the linearized kinetic
equations. If the term (8sk cose/T*w) in thé denominator is not small
compared to unity, the linearized treatment is not valid and one must use
the original kinetic equations.

The second and more important point which is perhaps overlooked in
Tan's conclusion is that the choice of the reference power level PR is not
restricted to Po‘ If one is interested in the stationary periodic solution
after long times rather than the behavior of P(t) for small times, it is
more reasonable to choose the reference power level as the averagé power of

the periodic oscillations. In this case, (16) reduces to
pit)/p, = sk IZaw)|sin(wtre+d) (192)

The average power level is related to P0 by equating the last two terms in

(16) to zero: ‘
&Vr:%[l—(ﬁékoose/g?o)] | (19b)

It is obvious now that the definition of the describing function relative to
the average power precisely yields DZ = Z(iw) whereas the definition rela-

tive to the initial equilibrium yields

Dy = Zaw)[ 1 - (psk cos e/{’*a))] (20)
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which differs from Z(iw). It is clear that both choices of PR are identical
within the Timitations of the Iinearized treatment which is the limit as
§k~0.

It should be clear from the above discussion that the discrepancy
observed by Tan(12) is due to approximations inherent in the Tinearized
treatmént, and emerges only if one attaches significance to second order
terms in sk which must be neglected in a consistent linearization procedure.
It does not imply, as claimed by Tan, that the conventional definition of
the describing function is "wrong". Actually it is meaningless to label
any "definition" as "correct" or "incorrect", because definitions can only
be "suitable", "convenient", "useless", etc. depending on the purpose. We
shall show in subsequent sections that the conventional definition of the
zero-power describing function arises naturally when constructing the
describing function at power in the presence of feedback using the feedback

circuit analysis.

Describing Function in the Presence of Feedback

In the presence of feedback which we assume to be linear, the kinetic

equation (1) is replaced'by

(¢/8) (4 g P/ 4)= ke + [ou G@ITPE) -] -

where G(u) is the feedback kernel, k(t) is the external reactivity which we
again choose as k(t) = sk sin wt, and P0 is the equilibrium power Tlevel

determined by

P HO =k (22)
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where H(s) is the Laplace transform of the feedback kernel, H(0) is the power
coefficient, and kO is the externally introduced positive constant reactivity.
This equation is nonlinear and inhomogeneous in contrast to (1) in the absence
of feedback. Consequently the periodic response to a sinusoidal reactivity
input does not contain any arbitrary factor. The average of the periodic
power oscillations can easily be shown to be equal to the equilibrium power
level for any periodic reactivity input with zero mean value (this result

is true only in the absence of delayed neutrons as we have assumed, for
simplicity, in these discussions). Since PAV = P0 we can define the des-
cribing function unambiguously as the ratio of the relative complex amplitude
of the fundamental of the output to that of the input. Assuming that the
feedback is a low-pass filter (H(inw) Y0 for n 3 2) and ignoring the second

harmonic in the Iogarithm'one can obtain the describing function at

power approximately as

-1
D(sk,w, B) = D, (5k,w) [l — R H(w) Dz“‘%“”} (23)

where Dz(sk,w) js the zero-power describing function defined in (12). This
can be interpreted as a closed feedback loop as in Figure 1 where Yy = X1DZ’
X4 =-%B-+ Pav Y1 H(iw), and k0 = PAV H(o). We note that the describing func-
tion at power reduces to the zero-power describing function when P0 is
sufficiently small.

Although simplified by various assumptions, the above analysis clearly
shows what criteria should be used in defining the zero-power describing
function. The actual purpose in introducing the zero-power describing func-

tion is to separate the nonlinearities of the neutron kinetics from the

feedback effects so that nonlinear stability and the response of the reactor
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to a sinusoidal input in the presence of feedback can be investigated using
the methods of linear feedback circuit analysis at given amplitude. If we
judge the usefulness of a given definition of the zero-power describing func-
tion according to this criterion, then (23) indicates that the conventional
definition of the describing function appears to be the suitable one to be
used in feedback systems.

