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ABSTRACT

Mathematical models are developed for the statistic variance/
mean in a point, unloaded reactor. An experiment which measures
variance/mean for counting times between one millisecond and ten
seconds is discussed., Comparisons between the mathematical model
and the experiment are made.

The results show that the delayed neutron contribution to
the measured variance/mean is significant, that these delayed neutron
effects should be accounted for when using this method for determina-
tion of prompt neutron lifetime, and that these techniques may be
used to measure dynamic reactor parameters in steady state.

The results of this experiment establish the promt neutron
lifetime of the Ford Nuclear Reactor. This experiment is the first
reactor noise experiment to be performed in such a way that delayed
neutrons make a significant contribution to the measured quantities,

Hopefully this investigation will lead to a wider use of

this technique as a diagnostic tool in nuclear reactor analysis.
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I. INTRODUCTION

A, Introductory Remarks

When a nuclear reactor is operating in steady~state its
neutron population is not constant. When observed with a sensitive
instrument, the neutron population is seen to fluctuate about some
average value. These fluctuations reflect some of the characteristics
of the reactor. In particular, the dynamic characteristics of the
reactor are reflected in these fluctuations. This is as it should
be since fluctuations are indeed dynamic phenomena.

Careful measurements of quantities which describe these
fluctuations in neutron population should yield information about
the dynamic reactor parameters which control the fluctuations.
Obviously one must first formulate some mathematical model for
fluctuations in terms of reactor parameters so that one can know
what to expect from his measurements, over what regions to measure,
and what is the required reactor configuration to yield optimum
results,

One must also be sure to know how to distinguish "signal
from "noise." That is, when one is measuring in a reactor, the
counting system may produce electrical impulses which are not caused
by the detection of reactor neutrons and are not distinguishable
from reactor neutrons. Possible sources of these impulses are
source neutrons, gamma rays and electrical transients., It therefore
becomes necessary for the theory to take the noise into account since

it may well be a substantial part of the measured fluctuations.

-’l_‘l
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Since flucuations in neutron population are by no means
regular fluetuations such as a sine wave, 1t is necessary to take
a large amount of data in order to distinguish the contribution of
dynamic parameters with any accuracy. This dictates that a
statistic which is amenable to data collection and data processing
by automatic techniques should be measured.

In the following, mathematical models will be developed
which describe neutron population fluectuations, the difference between
"signal" and "noise" will be delineated, and an experiment which
measures these fluctuations, and thus dynamic parameters, will be
described.,

One might ask, "Why measure dynamic parameters by stochastic
process techniques?”

The answers to this question are many. Some of the most
important reasons for making stochastic process measurements of
nuclear reactor dynamic parameters are the disadvantages of making
the measurements by other techniques. Other techniques employ some
method of introducing a perturbation into the reactor and observing
the resultant response of the mean neutron population. Disadvantages
of these techniques are that a perturbation must be introduced which
inevitably alters the dynamic parameters, the perturbation may have
to be large so that the mean neutron population is easily observed
over the fluctuations and may thereby drive the reactor beyond the
applicability of the mathematical model, it may be very difficult to
ingert into the reactor the required perturbing mechanism, or it may
be dangerous to drive the reactor through transients because of thermal

shock or other possible damage.



Of course other, and more direct; reasons for making
stochastlc process measurements exist. One of these is to compare
mathematical models with experiment, This is importént since only
a few stochastic process measurements have been made to date and
the theoretical-experimentel comparisons are as yet imcomplete, To
the author's knowledge no experiments have, as yet, been performed
for correlation times such that delayed neutrons are important.

In the following, delayed neutrons will be included in the
mathematical model, measurements will be made over times for which
delayed neutrons are important, and comparisons will be made between
the observed and predicted effect of delayed neutrons,

Investigators who have preceded the author in this area have
made fundamental contributions tp the theory and experimental techni-
ques of stochastic processes, Feynman, DeHoffman, and Serber(ll)
used these techniques to measure the distributions of the number of

(16)

measured prompt neutron lifetimes
(8) (23,24)

neutrons from fission, Luckow

by measuring fluctuations as 4id Cohn, Velez developed an

equation for the autocorrelation function and attempted measurements

on the Ford Nuclear Reactor. Theoretical work in this ares was done

(11)

by Feynman, DeHoffman, and Serber , Brownrigg and Littler(7),

12)

Frisch and Littler( ;5 Feiner, Frost and Hurwitz<lo), Moore(l7’18’19)

Bennett(l), Courant and Wallace(9>, and several others,

B, Organization of Text

Chapters II and IIT deal with the development of the mathemati-

cal model for the statistic of interest here; the ratio of the variance
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to mean number of neutron counts over an interval of time. Chapter
ITT applies this theory to determining the mathematical model for
stochastic processes in a nuclear reactor.

Chapters IV and V describe the experiment which was performed
to test the models, Chapter IV describes the equipment which was used.
Chapter V describes the experimental technique used to make the measure=
ments,

Chapter VI describes the technigques employed to process and
analyze the data.

Chapter VII discusses the results of the experiment with respect
to the mathematical model.

Chapter VIII discusses the results and formulates conclusions
based on these results.

The original contributions in this dissertation are contained
mainly in the experiment, Here, the effects of delayed neutrons on
the stochastic process measurements are shown clearly for the first
time,

Some credit is also claimed for deriving the mathematical
model in a way which is, in the author's opinion, more illiminating
than those derivations which appear in the literature.

The techniques of nonlinear estimation developed for application
to this problem represent a more powerful method of analyzing the re-

sults than has been used before,



II. STOCHASTIC PROCESS THEORY

This chapter will be devoted to illuminating the concepts
of stochastic process theory. Several statistical functions will
be defined., Notation will be adopted for these statistical functions
which will be used consistently hereafter. The fundamental relation-
ships between these statistical functions will be demonstrated., These
relationships will be exploited to show the connection between sto=
chastic processes and general system equations. For a more detailed
description of this material see Laning and Battin(lS) or Newton

et a1 (20)

A, Definition and Notation

In the following, comsider x(t) and y(t) to be fluctuating func=-
tions of time and x;(t) and y;(t) to be the i-th member of an ensemble
of fluctuating functions of time.

1. Mean of x(%t)

oom—c——

The time average of x(t) = x(t)

T
—T//m?T x(f)df (2.1)
The ensemble averagevof x(t) = :?:?

—//m N Z ,(1) (2.2)

2, Mean Square Value of x(t)

The time average mean square value of x(t) = xg(t)
T
N

—//m
T 2T

d (+)at (2.3)
-T
5=
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Ensemble average mean square value of x(t) = x—(t)
N
. /
=/im W’Z X?(‘I‘) (2, 4)
N—|>O-O I"/ .

Variance of x(t)

The time average variance of x(t) = var(k(t))

2
= x4|#) =x(#] (2.5)
The ensemble average variance of x(t) = var(x(t))

_ 2(+)'-—x(1-),2 (2.6)

Autocorrelation Function of x(t)

The +time averaged autocorrelation function of x(t) = wXX(T)

r
X(f)X(-f +T)o’f (2.7)
.

The ensemble average autocorrelatlon function of x(t) = Y (ty,7)

=xfy|x[f,+7] =1im ___Z x ) x{t+7] (2.8)

=1
Cross Correlation Function of x(t) and y(t)

=x[#]x(++7) —//m 2T

The time averaged cross correlation function of x(t) and y{t)

= ¥, (r)

| T

- — i / _
—X(f)y(“ﬂ _{_iiqwg—-f-nx(f)y(f-ﬁ)df (2.9)

The ensemble average cross correlation function of x(t) and y(t)

= ‘lfxy(tls T)

; N
=t ol 7] =lim =) il %+ 2100
(=1




6. Power Density Spectrim

It is useful to introduce a frequency function which is defined
as 1/2n times the Fourier transform of the time~average correlation
function in order to ultimately deal with transfer functions in the
frequency domain, It can be shown(l5’20) that this frequency function
will be the power density spectrum. That is, it will be a function which
will measure the power density of the signal as a function of frequency.
The integral of this power density spectrum over all frequencies will
then be the total power in the signal.

The power density spectrum corresponding to the time-averaged

correlation function is denoted Yxx’ ¥ .. depending on which

xyr % tyy
correlation function Vs wxy, or Wyy is being considered.
For example, the power density spectrim corresponding to the

cross correlation function defined in (2,9) is
__1 IWJT 2,11
%eylid= Tr/’/&g(ﬂe It (&)

B. Relationshlps Between Stochastic Signals in Linear Systems

Consider a linear system which is described by a Green's function
g(t), and has a driving function x(t) and a response y(t). This system

can be represented by the block diagram of Figure 2,1,

Input x(t) Output y(+t)
——>—— LINEAR SYSTEM -
g(t)

Flgure 2.1 Block Diagram of ILinear System
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We seek the relationship between the autocorrelation function
of the input and the autocorrelation function of the output. The
relation between the input and the output is given by the convolution

integral as

9(1') = 9(!’,)X(t-t,,)d7‘, (2.12)
and similarly,
la o]
9{7‘+T)= 9(7‘2)x(r+r—7;)d7‘2 (2.13)

These two expressions can be substituted into the definition of the

autocorrelation function to obtain

%E/M:#Tw L z/(r}y(ﬂT)dT

27
T oo 7 ) (2.1%4)
i, 5% [ dt[dtglz | X|r-7)|dt 9| x [+7-7%)
. - -0 -0

By interchanging the order of the limit process and the other integra-

tions so that we integrate with respect to t first, we get

| o ;
Wlr)=|atln)|otglelim | Sl atxr-tpre) ce.as)

-T
Recalling the definition of autocorrelation function, Egquation (2,15) is

written
W 1)z [an 9l | dtgln) Y, (rer - %) (2.16)

-0

This is the relation between the autocorrelation function of the outpub

and the autocorrelation function of the input.



In a similar way, an expression for the cross correlation
function between input and output signals may be derived. Substitute

the equation
@©

Y[teT)= |dtaglte)x [t+T-%) (2.17)

into the definition of cross correlation function,

-
%(y(T) /lm éé_ de(?‘)y(T+T) (2.18)
-7
to obtain
7 <o
(T) =m s=[atx(t)jotglta)x|r+7- 1) (2.19)
7 Z o0

Again interchange integration and the limit process to get

Holr) = for )l -

The relation between the input and output power density spectra
may be found by Fourier transforming both sides of the relationship be=-

tween input and output autocorrelation functions, This leads to

st e cFi/ © oo
s e L A .
) ~co ~co zZ

The order of integration may be changed and the arguments of the expon-

entials adjusted to give

(< o4
/ 7‘5 —‘/&)/7’-*77—7‘24// ’(2 22)

ny‘T)e d7= g(f)edf { ) e )17’4», 7)ot

The system'svtransfer function is defined as the Fourier trans~

form of the Green's function and denoted T(iw). Substituting this into
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Eguation (2.22) and recalling the definition of the power density

spectrum, Equation (2.22) may be written

Wyg(‘*/) = 7( [T /W)Y, )ju) (2.23)

C. White Noise

A random process, x(t), possessing a constant power density spec-
trum is referred to as white noise., The physical origin of this term is
in the concept of white light: a light that possesses all frequencies
in equal amounts.

If x(t) is such that
x|#)=0 5 UxlX)=0, A>>A, (2.24)

then, the process x(t) can be considered to be white noise in a range of

1
frequencies 0 < o -
(o}
In this case, the autocorrelation function for white noise can

be approximated by a delta function,

%X(A) o~ C@(l) (2.25)

so that the power density spectrum can be found by Fourier transforming

+to be

Yxlw) =c¢ (2.26)

It should be noted that, in a strict sense; white noise is a

physically unrealizable phenomenon since it is a random process having
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an infinite average power. This follows from the fact that the total

power is given by
- o

j Yox o = Yo [0]foW = oo (2.27)

(@]
In spite of this fact, white noise is a useful concept both for

certain theoretical purposes and as a practical approximation to noise of
a very broad bandwidth. In many problems a noise spectrum may be known
to be substantially constant over the frequency range of interest., When
this is true; the use of a constant power density spectrum for all fre-
quencies often simplifies mathematical manipulation without introducing

significant inaccuracy in the result.

D. System Driven by White Noise

A system driven by white noise has a constant input power density
spectrum, C, so that the output power density spectrum will be proportion-
al to the square of the modulus of the transfer function. This follows

from substituting C for ¥, (o) in Equation (2.23) to get

Yyl =cT|/u)T-iw) (2.28)

E. Relationship Between Variance to Mean Ratio Over an Interval and
Autocorrelation Function

In certain systems, of which a nuclear reactor is an example,
it may be more feasibleﬁéxPerimentally to measure the accumulated value
of y(t), the output noise, over an interval than to measure either the
autocorrelation function or power density spectrum direetly. The ratio

of the variance to mean of this accumulated random process for intervals
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of length T is related to the autocorrelation function and thus the
power density spectrum of y(t).

To derive this relationship, consider y(t) to be a stationary
stochastic signal. The variance of the integral of y(t) over an
interval of length T will be related to its autocorrelation function,

Let x(7) be the integral of y(t) over the interval 1. The relationship

between x(1) and y(t) is
T
X(T)= | Y(|#)dt (2.29)
(o]
According to relation (2.7) the autocorrelation function of

y(t) is written

Hylt-%) =9(t)Y(%) (2.30)

Integrals of this autocorrelation function are Investigated over
the triangle 0 < t; < ty, 0< 4 <.

Integrating once,

Tz -
[S@y(t—z;)df, = Y[&] | Yl#)dr,

(2.31)

=Y (%] x(g)
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Integrating again (by pawts)
T

%y(r AR A y( ARALLA

(7/) (7/) (2.32)

(2]

- X3(7)
2

The ratio of the variance to the mean of x(r) is the quantity
which is measured in the experiment to follow, This quantity can be

formed from Equation (2,32) yielding

Var _ X7 —X(T) - ('r)qu’T(a 33)
Mean (7) xX(T) ﬂ/

It 1s to be noted that the variance/mean over an interval measures
accumulated correlation, That is, it is related to the double integral of
the autocorrelation function and hence to the system equations through

Eduation {(2.16).



ITI, MATHEMATICAL MODEL

The mathematical model used here for stochastic processes in
nuclear reactors operating at steady state is based upon a point re=
actor model., Two approaches to the derivation of this mathematical
model are presented here, One approach will be termed the "system
approach” which will use the results of the previous section to derive
the power spectral density, autocorrelation function, and count-rate
variance for a nuclear reactor by operations upon the square of the
modulus of the sub=critical reactor transfer function., The other
approach to be discussed will be the "physical approach" in which
details of the multiplying processes in the reactor are followed show-
ing the mechanisms which give rise to corwelation,

The validity of this model will be examined in relation to an

experiment in Chapter VII,

A, System Approach

In Chapter II it was shown that a linear system being driven
by a white noise source has an output power density spectrum proportional
to the square of the modulus of the system transfer function., In the
system approach to the problem of prsdicting the characteristiecs of
reactor noise we assume that a reactor operating in steady state is
a linear system driven by a white noise source,

l. White Noise Source

According to definition (2,24) a white noise driving force

must be such that if x(+) is the white noise source, then x(t) = 0

w1l
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and ¥, (1) = ;ZE;QFE:XS = 0 for A's greater than some A, which is
<< To the correlation time of interest in the system.

The assumption of white noise is used in the noise analysis
of many systems when it can be argued that the possible origins of
the noise are characterized by the conditions above,

In a reactor, a possible origin of the noise is in the fluc-
tuation of source neutrons from both external sources and the sources
inherently existing in a reactor., Another possible source is in the
fluctuations of the reactor parameters themselves°<l7’l8)

In the following, white noise will be agsumed as the source
noise for the derivation of the mathematical model by the system
approach. The characteristics of the possible noise sources mentioned
above are such that this assumption seems to be warranted,

It may be possible to investigate the character of the noise
source by an experimehtal technique., By applying a known perturbation
to the reactor and observing the output with and without this perturba-
tion we may be able to gain information as to the characteristics of
the inherent driving force.

For example, if W;&(w) is the output power density spectrum due
to the inerent noise alone and Y??(aﬁ is the output power density
spectrum due to signal plus noise (where signal is denoted Yix(m) and
the noise is Yime)o An experiment may be performed to measure
Y;yﬁn) and. Y;;Qb)o Congider the systems depicted in Figure 3. 1.

If the signal and the noise are uncorrelated, then
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v (o)

) by (@) Y le) )2 Ly @)

| ¥ (@)
Noise Source Only Signal and Noise
Figure 3,1
n 2 n
\yHU(U) ‘-‘-‘T(&J)‘ \}-/xx(u)
\YZ(U) = IT W) [\P:)((W) H@fx(w)] (5:3)

so that, eliminating the transfer function

)
g‘,;’-‘y;)—] (3.2)

sh n
Wy W) = Wy ()| 1+ 2

xX
¥ ) and ¥ (o) are measured quantities and v (o) is a
yy yy XX
known perturbation, Thus by performing the two sxperiments outlined
above, one may be able to infer from the results the shape of the input
n
nolse power density spectrum, ‘:I.fxx(m) , and establish the shape of the
unknown driving force,

2, Output Noise

A point, wnloaded, nuclear reactor is now to be characterized
by a linear system with a white noise driving force such that the input

power density spectrum is a constant, ‘:T!m(w) = C, We can normalize the

problem by assigning the value 1 to C,
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In a measurement of the output noise from a reactor
some of the neutrons which we measure may be source neutrons or other
neutrons which have been previously characterized as part of the assumed
white noise input. This effect is taken into account by assuming that
some of the noise which is measured has not been operated on by the
reactor transfer function. The system under consideration is shown
in Figure 3.2 where n(t) is the assumed noise source, G(t) is the reactor's
Green's Function, ys(t) is that portion of the noise which has been opera-
ted on by G(t), portions of n(t) are shown driving both output and input

and y(t) is the measured output which includes both ys(t) and ng(t)°

<y G(r)

Figure 3.2 Noise Measurement Block Diagram.

It has been shown in Chapter II that the power density spectrum
of the output noise of a linear system is proportional to the square of

the modulus of the transfer function so that, in this case,
2

Yyeys (W) = | T(w) Y, (W) (3.3)

= T(w)

since we have assumed nj(t) is white noise and Ynlnl(m) =1,
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The measured output, y(t), is equal to the sum ys(t) +n5(t),
It is then necessary to find the power density spectrum of y(t).

The autocorrelation function of y(t) may be written

)
b (@) =tim _ 5tefyrysirrion
7

.
lim, 2—’;—[ (s ()0 ) (1+T) + 0f #+ 7))t
(3.4)

7 T
=l L o Lot (T

T T

7 7
+lim -2—/— D) (T ) +£/1 54—7##)%/#7)@/7‘

=
e <1 Tree <0

) 3 (1) + ¥ (7) 4, (7

2 2

- %sys

The above equation shows that the autocorrelation function of
y(t) is equal to the autocorrelation function of y (t) plus the auto-
correlation function of ny(t) plus the sum of the cross-correlation

functions \Lrngys('r) and wysnéT).
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If it is assumed thatny(t) and y,(t) are uncorrelated then

-
% s (7) = lim 2;—[”2(*)55(f+7)0/f

—-DCO

'-7'
"7'

=ne) %)

Since we have already assumed thatﬁa'bi = 0, we see that

(v) = 0. Likewise, V.. (1) = 0. Now Equation (3.4) becomes
s 1o

Foy (7) = Yoy (7) + Yo (7) (5.6

Taking the Fourier Transform, we see that
Wy ) =Y, , @)+ \P%,,a(w) (3.7)

And substituting for ¥ _ (») and ¥ ), we get
s for ¥, (v) and Yy 5 (o), ¥e &

\l’% (W) = /+| '/"(a))|2 (3.8)

where we have normalized Ynlhi(m) and Yneng(m) to 1,
The subcritical, point, unloaded reactor transfer function meay
be written

n+/

ZJ /a)+)J _ _ﬁ_,___ (3.9)
] n ] ) Jw+Wy
179, [[+; __‘L—/a)i- lj] P J=

"

T(iw)
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where ﬂmj are the roots of the inhour equation, B. and A. are the
fraction and decay constant respectively for each delayed neutron pre-
cursor, p is the reactivity, and n is the number of delayed neutron
groups.

Using the above, the power density spectrum is given by

N~/ N+

ArAx
Yoy (W= /+ (/w+%)(,u)+a)k)

(3.10)

]

J=
We have not, as yet, taken into account the average neutron
level in the reactor. To do this, we define k to be the average neutron
level and introduce the term kgﬁ(m) into the power density spectrum

indicating that when w — O the power density spectrum is to go to k2n

Using this, the measured power density spectrum is written

n+l n+l

A A
(u)) / + k (5(&))422 (/w+ )(k,a)+u)h) (3.11)

Inverse Fourler transforming, the autocorrelation function be-~

comes

_ . 2 Y—' a/a)‘?/
Wgy (T)=0(T)+ k" + | LA\A (}a)#-a))(-/a)a‘a)j (3.12)

J=t k=i
The form of this autocorrelation function agrees with Velezo(gu)
The inversion indicated above is straight forward if care is
taken in choosing the path of integration in the complex plane so that

no positive exponential occurs. The result is
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2 R
%JT)‘M*’“ZAJ Trug €7
J:/ =
an+l /T (3.12a)
“Slrik*) A;Be™J
5~

n+/ A
where )%& = ———«:fg——-
é=i TR
The count rate variance to mean ratio is related to the auto-
correlation function by Equation (2.33) repeated below with X replaced

by k.
y TAT
ar —_ v ’
NMean TF-KT+7= %y(f’) d7dT (3.13)

OO

Performing the indicated operations the equation for variance to mean

ratio becomes

Var 2 T, 22T
Mean{ )_ ;f/T 2 +KT‘ 2
o [ —(J >
L 2VAB =€ G (3.14)
e
J n+/ -
_, ZZAJBJ 1Y
Kk LTG |ToT
=1

This is the quantity of Interest in the experimental work to be
detailed later. The above derivation; although straight-forward, does
not make explicit the characteristics of the multiplication processes
which contribute to the form of the final equation. The derivation to
follow will deal with these multiplication processes and also will show

how the detecting system affects the result.
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B. Physical Approach

The count-rate variance to mean ratio may be derived by consider-
ation of the multiplication processes in a nuclear reactor without refer-
ence to the stochastic process functions defined earlier. Here, no white
noise source is hypothesized; the argument follows from basic probabili-
ties to be defined. This derivation takes into account the efficiency
of the detector which 1s used to measure the output noise.

1. Definitions

Consider two time intervals, Atl and Aiz. An equation for the

expected number of neutrons detected in these two non-overlapping

intervals will be developed by following the fission chains.

Define: p(m,At = probability of m detections in At

sl 1

p(n,Aty) = probability of n detections in At,
p(m,Atl;n,Atz) = Joint probability of m detections in Aty and

n detections in Atg

]|

p(n,é¢2lm,éml) conditional probability of n detections in
Amg on the hypothesis of m detections in Atl
<§(tl)c(tg)AtlAté> = expected number of counts in Aty and At,

2. Physical Derivation

In order to compute the count-rate variance to mean ratio, the
expected number of counts in a pair of intervals of time is first com-
puted. This is done by observing that for small intervals the expected

number of counts 1s approximated by the probability of a count, thus:

lim <c(tl)c(t2)A‘tlAt2> = lim _ y nmp (m, Aty 31,Ats)
A‘tl’g A’tlyg mTI‘l

N (3.15)
= <c(tl)c(‘t2)d'tld“b2/ = p(1,dty31,dt,)
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This probability can be separated into two terms, one term

representing those events for which the probability of a count in A$2

is independent of whether or not a neutron was detected in Aty, the

second term representing those events for which the probability of a

count in At, depends upon whether or not a neutron was detected in At
2 1

PlLdESLdE) = p (L dhsdb)vR ()T 5 dt)

(3.16)

=plydt )plsdlte)+ Pl dr)plidt 11 d7)

The first term is identified as the probability of an "accidental"

pair of counts and the second term is identified as the probability of a

"coupled" pair of counts.

Accidental pairs of counts arise from the detection of a pailr of

neutrons which have no common fission as an ancestor; coupled pairs

arise from the detection of two neutrons having a common ancestor fission.