The existence and stability of limit cycles (self-sustained periodic

solutions) can be discussed by equating the denominator of (23) to zero

| = R H(w) D, (sk,w) (24)

which once more demonstrates the utility of the zero-power describing
function concept.

We note that the describing function at power cannot be obtained as
easily as indicated in Figure 1 when the second harmonic is taken into
account. This is possible only if we introduce the concept of multiple-
input zero-power describing function which is the main contribution of this
paper. Before we discuss this concept, the following remarks on delayed

neutrons seem to be in order.

Effect of Delayed Neutrons on the Zero-
Power Describing Function

When the delayed neutrons are taken into account, the kinetic equation
cannot be solved exactly for a sinusoidal input. The presence of the delayed
neutrons change drastically the character of the reactor response to periodic
inputs. One finds that a negative bias in the periodic reactivity input

(4,13)

must be provided to maintain a periodic output Therefore, one has

to consider a sinusoidal reactivity of the form
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R@) =k, + 8k sin wt

in constructing the periodic power oscillations, and to determine the appro-
priate negative bias ko as a function of 6k and w. In the Towest approxi-
mations k0 is given by

ko = — (5k)S(1/2) Re Z(iw) (252)

Several approximate techniques, such as the prompt-jump approximation('4),

(’2), Fourier analysis of the logarithm of the power'(4’7),

WKB approximation
or Fourier analysis of the power response combined with a perturbation expan-
sioh in ak(e ) are available to analyze the power oscillations. As an example,
we present the results of the last two methods for the zero-power describing
function. Ignoring the secénd and higher harmonics in the logarithm of the

(10)

power, Akcasu and Shotkin obtained the zero-power describing function

as

_2L,(MnsRk) oo d)
Dz (ék)CU)—- §IQIO(MS,€) Q/XP (25b)

where

 op8)=Z, 1+ T6R/6]12 (z,-2)-7° ]E

When the delayed neutrons are neglected, (25b) reduces to (12). Vaurio

(25¢)

and Pu]kkis(1]) compared this result with a more accurate calculation

including the second harmonic and found that the two agr=e with better
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than 1% accuracy for frequencies above 10'2 cps and sk up to 0.50.

The perturbation analysis yields a power series expansion of Qz@k,w)

2 (6T 14)
D, (sk)=2, [ 1+ 6k [, 2Re 2) 0CH) | o

As pointed out in the introduction this power series expansion is not uni-
formly convergent in w whereas the previous result is‘va11d for the entire
frequency range. However, the power series expansion gives the describing
function correct to order (6k)2.

The analysis of the power oscillations in the presence of feedback is
more complicated when the delayed neutrons are taken into account. We shall
construct the describing function in this paper using the multiple-input
describing function and the closed loop feedback circuit theory and compare

the results to that obtained by Smets(8) and Akcasu, et a1.(]4).

Multiple Input Zero-Power Describing Function

The power response of a reactor system with delayed neutrons but without
feedback can be related to the reactivity input using the reactor kinetic

equations

(¢/8) P(t) = [\Q(f)- ] P(t)+JO°‘“ D(w) Pet-u) (27)

where

6
Dlu)= Z ad, QI‘ @/XP("’A[U)

(=
Upon substitution of infinite Fourier expansions for k(t) and P(t) as

oct) = Z Xp exp((nwt)

N= o0
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+ 00
P(t)= By Z \A @xp(z'ﬂwf)

N =—oc0

where

. . 4 K ’
an(‘én/ZC)eJXP(‘ 9,7)) Xpn=Xn, Xa‘—‘ko

Yy = (Pn/2d By )exp(¢®,) $p=9n , Go=1

into Equation (27) and equating terms of equal power in e“”t we obtain
+ 00
-
ym—._:Z,,, 2. %n Im-n ) m=0,t 1,22, (28a)
N=-o00

where Z = Z(iwm). Evaluating (28a) for m = 0, and noting that (1/20) =0,
we immediately obtain the negative bias required to maintain periodic power

oscillations:

ﬂQo-_—,— ZZ Re [XnIn]

n= | (28b)
This set of equations can be solved by a perturbation expansion“i“)
[o7e]
o) &
yn—’:z yn € ’ n:‘f!)iQ)..,
o= |

to obtain
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Im = Zm Xm (29a)

(2) gy 0]
‘ym =Zm Z xn \ym-n

N=- o0 (29b)
+00 +00
(3 (2) ) x ()
I =Z"’jZ i Ym-r = I Z o o z (29¢)
ln:_w N=-00 j
(n0,m) (n+0)

This set of equations represents the basic equations of the Fourier analysis
combined with a perturbation expansion. It enables one to construct the
Fourier components of the power oscillations when the reactivity input is

a periodic function of an arbitrary wave form. In the case of a pure sinu-
soidal reactivity input we have x; = s§k/21 and x =0 for n > 2. Equation
(29a) indicates that only the fundamental component. is excited in this case
if we retain only the first order terms in the perturbation expansion,

i.e., y&l) =0 for all [m| > 2 and y; = Z; x,. This approximation corresponds
to the "linearized" treatment mentioned earlier. Substituting this result
into (28b), we obtain the negative reactivity bias in the lowest approxi-

mation as(4)

2
X°=--2'X,| Rezl~ (30)

When the second order terms are retained in the computation of the complex

amplitudes, we find from (29b) that only the first and second harmonics are
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excited, i.e., yéz) =0 for |m| > 3. In particular, the amplitude of the

second harmonic follows as

(2) 2 i
Y =z,z,x (31)

2

We may interpret yéz)/ Z2 = Z1X% as the internal harmonic generation in

reactivity due to the nonlinearity of the neutron kinetics (see Figure 2).
It follows that more higher harmonics are excited when the complex
Fourier amplitudes are computed with increasing accuracy. Using (29) one

can in fact show that the nth harmonic is given by

n
Yo=2,Zy 0 Z, X (32)

which is the nth order in the reactivity amplitude. The describing function
presented in (26) is obtained by calculating (y]/x]) usfng (29) correct to
the second order.

In a reactor with feedback, the higher harmonics of the power oscilla-
tions, generated internally by the sinusoidal reactivity input, are fed bac
to the input through the feedback mechanism. Therefore, we must recalculate
the zero-power describing function in the presence of these higher harmonics
in the reactivity. In particular, we must consider the second harmonic if
we desire to investigate the nonlinear response as well as the sustained
oscillations of a reactor with feedback, correct to second order terms.

This leads to the concept of "dual-input" zero-power describing function.
It is defined as DZ(X1’ Xo s w) = (y1/x]) when the reactivity input contains

first and second harmonics as

R(F)=Xo+ [X/ exp(eat)+ cc |+ explzewt )+ cc] - (33)
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where X1 and X, are independent and may be of the same order of magnitude.
Using (29) and calculating the complex amplitude of the fundamental keeping
the first three terms in its perturbation expansion, i.e.; ¥q = y$1) + y](z)

+ y%B), one obtains

2 »
DZ (X,) XZ)(,LA: Z, [|+ (X1 Z, (ZZ“Z RQZ\)'*'XZ (X’*/x'><z.2+z-’)

l
+ [ X%y 'Z [23 (Z'J“ZZ)*Z,*(ZﬁZz)"ZZf Re ZQ]} (34)

Clearly, this reduces to the conventional single-input describing function
Dz(x], w) in (26) when Xo = 0.

The dual-input zero-power describing function can be used in the inter-
pretation of a pi]e-osc111ator experiment with large amplitudes when the
reactivity input is not a pure sine-wave. In such cases the amplitude of
the second harmonic in the reactivity oscillations is usually an order of
magnitude smaller than the amplitude of the fundamental. This is certainly
true when the second harmonic is generated internally through the feedback
mechanism as implied by (31). Referring to Figure 2 and performing a simple
linear circuit analysis, one can in fact show that(l4) Xy in this case is

reTated to Xq by

2
X, = fav L Hy by X (35)
where H2 = H(2iw), the feedback transfer function evaluated at 2w, and L2

is the power transfer function again evaluated at 2w, i.e.,

-
[ (tw)=7 (cw) [l— Ry HOW)Z (“‘”} (36)
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The average power in the presence of periodic oscillations increasesfrom
the equilibrium value Po = ko/IH(O)I in order to produce the appropriate

reactivity bias calculated in (30), i.e.,
2
bv=R +[2 [X;] Re Z,AH(OJB 37)