This will become more evident in the following development.

a) Accidental Pairs

Accidental pairs of counts arise from detection of neutrons which

do not belong to a coammon fission chain,

events leading to an accidental pair of counts

X
Photdx<5_——_—_—_ﬁx<g:j//

Fission
MC&/ \//
Neuton A

Figure 3.3 illustrates possible

CT‘//r—h—

dty

Detection

in dt

1

d.’tg

QL\-——-De*:,ec‘cion

in dt,

T Time

Figure 3.3 Possible Chains for an Accidental Pair of Counts.
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To derive an expression for the probability of an aceidental
pair of counts, define:

F = average fission rate

=ffzf(5,[)n(5,r)74745 (3.17)
4

where n(E?E)dSr&E # the expected number of neutrons in d3r about r with
energy in dE about E.
Z%(E,g) = the probability per unit path for small paths that a

neutron with energy E at space point r suffer a collision which induces

a fission.
v &2 neutron speed corresponding to energy E
€ E average counter efficiency

L ,L L, (50)n(Er) v dFdE

3
f]z (E,r)N(Er) v d FdE
Er f
where 25 £ +the probability per unit path for small paths that a neutron
with energy E at space point r suffers a collision which results in a
detection.
Using these definitions, the probability of a detection in an

interval of time dt is

pndt)=Fedt (3.18)

Thus, the probability of an accidental pair of counts in dtg

and dt, is given by

phdl) p(ydt ) = Fietdldt (3.19)
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b) Coupled Pairs

Figure 3.4 illustrates the possible ancestry of a coupled pair

of counts.,
q fissions occur O
between t & t2 \\——Detectlon
in dt
2
Common
fission
at t
p fissions 0| Detection —
occur between in dtl ime
t & tl
K aty dto

Figure 3.4 Possible Events Leading Up to a Coupled Pair of Counts.

As indicated in Equation (3.16), the quantity
P ) ply Al 1, d7;)

must be computed.

First, p(l,dty) can be written as (see Equation (3.18))

P dG) = Fedt (3.20)

To compute p(l,dtgll,dtl), the following quantities are defined:
Y & the number of neutrons emitted in a fission
Ny E‘ the probability per unit time for small times that a
neutron born at time t have a progeny (including itself)
in the system at time tq.
1\T2 £ the probability per unit time for small times that a
neutron born at time t have a progeny (including itself)

in the system at time t,.
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Using the above, the probability of one count in dtl from a
progeny of a fission which emits y neutrons at time t is

VAN edt,

The probability of a count in dt, from a progeny of the same
filssion at time t which produced a detection in dt; is

V-1) €N dTz
So, the probability of a pair of counts in dtq and dto due to the progeny
neubrons of a common fission at time t which emitted v neutrons is

vw-1)FEA MM, oty o%

A fission at time t may emit any of several numbers of neutrons;
80y considering the average common ancestor fission we average over the
v!s. The probability of one detection in dt; and one detection in dt2
due to any common ancestor fission is given by integrating over all past

time so that the probability of a coupled pair of counts is written
% '
Pl) plhdlts [yl )= Fe(03-D)dtd| vy ot 320
-0

c) Probability of a Pair of Counts

Equations (3.15), (3.16), (3.19) and (3.21) may be combined to
give the expected number of palrs of counts in intervals dtq and dt,

due to both accidental and coupled pairs, yielding:

leth)e(n)dtdh )= pldtshdts)

(3.22)

+
= FER ol + e (Tl o f NN o
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I+t remains to determine Nl and Nzo From the reactor kinetic

equations, let us suppose that

h+/ n+/
-wj(t-t) ~tJy (2-T)
A/,=ZAJ—€ o /\/Z=Z4,-e (3.23)
j=1 r=/

where the A; are the numerator terms of the reactor transfer function in
the form of Equation (3.9) and ~w; are roots of the inhour equation.

At this point, it is not obvious that the expressions (3.23)
truly define the required probabilities per unit time, These identifi-
cations, however, lead to the same result as the system approach, thus
we will conclude that the quantities Ny and N, are properly defined and
identified here.

Now, the expected number of counts in dtq and dtg may be written

© n+/
2 2 27— s (-1 - (BT,
Crjeln)didty-Fe 0/7,‘0/72+Fé(1/—p)f:/7/‘o/72 yp, S OU )

t=-® /=1
» (3.24)

Doing the integral, we get

17+,
22 -~y (4T,
CHJClt) ooty =FE dltdl + Fe (Tt Aty g t) 6.z

Wy+ay
hj=!
Now we do the sum over Js 1dentifying
n+l
) A - 5. (3.26)
A Lijl‘.*&{/' (4

J=l
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The equation now becomes

%) (3.27)

L lt)ctt)dtdty=FEdtdl +Fe@ n/)a/fdﬁ‘z/g
/=/

In the experiment, we measure over an interval of length T which

includes t7 and tp. If we have c counts in an interval, the number of

pairs of counts in the interval is c(c~1)/2 and the expected number of

pairs of counts is c(e-1)/2.

The expected number of pairs of counts in an interval of length

T is related to the expected number of pairs of counts in dtq and dt, by

T
6(6'7 e (r)c(t:)dtdts (3.28)
%=o I=o

Applying this relation to Equation (3.27) and doing the integrals,

we get
r+/ T
clc-l] - FET", - 2,73 = 2/4/’5/ _ - A
> S— +Fe(V &*’)7’» ol 7 (3.29)

The teym Fert can be identified as ¢ so that the above equation

may be written

n+/
— — —2 w7
ct-c¢ c Ai By /=& ‘
€ -C = £ vcelv-y L1/- (3.30)
e e v ) Wy / wf 7
/=y
Rearranging terms, the equation becomes:
fat
—_ 2 -7
| 2o\ A, 1-€ (3.31)

es-¢c _\/ar . _ _
= (7)== (7)=/+2€(0 V) e
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where the identification of == (1) with Tenn (1) has been made from
c

the definition of variance to mean ratio.
The introduction of the detector into this derivation has intro-

duced the counter efficiency, €, into the equation for variance to mean.

Also, the study of the fission chains has introduced the constant V2 -7

which does not appear in Equation (3.14).

The normalization implicitly assumed in this derivation is not
necessarily the same as that assumed in the derivation leading to (3,14)
so it may be expected that the two results would differ by a constant

factor, which they do.



IV. EQUIPMENT

A. Experimental Setup

Two experimental configurations were used in the experiment.
One configuration was used to record data on the tape recorder and the
other configuration was used to count pulses over a gate time and
record the count on IBM cards. These two configurations are shown
in Figures 4.1 and 4,2 The figures are self-explanatory.

Each piece of equipment used is discussed below. Those pieces
of equipment which are standard items are discussed briefly with
reference to manufacturer's data while the special pieces of equipment

are discussed in more detail.

B. Description of Equipment

1. Reacfor

The Ford Nuclear Reactor is a one megawatt swimming pool reactor
using 90% enriched U°S° MIR type fuel elements. The critical mass, with
a carbon reflector on the vertical faces is approximately 3kg. The
reactor 1s light water moderated and cooled. It is used primarily as
a neutron source and as a training reactor.

The detector was placed at the core-face, in the reflector, for
each of the experiments. The core configurations during the experiments
are shown in Figures 4. 3 and 4. 4,

2. Detectors
Menufacturer's specifications for the two detectors used are

listed below:

=30m
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a) Fission Chamber

Manufacturer Westinghouse Electric Co.
Model No. WL=-6376
Mechanical data
overall length 11-7/8"
diameter (max. ) 2-3/32"
net weight 1-3/% 1p.
insulating mat'ls polystyrene and alumina
sensitive length 6"
body mat'l aluminum
neutron sensitive mat’l 2 mg/cm2 U308 fully enrichg%Bin
U_.
filling A-N5 at 1 atm,

Operational ratings
operating voltage (app.) 300 volts

sensitivity 0.7 count/neutron/cm®
neutron flux range 2.5 to 2.5x107 neutrons/cmg/sec
operating plateau 200 to 800 volts
output 200p volts, rise time 0.2y sec
b) EF3 Tube
Manufacturer N. Wood Counter Lab.
Model No. G=10=12
Mechanical data
overall length 7
diameter 1
net weight not specified
insulating mat'ls glass
sensitive length 12"
body mat'l aluminum
neutron sensitive mat'l ~ enriched BF3 (96% B10)
£illing BF3 and quehching gas at Lo em Hg

Operational ratings
operating voltage (app.) 2000 volts

sensitivity not specified
neutron flux range not specified
operating plateau length of plateau = 300 volts
output not specified

The detectors were mounted in waterproof cans, The BF3 ‘tube
had its pre~amplifier in its can, The pre-amplifier for the fission
chamber was outside of the pool. The BF3 tube had a lead gamma ray
shield, 1/4" thick, wrapped around its water-proof can. The high

voltage leads were enclosed in a one inch diameter "Tygon" tube.



3. Pre-Amplifiers

The pre-amplifier used with the BF3 tube was a transistorized
cathode follower with a 15 volt battery as a power supply. This pre-
amplifier was used for impedance match; the gain from its input to
the end of the twenty foot cable leading to the de~coupler was approx-
imately 0.3, The pre-amplifier was built in a 1" diameter, 6" long
aluminum tube with a connector of the BF3 tube at its input and a con-
nector to the signal cable at its output. No provision was made to
turn the pre-amplifier power supply on and off, Operating continuously,
the battery life was approximately two weeks.

The pre=-amplifier used with the fission chamber was the standard
pre-amplifier used with a model 218 linear amplifier. The manufacturer's

specifications are given below:

Manufacturer Baird Atomic Inc,
Model No. 219A
Operating characteristics
Maximum gain 30
Bandwidth 2me
Rise time 0.25u sec max,
Fall time 10p sec min,
Input polarity positive or negative
Input impedance 1000 megohm
Linearity 2%

L, Amplifier
The amplifier was used on the delay line bandwidth with the
output of the pulse height selector. Therefore, only the specifications

corresponding to this operating condition are given:

Manufacturer Baird Atomic Inc,
Model 218
Operating characteristics

Bandwidth 2me

Rise time 0.2u sec

Decay time 0.8u sec
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Maximum gain
Input polarity
Input impedance

Output imedance (PHS)

Linearity
Amplitude (PHS)

Pulse Shaper

1600
negative
2000 ohms
4700 ohms
1%

60 volts negative

To tape record pulses successfully it was necessary to match

the output impedance of the amplifier to the input impedance of the tape

recorder and to supply the tape recorder with pulses of optimum shape

and size.

In order to investigate pulse shape and size a combination

one~shot multivibrator, cathode follower circuit with variable height

and width output pulses was built.

The pulse used to drive the tape

recorder was optimized on this pulse shaper with the optimum pulse being

a 20 volt, 8u sec nearly square pulse,

shaper is shown in Figure 4.5,

6.

Tape Recorder

Manufacturer

Model No,

Operating characteristics
No. of channels
Tape speed
Drive
Wow and flutter
Tape width
Maximum size reel
Maximum length of tape
Bandwidth

Gate Scaler

Manufacturer

Model No.

Operating characteristics
Range
Accuracy

Stability
Registration

The circuit diagram of the pulse

Ampex Corp.
307

1

60" /sec

Capstan, friction drive
Q. 1% xms

l/)-l-"

10 1/2"

3600', 1mil thickness
80 ke

Dymec Corp.
2500

1 cps to 100 ke

t1 count,tstability of

crystal
1 part in 107
5 places;, colimnar display,

to 99,999
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the preset counter has reached its preset count and the signal gate
has been closed. After this "display time" it resets both the dis-
play and present counters back to zero and a new count cycle begins.
8. Converter
In order to punch the numbers displayed on the gate scaler

onto IBM cards using an IBM~024 card pumcher, it was necessary to
build a machine to convert the "parallel staircase"” output of the

gate scaler to the "serial digital" input required by the card puncher,

1

This machine 1s called the "converter" and its eircuit diagrams are
shown in Figures 4.7 and 4.8, The operation of the comverter is as
follows:

a) Initially, the stepping relay is in the no signal posi=
tion while the gate circuit of the gate scaler is closed and the
display scaler is counting.

b) When the scaler displays its count, a signal is sent to
the converter which simultaneously resets the stepping relay to posi-
tion 1 and opens the circuit of the stepping relay wiper so that no
signals are admitted to the converter.

c) The signal circuit of the converter is closed and a signal
representing zero (140 volts) is admitted. The bank of ten relays
converts this voltage into a closed circuit corresponding to the
activation of the zero key in the card puncher and a zero is punched,
When the card puncher punches the zero, a signal is fed back from it
to the converter which makes the stepping relay simultaneously open

its signal circuit and step to position 2.
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d) The signal circuit on the stepping relay closes, admitting
a voltage corresponding to the i-th digit on the display counter (50v
to 14Ov representing 9 to zero in 10 volt steps). The bank of ten
relays translates this voltage into an appropriate closed circult and
the corresponding number is punched. Punching of the number gives a
feedback which opens the stepping relay signal circuit and steps it
to the next position.

e) Step d) is repeated for i = 1 to 5.

f) When the stepping relay reaches the no-signal position
the scaler resets and a new count is begun,

The sequence of events a through f above takes about one second.
Every sixth digit punched on an IBM card is a zero. This helps in
editing the cards and checking for errors.

9, IBM 024 Card Puncher

The TBM 024 card puncher is designed to be a hand operated key
punch with a typewriter keyboard. This typewriter was modified so that
the closing of relays could be controlled by the converter instead of by
the depressing of keys. This was accomplished by wiring the converter
relay contacts in parallel with the keyboard contacts (see Figure L4 7).

Another modification of the card puncher was required to make
it release the card after it had punched T2 columns and go on to the
next card. This modification consisted of a cam which was mounted on
the control drum shaft and used to trip a microswitch which controlled
the automatic feed mechanism. When column T2 was punched the micro=-
switch released the present card and entered the next card by means

of the IBM 024 card feed mechanism,
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C. Operating Characteristics

The operation of the above experimental eduipment was routine
after several bugs had been worked out. Some trouvble was incurred in
the stability of the D. C. voltages in the system but this was
minimized by using a regulated power supply and occasionally checking
bias adjustments.

No relay failure was encountered although some of the relays

in the converter operated over two million times.



V. EXPERIMENT

Two significant experimental runs were accomplished on the
Ford Nuclear Reactor at the University of Michigan. Data was taken
in run #1 using a fission chamber and the data in run #2 was taken
using a BF3 tube., In each of these experiments several tape recordings
were made at different reactivities. In Appendix A the reactor param-
eters and data points for these experiments can be found. This section
discusses the experimental conditions which must be met to insure

success and the steps which were taken to meet these conditions.

A, Experimental Conditions

In order to perform an experiment to measure nuclear reactor
parameters by methods of stochastic processes on a reactor such as
the Ford Reactor it is necessary to optimize the experimental technique
on several considerations, The competing factors which lead to an
optimization are the neéd for a high efficiency detector with small
sensitivity to gamma radiation, the need for putting the detector in
a region of low neutron entropy while being limited in count rate by
the resolving time of the equipment, and the need to apply point
reactor theory to the analysis while locating the detector as close
to the reactor as possible,

Recall that the form of the equation for count-rate-variance
to mean ratio is

\i (T) =1+ ¢ (correlated terms) (5»1)

The first term on the right hand side of Equation (5.1) arises from

the accidental pairs of counts as shown in Chapter III. The second

=45
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term arises from the coupled pairs. The problems mentioned above

arise primarily from the need for the correlated part to be signifi-
cant compared to one; indicating that € should be as large as possihle
and that the correlated terms should also be as large as possible., The
discussion of experimental conditions leading to large values of e will
be discussed under "counter efficiency" and those leading to high

values of correlation will be discussed under "correlated terms."

1. Counter Efficiency

In the theoretical development, counter efficilency €, has been
defined as the average number of neutrons detected per fission in the
reactor. To obtain a ratio of V/M significantly different from one,

8

we need this efficiency to be at least 107  and preferably of order

10'4.

This need for high efficiency immediately suggests using a

large counter which will intercept many neutrons, a sensitive detector
‘which will count a large proportion of the neutrons which it intercepts,
and placing the counter in a position of high neutron density. Each of

these topics is discussed below,

a) Size of Counter

The size of the counter used is limited by the practical
dimensions of counters, the available space in which to put a counter,
and the requirements for resolving time put upon the instrument, In
this experiment, a N, Wood ILab G-10~12 BF3 tube and a Westinghousé~WL
6376 fission chamber were used, REach of these counters, when enclosed
in a waterproof container, was of such a size as to fit into a fuel

element channel in the Ford Nuclear Reactor., The size of the counters
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was found to be satisfactory in all respects; the dimensions are given
under "equipment."

b) Counter Sensitivity

In a reactor which has been operated at high power, high
detector sensitivity is especially hard to obtain since, in general,
a detector that is sensitive to neutrons is also sensitive to gamma
radiation. Thus, the problem of achieving high detector sensitivity
is intimately related to the problem of eliminating the gamma back-
ground.,

The BF3 tube used was considerably more sensitive to both
neutron and gamma radiation than was the fission chamber, For this

reason, the BF, tube could not be used in the initial experiments in

3
which severe precautions to eliminate gamma ray background were not
taken., TUsing the fission chamber for these experiments, € was small,
and thus the correlated parts were not as large as in the later exper-
iments using the BF3 tube,

To achieve a higher sensitivity, it was necessary to use the
BF3 tube and to take precautions against detecting gamma radiation.
This was accomplished by first determining what the effects of a
gamma ray background were on the characteristics of the counter,
and then taking steps to eliminate these effects. Qualitative
measurements of the effect of gamma ray background on the BF3 tube
were made. The effect on the voltage traverse of increased gamma
background is to both shorten the length of the plateau and to shift
the location of the plateau to a higher voltage., The corresponding

effect on the discriminator traverse is to shorten the length of the

discriminator "plateau" and to make the slope more steep.
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The experimental set-up used to make these measurements is
shown in Figure 5.1. The BF3 tube was kept at a constant distance
from the neutron source but moved relative to the gamma-ray source
(in this case the shut down reactor).

Observations of pulse-height on the oscilloscope were made
simultaneously with the voltage and discriminator traverses., It was
observed that with increasing gamma ray intensity the pulse height
of the neutron pulses decreased while the pulse height of the gamma
pulses appeared to remain approximately constant,

The decrease in pulse height of the neutron pulses is
attributed to the lowering of the effective interelectrode voltage
by the gamma ray field. This is caused by the fact that the ions
produced by the gamma rays provide a space charge opposed to the
interelectrode voltage which has the effect of lowering the effective
interelectrode voltage resulting in smaller pulses since the gas
multiplication of the proportional counter is a strong function of
the voltage.

The behavior of the pulses due to gammas appears to be due
to competing effects. One would expect the gamma ray pulse height
to decrease due to the lowering of the gas multiplication in the
proportional region in the same way as the neutron pulse heights
decrease, However, an increase in the gamma ray field also gives
rise to an increase in simultaneous gamma ray pulses. Apparently
in this case, the effective increase in gamma ray pulse height due
to simultaneous events is of the same order of magnitude as the dew

crease in size of gamma ray pulses due to less gas multiplication.
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One way to minimize this gamma ray effect is to minimize
the probability of simultaneous events. This indicates a need for
the shortest possible resolving time in the equipment. Again, how=-
ever, there are competing considerations, To make the resolving
time as short as possible one would use the smallest instrument
possible. This cannot be done because of the requirement for a
large size counter for high efficiency., Thus, the minimum resolving
time 1s determined by the minimum detector size consonant with
efficiency considerations. Of course, one may also optimize the
detector configuration by placing the electrodes as close together
as possible,

In making this type measurement one should always optimize
the performance of the BF3 tube by operating at proper voltage and
discriminator values. The foregoing discussion indicates that
special attention must be paid to the level of the gamma ray backe-
ground in determining optimum voltage and pulse height selection
since this optimum is strongly effected by the magnitude of the
gamma ray background.

The fission chamber used had a low operating voltage, lower
sensitivity, and small gas mutiplication and was therefore able to
operate in considerably larger gamma-ray fields than the BF3 tube.

c) Location of Counter

From the standpoint of achieving high counter efficiency it
is apparent that with a thermal neubron detector it is most desirable

to place the detector in a position of high thermal neutron flux,
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2. Correlated Terms

The magnitude of the correlated terms depends strongly upon
the number of correlated events. The relative number of correlated
events depends upon the operating configuration of the reactor and
the location of the detector.

If the reactor is operating at a very large negative reac-
tivity, the multiplication is small. Since the pairs of detections
traceable to a common fission are the ones responsible for correlated
terms, one would suspect that small multiplication would yield small
correlation. This is born out both by the point reactor theory and
the relative magnitude of the variance/mean curves taken at different
reactivities with the BF3 tube. Therefore, to achieve a high degree
of correlation it is necessary to operate the reactor at very nearly
critical,

Although no space dependent model for stochastic processes
has yet been found one may make some intuitive guesses about the
magnitude of the correlated terms as a function of space. Since the
core of the reactor is the source of correlated events, one would
expect that the relative number of correlated events detected would
decrease as the detector is moved away from the core. Making an
analogy to entropy, this is tantamount to saying that the entropy
of the neutrons increases with increasing distance from their source,
This implies that there is some point of minimum neutron entropy in
the core and that entropy increases as we move away from that point.

According to the above arguments, the optimum operating con=-
figuration for the experiment is with the reactor nearly critical and

the detector close to the core.
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B. Equipment Limitations

One must operate within the confines of equipment limitations
when meeting the above experimental conditions. The most serious
limitations on the experiment are the resolving time and the time
base stability., In this experiment, the performance of the system
with respect to these two considerations is limited by the tape
recorder., The effective resolving time of the tape recorder is
approximately 15u secs and its time base stability (wow and flutter)
is such that 0.2% inaccuracies may be expected.

1. Resolving Time

The effects upon the mean number of counts per interval and
the variance of the number of counts per interval due to finite re-
solving time are not the same. The differences are discussed below,

a) Mean Number of Counts Per Interval

The number of events registered in an interval of time must
be less than or equal to the true number of events occurring in that
interval of time, This is due to the finite resolving time of any
physical system. Two extreme cases may be considered with the ex=
pectation that real life is represented by some intermediate case,
The two cases considered are that of the paralyzable counter and
the nonparalyzable counter., For a comparison of these two conditions
see Figure 5.2,

The notation used is:

p =~ dead time following occurrence of an event

= mean observed count rate

=
¥

mean true count rate
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Figure 5,2 Relatlonship of True Events to Registrated Events
in Parslyzable and Non~paralyzable Counters.
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1) Paralyzable Counter - The paralyzable situation is

defined by a system which is unable to provide a second output pulse
unless there is a time interval of at least p between two successive

true events, For this case the expected mean observed count rate is

7= Ne (5.2)

2) Nonparalyzable Counter - The nonparalyzable situation

is defined by a system which is unaffected by events occurring during
the recovery time, p. For this case, the expescted mean observed count

rate is given approximately by

7S N (5.3)
/*’f%@

for large N and small p. A curve showing these effects is shown in

Figure 5. 3.

b) Variance of Number of Counts Per Interval

The following notation is employed in addition to that used

Y= = variance of measured number of counts in interval

variance of true number of counts in intewrval

il

T = length of interval

EI
i

mean number of true events In interval of length T
nT = mean nimber of measured events in interval of length T

1) Paralyzable Counter - Making the assumption that N is

large, the distribution is normal, and p is small, the measured vari-

ance 1s given approximately by
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2 2 -2A,0
V=ae (5.%)

2) Nomparalyzable Counter - Making the same assumptions as

in the paralyzable case, the measured variance is given approximately by
2
2
yf ~ T ) (5.5)
1+No)
A curve showing these effects is shown in Figure 5, 4,

¢) Variance to Mean

Using the above results, the measured ratio of variance to mean
for the two cases is:

1) Paralyzable

2 =
¥ _ e (5.6)
BT NT

2) Nonparalyzable

2
¢[ o= GJZ / (5»7)
27 NT (/+/V;b)z

A curve showing these effects is shown in Figure 5.5,

Using these results, 1t is found that the counting losses to
+he variance to mean ratio limit the counting rate to about 2000 counts
per second for a 5% loss in variance to mean. (Paralyzable predicts 3%
loss, nonparalyzable predicts 5.5% loss.) In accordance with these
results, the average count rate was kept below 2500 CPS whenever

possible,
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2. Time Base Stability

The stability of the time base used in these measurements was
determined by the stability of the tape transport system since it was
by faxr the most umstable factor in the overall time base. The crystal
oscillator in the scaler was much more stable, Figure 5.6 shows a
sample measurement of the wow and flutter characteristics of the tape
recorder., These effects can be analyzed as follows:

If n; are the number of observed events in a time interval T,
then if the time interval varies by an amount €T arowmd T, the experi-
mental variance to mean ratio can be written

T (meen) - (L 2T en]
~ yes ! *E /'=; /=1 '

f\;?:n = £0e-/) (5.8)

/ r / r
expt. 75}://’/ z 6/‘52'/7;
i=/ &

where p is the number of intervals measured.
The theoretical variance to mean ratio (taking into account the

vesolving time but not the time base instability) is

P A ‘ /&f?, =
, Jad /’=//Z B Z/E/ '
Var - Llp-1)

/Mear P (5.9)
theory 2 z:,;c?
/.‘;

vaxy

Thus expanding (F=mgm and collecting terms

>expt,
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2

\Var -/

Meat; EY=
9/

lv%r |
€ \Mea

Var_| + € [var | + €
Mean| ~~ /+€ \Mea/?L /+
th bébcy

eory

ﬂbﬁeoﬁy

(5.10)

/+2€ +€F
J+E

Var )
'A%ea”'%beoky

sigh=+

[-2E+E° )
/=€ theory | sign ==

The rms wow and flutter of the tape recorder was measured to be

Var
Mean

about 0.2%. The corresponding error from the above is

4

-¢
/+.004 + &x /0 - __
e >~ /002 => +02ZF

< . (5.11)

/=. 004 +¥xj0°C . ’ 3
995 < 998 => 0.22‘

2,
Thus, the expected variation in (%Eéﬁ)expt due to time base

inaccuracies is approximately 0.2%. Note that second order terms begin

to enter the pictiure when € becomes large.

C. Experimental Procedure

To insure that the reactor was operating in a suitable manner
for data taking, the following experimental procedure was adopted.
The objects of the procedure are to establish the reactivity during
the experiment, obtain an optimum count rate, and make preliminary
investigations into the character of the data.

The first step in the procedure is to eliminate the gamma

ray background as much as possible, Since the Ford Nuclear Reactor
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has been operated at high power for several years, this background

can be very large, The major contribution to eliminating the gamma
ray background was the unloading of the fuel elements which had been
operated at high power and the reloading of the core with fuel elements
which had never operated at above approximately ten watts. Further
reduction in gamma ray background was achieved by moving the reactor
core to the thermal column position where the activity from the
structure is much lower since the reactor is seldom operated there

and the maximum operating power at the thermal column position had
been 100KW.

Not only was the maximum amount of gamme ray background
removed, but, in the case of the BF3 tube, the detector was also
shielded with l/h inch of lead. The optimum operating voltages were
determined as outlined in (5-A).

When the above conditions were met, the control rod was
calibrated by the period method. The control rod calibration curves
are shown in Figures 5.7 and 5.8. Appendix B contains the data for
the control rod calibration in the BF3 tube experiment. During con-
trol rod calibration, care was taken to assure that the reactor power
did not rise to extreme levels.

Having the control rod calibrated, criticality was established
by establishing a steady state with no (external) source present and
at a fairly high level (~ 10 watts). This steady state was achieved
by manipulating shim rods with the control rod at the upper limit.
This enabled the control rod to determine the degree of subcritical-

ity at which the measurements were to be taken.
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Having established criticality, the control rod was driven
into the core an amount determined by the initial experimental re-
activity which was selected at 50% insertion, The power level of
the reactor was allowed to decrease until the detecting instrument
was recording at approximately its optimum count rate. At this time,
the newbron source was moved closer to the reactor until the count-
rate leveled off, (Due to the fact that the source was hung into the
pool from a crane, this operation had to be adjusted several times
until the proper steady state was reached. ) The count rate was
monitered for more than thirty minutes in every instance to be certain
that a steady state was achieved before any data was taken. At this
point, the reactivity was determined, the optimum count rate was
achieved, and a subcritical steady state was obtained.

As a final check on the operating condition, a series of fifty
gates of 1/2 second duration were counted directly from the scaler,
The ratio of variance to mean for this sample was determined using a
desk calculator., If this ratio was significantly greater than one,
the tape recorder was prepared for recording and a tape recording of
reactor noise was then made,

The mechanical drive on the tape recorder tape transport
system was warmed up prior to taking data so that the expansion of
the friction drive from heating would not shift the time base at
playback. The recording heads and drive were cleaned prior to re-
cording,

During recording, the output of the pulse shaper driven by

the nonoverlpading amplifier was supplying signal to the tape recorder.
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The output of the tape recorder was connected to the gate scaler
and the gate was set at ten seconds. The number of counts over each
of these ten second intervals was recorded by hand for later analysis
to be sure that steady state had been achieved and that the distribu-
tion of these counts was as expected. Care was taken to be sure that
spurious electrical transients were kept to a minimum during the
experiment by avoiding use of light switches and not recording during
the time when the IBM clocks reset. (The clock setting impulse in the
building was suspected of introducing an impulse. )

After the recording was made, the control rod was moved to a
new position and the procedure repeated.

The playback of the recorded pulses and subsequent data handling

are discussed in Chapter VI.



VI. DATA ANALYSIS

The analysis of the data obtained in the experiment had to be
made ag efficient as possible since there was a large bulk of data to
process. The transcription of data from the tape recording to IBM cards
was accomplished in a semi-automatic fashion by modifying an IBM 024
card punch as described in Chapter IV. In this section, the procedure

for obtaining the data on IBM cards is discussed under Data Handling and

the processing of these cards is discussed under Estimation, theory and

practice.

A. Data Handling

The tape recorder functions as a simulated Ford Nuclear Reactor.
The tape record is considered to be a representative sample of reactor
steady state. The transcription of data from the tape to IBM cards is
accomplished by playing the tape recorder to the gate-scaler with the
gate set at various gate times. When the gate scaler displays its count,
this count is punched on an IBM card as described in Chapter IV. This
process is continued until either a group of 600 gates for that gate time
are punched or the tape has been run through four times whichever comes

(13)

first. Harris has shown that this number of measurements leads to
satisfactory estimates of variance to mean ratio. For short gate times,
the group of 600 gates was punched and for long gate times the tape was
run four times and the number of gates punched was less than 600. The
reasons for the above criterion were that Harris(ls) showed that samples

of this size led to an unbiased estimate of variance/mean and it was

observed experimentally that larger samples did not significantly reduce

w66



-67=

the spread in the data. Increasing the number of gates per data point
would not have a large effect on the quality of the data, but would
greatly increase the time required to transcribe data.

For the longest gate times, approximately 75 nonoverlapping
gates per traverse of the tape could be measured. This number of gates
leads to an unbiased estimate of the variance to mean ratio. By re-
running the tape some new information is obtained for counts recorded
in the gaps where counts were not previously recorded. In this way, a
second traverse of the tape adds to the accuracy of the measurement.

As the tape is traversed again somewhat more new information is added;
however, the returns become less and less significant as the tape is
re-run more times for the same gate time. The above criterion balances
the small gains from further tape runs against the time required to make
these runs.

When a quantity of data was punched, representing a spectrum
of gate times and a total number of gates of about 40,000, the cards
were edited for double punches and omitted punches on the IBM-101 card
sorter. It was found that the average number of cards having such a
defect was approximately one per 500 whiclh represents an average number
of defects per gate of one per 6,000 since there are twelve pieces of
data per card.

After editing, the cards were arranged according to the input
format of the calculational program, and the mean, variance, and variance
to mean ratio was computed for each gate. These computations are listed

in Appendix A.
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B. Estimation

1. Estimation of Parameters - Theory

Since the parameters which enter the mathematical model for
nuclear reactor stochastic processes enter in a nonlinear fashion,
the estimation of these parameters must be accomplished by methods
different from standard multiple linear regression. No direct tech-
nique exists for handling nonlinear estimation; thus, it is necessary
to modify linear regression to deal with the problem. In this section,
the method of nonlinear estimation will be developed by a geometrical
argument which will then be translated to the analytical development.
Having made an estimate of the parameters, it 1s necessary to assess
the validity of these estimates. These procedures are also discussed
in this section.

a) Geometrical Development

For identically distributed, independent, Gaussian random
variables the '"least squares" criterion provides maximum liklihood
estimates of parameters. This is the criterion used in the nonlinear
estimation procedure to be discussed. Geometrically, the least squares
criterion estimates the point on a sub-space generated by the function
of interest which is closest to the point in observation space deter-
mined by an experiment. This geometrical development is based on work
by Box(6>.

To illustrate this, consider an experiment for which there are
three observations of the dependent variable corresponding to three
observations of the single independent variable. This makes the observa-

tion space a three space. Consider the function of interest to be one
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which has two parameters so that the function sub-space 1s a sub-surface

in this three-dimensional space. (See Figure 6.1)

Observation
Point .

e Function
(Yl:YQJY3) Subspace

Figure 6.1. Observation Space

The following notation is used:

Function

(Z)zf(x,@/,)gg) (6.1)

Observed values of independent variable

~ o~~~
X=X X0 (6.2)

Observed values of dependent variable

&J=:54)Eéggg' (6.3)
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Parameters
= (6.4)
0 9/)02

Maximum liklihood estimate of parameters

A A AN

929/192 (6.5)

Sum of squares

. 2
=) l4-%) g

=/

In order to generate the function subsurface, the parameters

©1 and ©p are varied over their possible ranges in parameter space

(see Figure 6.2).

(Y

Range of Definition
of Parameters

— -

&
éf/lParameter Space

Point @l

Figure 6.2. Parameter Space

Note that a particular point 91' in parameter space maps into

a particular point ¢l in the function sub-surface of observation space.
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For identically normally distributed random varigbles, the least-
squares criterion minimizes the distance between the observation point y
and the function sub-surface ¢. Thus, a point ‘8 is determined cor-

A
responding to © which are the maximum liklihood estimates of the para-

meters.

Minimum Distance
to Surface

Figure 6.3. Observation Space

A
The algorithm used to find the points Eg and © 1is as follows:

1. Select initial parameters ©° which determines an initial
point ¢o in the function subsurface (see Figure 6.5).
2., Construct a tangent plane to the function subsurface at the

point ¢O. (This corresponds to a linearization of the function about

the point @°) (see Figure 6.4).
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Figure 6.4. Observation Space Figure 6.5. Parameter Space

3. Perform a multiple linear regression in the tangent plane ¢OT
AAT
to find the point ¢dT in the tangent plane which is a minimum distance
A
from y. This determines new values of parameters @OT in parameter
space (see Figure 6.4).
A 1,
L. Using values of ©° =6+, find the corresponding ¢~ in
the subsurface. Now repeat setps 2, 3 and 4 replacing all superscripts
(i) by (i + 1). Continue this until a convergent © is determined.

5. Plotting the sum of squares si against ol we see that a

minimum S is being approached. (see Figure 6.6)
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Figure 6.6. Sum of Squares Vvs. O

Since the function subsurface may be in general nonlinear, the
only claim that may be made for the parameters ﬁ; which are computed
by the above procedure is that they satisfy a local minimum for the length
of the line ?’:_¢. Certain qﬁestions concerning the confidence one may
have in the parameters ?; determined by the above method must be answered.
These are:

1. For a certain degree of confidence, over what range may the
parameter estimates vary?

2. What is the relative confidence that can be placed in the
determination of several parameters?

3. Is the local minimum sum of squares found by this method
the true absolute minimum?

4. How successfully may one use linear methods for answering
questions 1, 2 and 37

The questions raised are answerable by applying methods of statis-

tical analysis discussed below.
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1. A confidence region can be determined which defines a contour
surrounding the least squares estimates of the parameters. The formula-
tion is based on an approximation to the function ¢ denoted ¢T which
is linear in the parameters. If the approximation were correct and the
errors were independently and identically normally distributed, the con-
fidence region would include the true values of the parameters with a
confidence coefficient of (l - o) where o is the significance level of
the Fisher F-distribution at the appropriate degrees of freedom.