When Xy is known to be of the second order 1‘n‘x1 as shown above, we can
neglect the terms proportional to Ile2 in (34) and obtain the following

simplified dual-input describing function:

D, (%)%, @)=, [H X1°Z,(Z,-2 Re Z))+%, (xf/m)(Z;Z,")] 8)

The effect of the second harmonic input on the zero-power describingfunc-
tion has been investigated numerically using (34) for |x]/x2| = 5.0. The
result is depicted in Figure 3 where we also present for comparison the
zero-power transfer function and the single-input zero-power describing

function calculated from (26). At a frequency o = 3.2 X 10'2

radians/sec.
the phase difference in the single- and dual-input deséribing functions is
about 20 degrees with a significant magnitude difference as well. Figure 4
shows the effect of the relative phases of the first and second harmonics

on the dual-input describing function characteristics. Although in practical
applications the ratio |x]/x2| would not be expected to be less than 5.0,
the graphs are plotted for lx1/x2| between 1.0 and 5.0 to dramatize the

effect of the second harmonic on the phase and amplitude of the zero-power

describing function.
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Construction of the High-Power Describing Function

The response of a reactor with feedback to a sinusoidal reactivity
insertion k(t) = 6k sin wt can be described by é high-power describing
function. As in the case of no feedback, it can be defined relative to
the average power PAV in the presence of power oscillations, although the
equilibrium power level P0 could also be used in the definition without
having the difficulties encountered in the zero-power describing function.

Thus we adopt the following definition at present

D(sk,w, B )=, /(sk/2¢) 19)

We note that no external negative reactivity bias is required to maintain
periodic power oscillations when feedback is present because the bias is
generated interna]Ty by an increase in the average power as diScussed in
(37).

Using the block diagram shown in Figure 2 and feedback circuit analysis,

one can easily obtain the high-power describing function as
: bl
D(sk,w, )= D, (x,)x,_)w)D_ P, H(w) Dz(x,m)w)] )

where Xo is to be substituted from (35) into DZ’ i.e.,

D, (4%, 0) =2, {»HXAZZ.[Lz(w&Vsz{“>—2ReZ']} (a1

The average power PAv in (40) is determined from (37) which can also be

written in terms of the externally applied positive reactivity as

2
ko+ H(0) Py =-2Ix/1" Re Z, (42)
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We see from Figure 2 that X1 in these equations denotes the complex ampli-

tude of the fundamental of the net keactivity and is related to sk by
~|
xi=(sk/2)[1~fav Hi D, | (43a)

The right-hand side of (43a) contains |x]|2‘ Although it can be solved
exactly for Xqs We can obtain an estimate of X1 by ignoring |x]|2 in PAV
and DZ’ i.e.,

X, o2 (5"3/2)([-/ /ZI>

(43b)
where L1 is approximated by the high-power transfer function at the equili-
brium power level Po rather than at PAV' A more accurate estimate of X1
can be obtained from (43a) by iteration if desired. Once a value of x, is
obtained from (43) for a given frequency and sk, we can compute the high
power describing function by first evaluating Pav and D, from (42) and (41),
respectively, and then substituting the latter in (40). The following
remarks are important at this state:

(a) The expression in the curly bracket in (41) is identical up to

(8)

(ak)2 to ﬁ(m,lx]l) in Smets' analysis‘'®’, which is referred to
by Smets as the nonlinear frequency dependent gain.