The sum of squares on the confidence contour is generated from

- P
S=S., HIT/'_P,?_D,N—P(O()) (5.7)
where S = contour sum of squares

S,= minimum sum of squares

P = number of parameters

N = number of observations

F = Fisher's F-distribution value

o = significance level

The geometrical significance of this confidence contour is as
follows:
N
Consider the observation space. The value of ¢ determined
by least squares lies in the function subsurface. Construct a tangent
plane to this subsurface ¢T. Now, any @T in the tangent plane will
be a greater distance from y than aT. Applying the F-test, the con-

tours at fixed distances from y in the ¢T plane are swept out. Call

these contours F-. (see Figure 6.7)



Figure 6.7. Observation Space

This contour also sweeps out a contour in the linearized
parameter space GT which will be an ellipse. In general, however,
the projection of FU on the function subsurface ¢, called F, will
not be an ellipse, but will be some non-ellipsoidal contour. Likewise,

T i1l ve an ellipse,

the contour in the linearized parameter space ©
while the contour in parameter space will be non-ellipsoidal (see

Figures 6.8 and 6.9).
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Figure 6.8. Parameter Space Figure 6.9. Linearized Para-
meter Space

The contours found in the ¢T tangent plane are used to es-
tablish the region over which the parameters may be varied for a
specified confidence in their estimation.

2. The relative confidence which one can place in the estima-
tion of parameters can be judged by the elongation of the ellipse in
normalized, linearized parameter space. That is, all of the para-
meters are given the same dimension by a normalizing factor so that
if the two parameters ©7 and ©, are equally well determined, the
confidence contour in linearized parameter space will be a circle. If
one parameter or one linear combination of parameters is better deter-
mined than another, the contour in parameter space will become ellip-
tical with the poorest determined parameter or linear combination of

parameters having the largest projection of the ellipse and the most
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well determined parameter or linear combination of parameters having
the smallest projection of the ellipse.

3. Determining whether the distancewfggf from y to 8 is
the true absolute minimum distance from y to the ¢ subsurface is
in principle only possible by calculating the sum of squares corre-
sponding to each point on the surface. This task is a near impossi-
bility in most cases, thus alternative methods are employed.

One method of gaining information about other possible minima
is to re-do the problem several times, each time starting from a dif-
ferent initial guess of parameters and seeing if we always return to
the same minimum; or, if another local minimum is found, the values
of the sums of squares are compared to ascertain which is better.

Another method of attacking this problem is to. generate larger
and larger contours in the tangent ¢T plane about the point ’aT and
calculate the sum of squares along the projections, F, of these con-
tours on the ¢ subsurface, looking for a sum of squares smaller than
5.

If by several applications of the above tests there is a con-
sistent preference for one minimum, one may infer with some degree of
certainty that that is the true minimum.

4, Information may be gained concerning the applicability of
linear methods to question 1, 2 and 3 by comparing the contour in para-
meter space to the elliptical contour in linearized parameter space.

If the two contours are fairly similar, one may infer that the function
is approximately linear in the parameters in the region of '8 and thus

these linear methods are (to some approximation) applicable. If the
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two contours are highly dissimilar, one is suspect of the linear methods
for dealing with questions 1, 2 and 3.

b) Analytical Development

The following will be a fairly terse analytical development of
the same problem dealt with in the geometrical development with the
exception that now generalizations to k independent variables, n
observations and p parameters will be made. In this section, little
descriptive material will be included with the thought that the preceding
geometrical development sufficiently illuminates the concepts.

Mathematical Model

¢:f(x,a"-xk;9/,...ép) (6.8)

Experimental Data

Observed values of dependent variable

I

Y= | : (6.9)
yn

Corresponding values of independent variables

Xip* e Xk
X=1 3 (6.10)
X[”'..XNK
Computed Values
f £+ X 30 5+++ )
§Z5=: =1z (6.11)

fn %(Xm,--v hKBQ/Q"‘ OP)
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Algorithm

Linearization by first- order Taylor's expansion

.. o[df,
TN +(@,—9,9)(a—1—
fl= :7_ : . . (6.12)
?7/ ﬁ; (0 0 “3 n)+o_. (9 Hé n
Definitions
o (0,"
A= a) (6.13)
Or
o [ 1
f=( f,f’) (6.14)
il
30 sep)
D:
"\ 1o, ‘(Q'Fn) (6.13)
5] 15,
Z; o o
f=r"=0,(0-0) (6.16)
OR
fT—fo=Q,Bo (6.17)
Multiple Regression
w1 to (y-#)
D:0.8" =0, y-£
[l:[l%go’z[l:&/o
(6.18)

B°=(0/o) o w*
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Iteration Formula

. o
0""'=0'+ Ioo;) i’ (6.19)

2. Estimation of Parameters - Practice

The application of the theory of nonlinear estimation to the
problem of estimating the 2n+2 parameters appearing in the point reactor
stochastic process model is accomplished with the use of the IBM 704
computer (where n is the number of delayed groups). The program used
to perform the indicated operations is a modification of a program
written for nonlinear estimation by the mathematics and applications
department of International Business Machines Corporation (2, 3, 4, 5).

The function required to be fit to the data is

ne/ ;T
Blrl=y Ki|1- L8 =
=1

o T

Here, the parameters 4 enter nonlinearly and the range of
T is over four decades in time (0.00l sec - 10 sec). The magnitude
of the @; varies by a factor of lOA.

To aid convergence it is best to make the original parameter
estimates as close as possible to the "true values'" of the least-squares

parameters. To do this, parametric curves function

~XT

¢’ [r) = /- .i(_)‘_(_i__ (6.21)
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were generated on the '704.' These are plotted on h-cycle semi-log
paper for small +t and large « 1in Figure (6.10) and on linear paper
for large v and small o in Figure (6.11).

Comparing these curves to the experimental points, the approxi-
mate values of the parameters @4 may be estimated along with the
approximate values of the Kis. This estimation procedure is accom-
plished with the theoretical values of (@5 and K; corresponding to
the experimental conditions. That is, for particular Ak,‘l, €, A
and By, particular values of K; and Qi are determined. Since
A;'s and B;'s are well known, it is certainly most desirable to
have the initial estimates of parameters in the range given by theo-
retical considerations. Using these considerations, a best "eye-fit"
to .the data can be made for the original parameter estimates.

The algorithm discussed in section VI-B will successfully con-
verge upon the "least squares' parameters as long as the D'D matrix
(Equation 5.18) is well conditioned. The conditioning of the matrix
is a measure of how near the matrix is to being a singular matrix. If
there are approximate linear dependencies existing, the matrix will be
nearly singular and the digital computer will have difficulty in matrix
inversion. This difficulty was encountered several times, and the re-
gression sum of squares diverged instead of converged for cases where
poor conditioning was indicated. To test the conditioning of the moment
matrix, D'D, the eigenvalues of the moment matrix were calculated prior
to entering the iteration stages of the program. A large ratio of the
largest to the smallest eigenvalue was indicative of poor conditioning.

The conditioning can be changed by adjusting the parameter estimates,
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adjusting the size of increments used in finding partial derivatives,

and reformulating the functional expression.

Interpolation

A modification of the estimation procedure is termed inter-
polation. If it is found that iteration is successful in reducing
the sum of squares so that the slope is greater than €, we suspect
that it will be profitable to continue investigating the function in
this direction so we activate "interpolation.'" The algorithm for in-
terpolation is as follows:

1) Let Sy, and ©; be the vector values of the parameters
before and after iteration respectively. Call the corresponding sums

of squares S and S;. Divide the distance between 0O, and 67 by

o
two and call this point g% with a sum of squares S%.
2) S% is compared to §;. a) If S% is less than or equal to Sy,
the interval @% - 8, 1is divided by two and S% calculated for ©..
- — %

b) If S% is greater than Sl’ 6o is calculated along with Sp.

3) Either procedure a) or b) is followed until the sum of
squares increases, in which case a Lagrangian fit to the last three
points is made or until it is determined (by the program) that the gain
by interpolation is too small, in which case the last 6 1s kept along
with the last S.

The non-linear estimation program follows the general outline
given for the theory of nonlinear estimation. The results obtained are
listed for each experimental run in the "Results'" section showing the
parameters estimated, the minimum sum of squares obtained, the confidence
regions, the relative confidence in parameters, and the degree of non-

linearity in which the parameters enter.



VII. RESULTS

A. Experimental Results

The experimental points obtained for the three runs with the
BF3 tube (designated BF3-1, BF3—2, BF3-3) are shown in Figures (7.1),
(7.2) and (7.3). The data from which these points are plotted is
tabulated in Appendix A. TFigure (7.4) shows the experimental points
for the fission chamber run. The data for this run is also tabulated
in Appendix A.

The fitted curves which are the least squares fit to the data
are shown along with the contribution to these curves from each term of
an equivalent two-delay group mathematical model. Note that the con-
tributions of each term are not shown for the fission chamber experiment
since theory and experiment were in considerable disagreement on this
experiment.

The data and curve for the fission chamber experiment are in-
cluded here for illustrative purposes. The effect of having a less-
sensitive detector is shown clearly by comparing the value of the
ordinates for the fission chamber experiment to those for the BF3 tube
experiments. The maximum value of V/M for the fission chamber experi-
ment was not enough different from one to adequately show the effect of
correlation. That is, in this experiment, the accidental terms con-
tributed a significantly large amount to the result and thus the esti-
mation of reactor parameters, which are a function of the correlated
terms, was insufficiently accurate.

Obviously, a detector which is only slightly less efficient

than the fission chamber used would show no correlation at all. Thus,
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the comparison of the results of the fission chamber experiment with
the BF3 tube experiments illustrates the need for a high efficiency

detector. The problems associated with using a high efficiency de-

tector are discussed in Chapter V.

The three BF3-’tube runs shown were all accomplished with the
reactor operating in the same operating configuration with the exception
that the reactivity was changed from run to run. Run # BF3—l had the
greatest multiplication, BF3—2 had a somewhat lower multiplication and
BF3-3 had a still lower multiplication.

Figure (7.5) shows a comparison between the fitted curves for
these three experiments which illustrates clearly the effect of multi-
plication on the magnitude of the correlated terms. As the multiplica-
tion increases the correlation increases. This 1s in accordance with
the mathematical model.

Note also that as multiplication is increased the curve be-
comes less flat in the region between where the statistic V/M is being
controlled by prompt neutrons and the region where it is being controlled
by prompt and delayed neutrons. That is, as multiplication is increased,
the prompt and delayed neutron contributions become less distinguishable.
This is also in accord with the mathematical model which predicts this

behavior.

B. Mathematical Model (general)

The mathematical model developed in Chapter III is rewritten

here for convenience (Equation 7.1).

n+/ _o(/. T

alr)= HZK [ O(T ] (7.1)
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In attempting to estimate the parameters in this model which
are best least square estimates it is necessary to employ the techniques
of nonlinear estimation which are outlined in Chapter VI. One of the
important points which must be decided is what value of n to use.

It was at first decided to use n = 6 which is the number
of physical delay groups measured by Keepin and Wimett(lh) for example.
However, when n = 6 was used in the mathematical model it was found
that either the computation would not converge, or, if it did converge,
that the values of the parameters Kj; and.(xa_obtained bore no re-
semblence to the theoretical parameters. It was found that one of the
primary reasons for divergence was that the moment matrix, D'D, used in
the regression analysis was poorly conditioned and the algorithm no
longer was valid. ZErroneous results were produced even when the anal-
ysis converged because the data was insufficient to correctly predict
fourteen parameters.

Several other values of n were tried. It was found that
n =3, 4 or 5 gave the same result as n = 6 and were therefore un-
satisfactory.