(b) In the absence of feedback, H(iw)= 0 and the high-power describing
function (40) reduces to the single-input zero-power describing
function in (26). Furthermore, D(Gk,w,PAV) reduces to the high

power transfer function L(iw) when |x1|+0.
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(c) If we expand D(sk,w,PAv) in powers of &k after we substitute

(d)

(e)

X1 from (43b) into DZ(x],xz,m), treat PAV constant {constant
mean power operation, see (e) below), and retain terms up to

(6k)2, we obtain(14)

2 2 *
D(5k,w, m.—:z,_}f +(ok/2) IL, /2, Ly Ly (4 P Z i H)

~2 ReZ.]+0[<S§Q>4J} (45)

This expression is identical to that obtained by a direct Fourier
analysis and a perturbation expansion similar to equation (29)

in the presence of feedback€6 Thus (45) represents the first two
terms in the exact power series expansion of the high-power
describing function. This result is the real proof of the validity
of the feedback circuit analysis based on the dual-input describing
function.

Since the relation between Pay and P, represented by (37) does

not involve initial conditions or the manner in which the periodic
oscillations are started, we can calculate the high-power describing
function relative to the equilibrium power level by multiplying
D(Gk,w,PAV) in (40) by (PAV/PO). The ambiguity associated with

the various definitions of the zero-power describing function thus
does not arise when feedback is present.

The avérage power level and the externally applied positive reacti-
vity must satisfy equation (42). This relation may be satisfied

in a pile-oscillator experiment in different ways. We may for

example adjust k0 externally in such a way to keep PAV constant
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and equal to the equilibrium level PO at each frequency and magnitude
of the sinusoidal reactivity input. This corresponds to the constant-

(8)

mean-power operation which was mentioned in (c). One may also
keep ko constant and allow PAV to vary according to (42). Since
the magnitude and frequency of the self-sustained oscillations are
not subject to our control, we must adopt this mode of operation

in the nonlinear stability analysis.

Stability Analysis

The nonlinear stability of a reactor with feedback can be investigated
graphically by applying the Nyquist criterion to (40). The Nyquist diagram

in this case is obtained by plotting
2 vy )
W (w, 1) = = By, (@, i) HOw) D, (i) )

in the comp]ex'p1ahe as a function of w for various values of |x]|. When

lx1{ = 0, the Nyquist plot yields the linear stability of the reactor depending
on the encirc]émént of the -1 point. It is possible that the Nyquist plot

may encircle the -1 point at large amplitudes even when the reactor is linearly
stable. In this case, the reactor has an "unstable" 1imit cycle. On the

other hand, the reactor may be linearly unstable with a Nyquist plot encir-
cling the -1 point with [x]| = 0 but not encircling the point when |x1|
exceeds a certain value. In this case, the reactor becomes stable for large
amplitudes and a "stable" limit cycle arises. In either case, the amplitude

and frequency of the 1imit cycle is determined by

| - PAV(W.)‘XIIZ)H("W) D, (wﬂxl'2>=O (47)
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which is the characteristic equation of the nonlinear feedback Toop. If
this equation does not have a solution for a real w and positive lelz,
then the system does not admit a 1limit cycle. There can be more than one
1imit cycle if this equation has several roots. In order to illustrate
these ideas, we have examined a reactor model similar to the one employed

by Smets(5).

The feedback transfer function for the water-moderated system
is

His) = A/(s +0.00)( s+ 0.5

where the lags correspond to the heating time constant and the bubble
formation time constant. In our model the constant A has been chosen so
that, in the linear stability analysis, sustained oscillations occur for
PAV = Po = PC = 1.0. Thereforé any P0 > 1.0 will produce a linearly un-
stable system while any P0 < 1.0 corresponds to a linearly stable system.
For this model A ==10.37 and the critical frequency we = 3.24 rad/sec. We
have presented in Figure 5 the amplitude-dependent Nyquist plot in the
vicinity of the -1 point for P0 = 1.1. The analysis shows that the linearly
unstable system has a stable limit cycle as sk is increased and eventually
becomes stable as the Nyquist curve crosses the -1 point. The amplitude
of the fundamental of the periodic power oscillations where the Timit
cycle occurs is obtained approximately using 2|x1|PAV|Dleith |71 = 0.15
and w= 3.34 radians/sec. as 0.3 PAV' The average power level is found
from (42) to be approximately equal to Po in this case.

We have also investigated using (40) the magnitude of the describing

function at high power as a function of frequency at different amplitudes.
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The equilibrium power level was chosen to be Po = 0.1 so that the reactor
was linearly stable. The internal closed loop amplitude x; was computed
using (43b). The results are depicted in Figure 6a where we have also
plotted the results obtained using (45) with PAv = Po‘ For values of &k

up to 0.5 the difference between PAV and P0 was found to be less than 2%

and insignificant. These curves describe the nonlinear response of a
reactor with feedback. When sk = 0, |D| is identical to the high power
transfer function |L(iw)| which displays a resonance at w,.. ~ 1.05 rad/sec.
The height of the resonance peak IDMAX‘ = |D(sks wypys PAV)[ as well as
wypy Vary with sk as shown in Figure 6b. We observe that the results
obtained with the circuit analysis using the dual input zero-power describing
function (40) and those from direct Fourier analysis combined with a per-
turbation expansion differ appreciably for large va]ﬁes of sk, i.e.,

sk = 0.2 and higher. We believe, on the basis of our numerical analysis,
that the results obtained with (40) are more accurate for larger values

of sk, particularly near the resonance frequency, because the zero-power
describing function (41) is less sensitive to the amplitude variations
represented by |x1l Zy in (41) than the describing function at high power
given by (45) in which the amplitude dependence is characterized by |x]‘ L].
However the accuracy of the describing function approach in general should
be checked by solving the point kinetic equations in the presence of feed-
back and computing the amplitude of the first harmonic as a function of

the reactivity insertion and frequency. Such a calculation has not been
attempted in this work because of the large computer requirement. In such
numerical applications one must use caution to see that the correction terms
due to nonlinearities, i.e. second term in (41) and (45), do not exceed

unity because otherwise the expansion in powergof |x]l may not be convergent.
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Summary

We have presented a new concept in describing function analysis which
no longer places the low pass filter restriction on the feedback in a
reactor system. The multiple-input describing function concept is a natural
extension from the perturbation analysis used to definexggio—power describing
function. In addition, further extension can be made to analysis of any
order harmonics arising from feedback in a similar manner to that described
here for the second harmonic. For an N harmonic system, this could be
represented by a block diagram similar to Figure 2 containing N inputs to
the multiple-input describing function arising from N feedback mechanisms
of the form H(iwn) where n = 1, ... N. This extension has several signifi-
cant features; ffrst, the analysis of power oscillations in a nonlinear
system in the presence of feedback can be made as accurate as needed by
including higher harmonic feedback terms. Second, since the circuit analysis
requires only a general form for the zero-power describing function, any
acceptable form may be used which lends itself to a multiple input descrip-
tion(“*), v

The high power feedback circuit and stability analysis centered around
the zero-power describing function illustrate the utility of the concept in
the analysis of power oscillations. Decoupling the feedback effects from
the nonlinearities of the kinetic equations allows us to treat both aspects
of the nuclear reactor in a separate but systematic manner. Although the
describing function concept has been used for many years in reactor dynamics,
we believe the present work unifies the previous treatments of the subject

and clarifies the definition of the describing function with regard to the

average power level completely.
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CAPTIONS FOR FIGURES

1. Feedback Circuit Diagram with Single-Input Zero-Power Describing Function,
2. Feedback Circuit Diagram with Dual-Input Zero-Power Describing Function.
3. Amplitude and Phase Characteristics of Single- and Dual-Input Zero-
Power Describing Functions.
4. Effect of Second Harmonic on Dual-Input Describing function Characteristics;

g = 1074 2

sec., 8 = 0.0065, sk = 0.50 Dollars and w = 3.2 X 10" rad/sec.
The Second Harmonic was &k(|x,|/|x¢]) sin 2wt (---), sk(x,|/1x¢]) cos 2wt
(—), and dk(lle/lxll) sin (2wt + n) (---) for the First Harmonic
sk sin wt.
5. Amplitude-Dependent Nyquist Diagram for a Linearly Unstable Reactor Model
6. (a) Amplitude of the Describing Function at High Power; Eq. (40) —;
Eq. (45) —~-.

(b) Variation of the Resonance Peak and Frequency with Reactivity Input.
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