On the other hand, it was found that n =1 converged but
that the parameter estimates for the one equivalent delay group were
not at all in correspondence with the parameters used in the usual one
delay group model. This result is obtained because the one delay group
model is not a good approximation to the many group model. Firstly,
the one delay group model is not capable of preserving some of the

characteristic sums of the six group model. That is, for the usual
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one group model

6
£ AB%) M

6
_ / %3 /
% _Z % 22 #Z%f | (7.2)

where B 1is the equivalent one group fraction and ;k is the equivalent

one group decay constant, p; 1is the fraction of the iEE precursor

and Ay 1s the decay constant of the 1th percursor. Thus, we see that
the mathematics of the one group model are somewhat inadequate.

Also, the one-group model is especially poor in describing
reactor behavior in the high frequency (short time) region which is the
region in which the measurements were made. We see then, that the one
delay group model is incapable of predicting the experimental results,
so we are left with only the two group model (n = 2).

All comparisons between theory and experiment which will be

given here will use the two group model. For this reason a discussion

of this model follows.

C. Mathematical Model (2-group)

The two group model discussed here is based on the work of

(21) (22)

Skinner and Hetrick and Skinner and Cohen These authors

showed that reduced group constants Ai and Ai which satisfy the
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asymptotic behavior of the transfer function must satisfy the relation-

ships
n 6 n 6
/=1 /=1 r= /=(
i 6 n, n
Z A/' ____T = }_{ _’_4_1'2 =Z <:7/
oy Ay ,é7 A 7= T v (7-3)

where Ai and Ai are the relative abundance and decay constant for
the itB  reduced group; =31 and )~i are the relative abundance and
decay constant for the izh physical delay group.

Obviously Equations(7.3) can be uniquely satisfied by equiva-
lent two group constants since we have four equations and four group

constants. If



=95 =

then the two group constants are given by

(7.5)

where

For the physical constants of Keepin and Wimett<lu), table
(7.1), the group constants shown in Table (7.2) were calculated. These
group constants lead to values of K; and Q4 in the mathematical
model, Equation (7.1),which may be compared with the K;'s and Q4's

obtained from the least squares fit to the experimental points.

D. Presentation of Results

Tables (7.3), (7.4) and (7.5) show the comparisons between
the experimental results and the theoretical model. Confidence contours
as described in Chapter VI are shown for the projections onto the Kj-04
and Kp-op planes in Figures (7.6), (7.7) and (7.8) for the three BFy
tube experiments whose experimental points and fitted curves are shown
in Figures (7.1), (7.2) and (7.3) respectively.

In Tables (7.3), (7.4) and (7.5) the theoretical parameters

are shown for two different types of computation. In the first line
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TABLE 7.1

PHYSICAL GROUP CONSTANTS (KEEPIN & WIMMETT)

i (sec-l) Bi a;
1.27x10-2 2. 47x10-4 .038
3.17x10-2 1.385x10-3 .213
1.15x10-1 1.222x10-3 .188
3.11x10-1 2.646x10-3 407
1.40 8.32x10-k4 .128
3.87 1.69x10-4 .026

TABLE 7.2

REDUCED GROUP CONSTANTS

[

Aifsec_l) é;

0.507 0.663
0.0209 0.337



experiment number
reactivity

detector

curve of data and fit

minimum sum of squares

~100~

TABLE 7.3

standard deviation of residuals

theoretical delay group constants

mathematical model

&
theoretical
parameters 19.92
£ = 91.6 u sec
theoretical
parameters 19.92
4 =80.2 u sec
experimental
parameters 19.92
experimental
parameter 18.3
ranges, 99% 21.5
confidence
experimental
parameter 17.45

ranges, 99.9% 22.4
confidence

% Aiff. expt.
and theory 0%
4 =91.6 u sec

% Aiff. expt.
and theory 0%
£ =80.2 u sec

PARAMETERS
4 fe
83.42 96.5
96.3 99
83.91 73.87
60 62
110 86
46 55.5
122 92.5
0% 23.4%
13.4% 25.3%

BF

-.172 dollars

BF

-1

Figure 7.1

376

2.03

Table 7.2

Equation (7.1); n=2

.2ho

.240

172

.138

.20k

.120
.223

28.4%

28.4%

2430

2400

> Loo

.000126

.000126

<.002
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TABLE 7.k

experiment number

reactivity

detector

curve of data and fit

minimum sum of squares

standard deviation of residuals
theoretical delay group constants

mathematical model

PARAMETERS

s 2 R
theoretical
parameters 17.19 102.76 70.2
£ = T78.6 u sec.
theoretical
parameters 17.19 101.9 70.6
4 =80.2 u sec.
experimental
parameters 17.19 102.5 47.19
experimental
parameter 15.7 72 37
ranges, 99% 18.7 135 57
confidence
experimental
parameter 14.6 52 31.5
ranges, 99.9%  19.5 154 64.5
confidence

% diff. expt.
and theory 0% 0% 32.6%
L = T78.6 u sec

% aiff. expt.
and theory 0% 1% 33.1%
4 =80.2 u sec

BF -2
3

-.2L00 dollars

BF3

Figure 7.2

315
1.88
Table

Equat

7.2
ion(7.2;

.256

.256

173

.130

.215

.100
.240

32.4%

32.4%

1050

1048

> L0oo

.000134

.000134

< .002
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TABLE 7.5
experiment number BF3—3
reactivity -.3400 dollars
detector BF3
curve of data and fit Figure 7.2
minimum sum of squares 231
standard deviation of residuals 1.61
ﬁheoretical delay group constants Table 7.2
mathematical model Equation (7.1); n =2
PARAMETERS
theoretical
parameters 14.17 122.08 5.7 277 Les .000148
£ =TL.5 u sec
theoretical
parameters 14,17 110.1 46.8 277 k09 .000148
£ = 80.2 \ sec
experimental
parameters 14,17 122.4 35.43 267 > koo < .002
experimental
parameter 12.85 88 31 .228 - -
ranges, 99% 15.4 161 Lo .309 - -
confidence
experimental
parameter . 1l2.15 64 28 .203 - -
ranges, 99.9% 16.1 , 182 43 .332 - -
confidence
% Aiff. expt.
and theory 0% 0% 22.5% 3.62% - -
£ = T1.5 u sec
% diff. expt.
and theory 0% 9.8% 24.3% 3.62% - -

4 = 80.2 p sec
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under "parameters" the theoretical parameters were computed by normalizing
the value of K; to the experimental value and choosing a lifetime,,g,
which would make Q1 theoretical agree with o experimental. In the
second line under '"parameters" K, was again normalized as above, but

the value of 7 was computed using the average value of prompt life-
time obtained in the experiments.

The material above the "parameter" tables is self-explanatory;
it gives reference to the pertinent operating data, egperimental data,
and statistical data for that experiment.

Note that only qualitative estimates are shown for parameters
K3 and a3. Note also that no confidence is stated for these estimates.
The reason for this becomes apparent by looking at the contribution of
the third term to the total V/M curve. Since the contribution of these
terms is small, no significant estimates of the parameters could be made.
The only conclusion that could be made was that the contribution of this
term was only at long times, and the contribution was not large. The
parameters governing this third term could be estimated if data was taken

for gate times longer than ten seconds.

E. Theory vs. Experiment

The pertinent points concerning the comparison of the model
with experimental results can be obtained from the tables and figures
mentioned in the previous section.

It is apparent that experiment and theory agree in a qualita-
tive way. However, we see that the model and the experiment may differ
by as much as 30% in some parameters and that the differences appear to

be more severe in experiments BF3-1 and. BF3-2 than in BF_-3.

3
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The reasons for the disagreements observed could be either
that more experimental errors occur as the multiplication of the reactor
is increased or that the model is less accurate as the multiplication is

increased or both. It can be argued that "both" is the correct statement.

1. Experimental Errors

As multiplication increases the j] ratio increases (Fig-
ure 7.5). It is also true that as % increases the variance of % increases
so that to get results with the same certainty at large % as those with
smaller % we need more data. In the experiments shown the amount of data

per experiment is constant so we would expect less experimental accuracy

for large multiplication.

2. Model Inaccuracies

It has already been observed that the effects of prompt
neutrons and delayed neutrons become less distinguishable as criticality
is approached. Indeed, the model predicts % — oo for all gate times, T,
when AXK— O. Obviously, if AK is very close to zero and % is very large
everywhere the estimation of individual parameters would be nearly im-
possible since many possible combinations of parameters would yield the
same result. Thus, we expect that the estimation of parameters becomes
less accurate as criticality is approached.

It is also true that the model is only a point reactor model
and it is suspected that spatial effects become more important as criti-
cality is approached. The reason for this hypothesis is that a larger

portion of the events detected are correlated events as the reactor

“approaches criticality. Correlated events arise from common fissions
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(Chapter III) which are spatially distributed in the core. It is apparent
that the spatial distribution of the ancestors of accidental events is
unimportant since no matter where they originate they are defined to be
uncoupled events and give rise to a % of 1. It is not at all apparent,
however, that the effect of correlated events is independent of the loca-
tion of the common ancestor fissions. In fact, it is most likely that the
spatial distribution of ancestors will make itself felt in the shape of
the M curve for correlated events. $So, since we have more correlation

at higher multiplication we might expect stronger spatial effects and

thus larger inaccuracies in the point reactor model.
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VIII CONCLUSIONS

A, Introduction

Some of the conclusions which may be drawn from the pre-
ceding are in disagreement with conclusions made by other invéstiga-
tors in this area. In this section some of the points of agreement
and disagreement will be discussed and resolved.

Other conclusions arise from the work reported here and have
not been discussed by other authors. These conclusions will be dis-

cussed here along with the possible relevance of this experiment to

future experiments in this field.

B. Comparison of Conclusions with Preceding Authors

Bennett(l), having derived essentially the same mathematical
model that is used here, plotted the model as a function of prompt neﬁtron
lifetime. This plot illustrated the effect of delayed neutrons on the
shape of the curve. Bennett pointed out that one cannot use the measure-
ment of variance to mean ratio to infer the prompt neutron lifetime of
a reactor without taking into account the effect of the delayed neutrons.
This measurement supports the above conclusion. It is not in general
possible to measure the term controlled by prompt neutrons without also
having some contribution from delayed neutrons. Other authors have used
prompt neutron theories to find prompt neutron lifetimes by this method
without taking delayed neutrons into account§8’ll’l6) Obviously their
measurements are in error by an amount controlled by the delayed neutron

contribution. For reactors with very short lifetimes, one may be able to

neglect delayed neutrons with only small errors occurring.



-107-

Velez(zu)‘concludes that "theoretical derivation and experi-
mental measurement of the correlation functions can be two independent
lines of research, but regarding applications, in the author's opinion,
the most urgent need is for experiments to check the formulas already
obtained”.

The research presented here has been directed toward fulfilling
part of this urgent need. With respect to the equations derived by Velez,
the work done here has revealed some important information.

1) In the derivation of the autocorrelation function Velez
introduced the term 'mean time to fission" and defined Nl as the ex-
pected number of neutrons in the system at time 14 from one ancestor
neutron at t. This definition would be satisfactory so long as there is
only one class of neutrons (prompt neutrons for example). However, the
éroper way to define terms in the case where delayed neutrons are impor-
tant is to include a characteristic time in each group by defining l\T:L
to be a frequency function as.was done here.

Velez's formulation leads to.a discrepancy with experiment of

a factor of lOlO

at long gate times using the six delayed group model.

2) Velez illustrates the relative magnitudes of the prompt
and delayed terms using a lumped one-group model. This work shows that
the one lumped delay group model is quite grossly inaccurate in predict-
ing the results.

(16)

Luckow made measurements of the variance to mean ratio for
gate times €1 sec in ZPR IV and ZPR V at Argonne National Laboratory.
Data points which did not follow the prompt neutron model were termed

"wild points" and the following comment was made concerning them. '"These



=108-

points have the disconcerting feature of not appearing in every series.
Any physical explanation is therefore open to question. ...1t is thought
that these wild values reflect the contributions of the delayed neutrons
for long measuring (not gate) times."

The measurement discussed in this document shows clearly that
the '"wild points" observed by Luckow were contributions of delayed neu-
trons. However, the contributions were for long gate times and not measur-
ing times as Luckow suggested. Also, a physical explanation is not very
open to question since Luckow's data shows that more "wild points'" were
seen for experiments performed closer to critical. Using parameters
characteristic of ZPR IV and ZPR V it can be shown that the model used
here predicts that the delayed neutron effect should be less significant
as multiplication is reduced. Thus, the model which includes delayed

neutrons is in agreement with Luckow's experiment.

C. Independent Conclusions

This work has corroborated a point reactor mathematical model
describing the experimentally observable stochastic processes in nuclear
reactors in measurements in which delayed neutrons are important. In
Chapter VII comparisons between the model and the experimental results
are made which lead to the conclusion that the two-delayed group model
is more accurate for more sub-critical situations.

It has been demonstrated that the use of a tape recorder to
simulate reactor fluctuations is a desirable alternative to either pro-
longed reactor operation or a more sophisticated measuring system.

It has been shown that the contributions to the measured vari-
ance to mean ratio from all physical delay groups can not be determined

by this type of measurement unless a great deal more data is taken.
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This experiment has demonstrated the feasibility of measuring
nuclear reactor dynamic parameters by stochastic process techniques.

The prompt neutron lifetime of the Ford reactor was found to be 80ilOp sec.

D. Relevance to Future Experiments

In order to significantly extend the amount of information
which the experiment will yield it is necessary to have a considerably
more sophisticated data taking technique. The extension of the data
taking technique to a system with shorter resolving time could be accom-
plished by using a video tape recorder instead of the audio tape recorder
used here. The resolving time of the scaler and other circuitry would
also have to be improved, but the tape recorder is the most critical
since it is the limiting piece of equipment in the present set-up.
Obviously a shorter resolving time leads to higher permissible count
rates and better statistics.

A many channel recording and transcription system would also
lead to improved measurements.

In order to analyze data at times greater than 10 seconds it
would be advisable to eliminate the operation of punching data on IBM
cards and arrange for the tape recorded information to be entered into
a computer directly.

Future experiments may well be directed at many of the problems
raised by this experiment.

One line of investigation would be to refine the measurements
in the delayed neutron region and achieve more accurate comparison be-

tween the model and the experiment.
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Another direction which may be profitable is to investigate
further the effect of reactivity on the comparison between theory and
experiment. Perhaps further information concerning this phenomenon would
yield information which would be valuable in improving the description
of the process.

Spatial effects are open for investigetion both theoretically
and experimentally as are energy dependencies.

Both theoretical and experimental investigation of the assumed

white noise source used in the model could be pursued.
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Number Variance Mean Variance/Mean Gate Length
Of Gates i sec
600 3134.6 1497.7 1.093 .650
600 3147.1 1602.6 0.964 . 700
600 3510.8 1732.9 1.026 .750
600 3910.3 1830.2 1.136 .800
600 Lhe6.5 2052.3 1.176 .900
600 L4684 .0 2282.8 1.052 1.000
600 5598.9 2531.8 1.211 1.100
600 5752.6 2745 .4 1.095 1.200
600 6078.8 2991.9 1.032 1.300
588 6657.0 3223.3 1.065 1.400
600 7508.6 3423.3 1.193 1.500
600 8532.4 3685.9 1.315 1.600
600 9173.6 3877.6 1.366 1.700
600 9350.8 4114.0 1.273 1.800
588 9735.8 4370.9 1.227 1.900
600 10271. 4561.1 1.252 2.000
552 10516. 4832.4 1.176 2.100
600 12287. 5068.7 1.424 2.200
504 13206. 5285.3 1.499 2.300
600 14280. 5525.3 1.584 2.400
540 13488. 5742.8 1.349 2.500
600 15620. 5987.8 1.609 2.600
588 15788. 6210.7 1.5k2 2.700
600 15015. 64h7.3 1.329 2.800
576 16852. 666k4.6 1.529 2.900
600 17102. 68L42.6 1.499 3.000
588 18199. 7129.3 1.553 3.100
600 19672, 7362.2 1.621 3.200
576 21599. 8064 .7 1.678 3.500
552 23196. 8743.9 1.653 3.800
420 27044, 9Lk36.2 1.866 4,100
432 29551. 10359.0 1.853 4,500
420 36993. 12208.0 2.030 5.300
384 40839. 13127.0 2.111 5.700
432 48433, 14278.0 2.392 6.200
408 46535, 15409.0 2.020 6.700
324 54427, 16581.0 2.282 7.200
336 61749, 17715.0 2.486 7.700
300 69394. 19333.0 2.589 8.400
288 77055. 20947.0 2.678 9.100
324 86785. 22995.0 2.774 9.999
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BF3 1
Number Variance Mean Varia.nce/Mean Gate Length
Of Gates -1 sec
588 k.9011 2.5068 0.955 .001
600 12.533 4.8883 1.56k4 .002
600 45.120 10.1k47 3.447 .004
600 86.058 14.825 4.805 .006
600 134.77 19.715 5.836 .008
600 189.67 24,022 6.896 .010
600 301.96 34.132 7.847 .01L
600 480.88 43.310 10.10 .018
600 659.67 53.867 11.25 .022
588 760 .84 66.36k4 10.46 .028
600 1389.1 87.670 14.84 .035
576 1508.6 105.87 13.25 .0L3
600 2169.0 125.06 16.34 .051
588 2353.2 146. 44 15.07 .060
576 3253.3 176.28 17.46 .071
600 4418.0 211.80 19.86 .085
564 4869.8" 239.17 19.36 .100
588 5473.2 295.09 17.55 .120
600 8091.3 366.82 21.06 .150
588 9093 .4 441 .59 19.59 .180
588 10367. 507.79 19.42 .210
600 12206. 577.50 20.1k4 .240
600 15013. 663.22 21.64 .270
600 15568. 727.82 20.39 .300
588 18786. 854.58 20.98 .350
600 22247, 971.07 21.91 .400
588 23901. 1104.2 20.65 450
600 - 28821. 1217.9 22.67 .500
600 32336 1386.6 22.32 .570
600 36428, 1580.5 22.05 .650
600 43152, 1769.7 23.38 .730
600 57275. 2009.5 27.50 .820
600 57696. 2219.0 25.00 .910
588 65869. 2452.9 25.85 1.000
600 75979. 2701.2 27.13 1.100
600 79018. 2948.9 25.80 1.200
600 87347. 3181.0 26.46 1.300
600 103392. 34434 29.02 1.400
588 113116. 3686.2 29.69 1.500
600 129516. 3935.3 31.91 1.600
588 126016. 4165.6 29.25 1.700
600 138212. 4h19.1 30.28 1.800
600 144516. 4648.9 30.09 1.900
588 157357. 4919.4 30.99 2.000
600 162904. 518L4.1 30.42 2.100
600 163083. 5415.2 29.12 2.200
600 173056 5655.9 29.60 2.300
516 188159. 5912.2 30.83 2.400
564 201228. 6131.8 31.82 2.500
600 239031. 6381.5 36.46 2.600
600 308080. 6643. 4 45.37 2.700
600 243236. 6887.1 34.32 2.800
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Number Variance Mean Variance/Mean Gate Length
Of Gates -1 (sec)
600 256914 7116.5 35.10 2.900
564 263306. 7328.8 34.93 3.000
552 255058. T597 . 4 32.57 3.100
540 308993. 7854.2 38.34 3.200
504 288741, 8081.4 34.73 3.300
528 302654, 8372.8 35.15 3.400
516 348975. 859L4.0 39.61 3.500
516 411817. 8909.1 45,22 3.600
468 360856. 9120.0 38.57 3.700
504 392816. 9335.3 41.08 3.800"
528 Lo6665 . 9616.5 41.29 3.900
468 420116. 9883.0 41.51 4 .000
Loz 423017. 10089. 40.93 4,100
Lo2 41498, 10322. 39.21 4,200
468 461338. 10542, Yo, 77 4,300
432 L7h295, 10880. 42,59 4. 4oo
468 448443, 11089. 39.44 4.500
480 477901, 11300. 41.29 4. 600
456 k72160, 11547, 39.89 4,700
Ly 521301. 11767. 43.30 4,800
ivivi 523476. 12038. 42 .48 4. 900
456 542311. 12288, 43.13 5.000
4o8 569815. 12540. Ly Ll 5.100
432 572401. 12760. 43.86 5.200
420 620139. 13042. 46.55 5.300
396 633293. 13265. 46 . 7h 5.400
396 -632115. 13562. 45.61 5.500
396 664113. 13783. 47.18 5.610
384 708852. 14070. 49,38 5.730
372 T42006. 14437, 50.40 5.860
372 743248, 14720. 49 . k9 6.000
372 726245 . 15123, 47.02 6.150
360 8o4T7h6. 15500. 50.91 6.310
348 81220k, 15889. 50.11 6.480
336 T79075. 16363. 46.61 6.660
336 831676. 16815. 48,46 6.850
324 878255. 17322. 49.70 7.050
312 949975, 17908. 52.05 7.300
312 978582, 18682. 51.38 7.600
288 1028044, 19515. 51.68 7.950
288 1105216. 20494, 52.93 8.350
276 1254602, 21606. 57.07 8.800
264 1377585. 22853, 59.38 9,300
228 147419, 24506. 58.06 9.999
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BF3 2
Number Variance Mean Variance/Mean Gate Length
Of Gates -1 (sec)
600 3.3148 1.7900 0.852 .001
600 10.611 3.7167 1.855 .002
600 34,793 7.3083 3.573 .00L4
600 55.046 10.548 4,218 .006
588 89.388 13.995 5.387 .008
600 137.06 18.288 6.494 .010
600 242,75 24,138 9.057 .01k
588 436.58 38.660 10.298 .022
576 633.82 50.384 12.57 .028
396 747.29 61.192 11.21 .035
600 1129.2 75.733 13.91 .043
588 1295.8 91.535 13.16 .051
564 1845.1 109.99 15.77 .060
600 1850.5 128.23 13.43 .071
600 2400.6 150.22 14.98 .085
600 2944 .6 176.70 15.66 .100
600 3806.3 212.31 16.93 .120
600 Lhhs52 .4 269.86 15.50 .150
600 5213.0 315.02 15.55 .180
600 6952.6 374.90 17.55 .210
600 7377.5 417.20 16.68 .240
600 9263.8 4L86.55 18.0k4 .270
600 1030k. 534.98 18.26 .300
600 13573. 620.16 20.89 .350
588 15655. 715.36 20.88 .4oo
600 1700k, 802.08 20.20 450
600 19195. 889.00 20.59 .500
600 20660. 1015.6 19.34 .570
552 25468, 1170.0 20.77 .650
564 23948. 1289.7 17.57 .730
600 31296. 1458.1 20.46 .820
600 39549, 1785.1 21.16 1.000
600 43228, 1961.0 21.0k4 1.100
600 Lheh3kh, 2136.6 20.73 1.200
600 53864. 2300.7 22.41 1.300
600 60738. 2486.2 23.43 1.400
600 59089. 2678.1 21.06 1.500
600 69003 . - 2860.2 23.12 1.600
600 73716. 3027.4 23.35 1.700
600 807k49. 3215.2 24,11 1.800
576 8L4L76. 3398.5 23.86 1.900
576 89383. 3557.1 24,13 2.000
540 93176. 3739.9 23.91 2.100
576 93526. 3910.9 22,91 2.200
540 102877. 4105.0 24.06 2.300
564 109487. 4281 .4 24,57 2.400
600 114406. JIVIOIN T 24.76 2.500
600 112030. 4636.9 23.16 2.600
600 125097. 4814.9 24,98 2.700
576 135841, 4977.3 26.29 2.800
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Number Variance Mean Variance/Mean Gate Length
Of Gates -1 (sec)
564 142163. 5159.3 26.56 2.900
564 149663. 5334.4 27.06 3.000
600 187881. 5545.8 32.88 3.100
600 162620. 5701.3 27.52 3.200
600 166985 5880.9 27.39 3.300
588 165495, 6073.0 26.25 3.400
576 176659. 6228.8 27.36 3.500
564 200534, 6410.9 30.28 3.600
564 216027. 6580.8 31.83 3.700
552 208T740. 6765.8 29.84 3.800
528 242743, 6963.9 33.86 3.900
528 206264 . 7106.8 28.02 4 .000
468 292097 . 7300.5 39.01 4,100
480 234248, 7475.3 30.34 4,200
Lhk 234228, 7637.7 29.67 4 .300
420 228560 . 7841.9 28.15 INpiTele)
408 260018. 8017.4 31.43 L .500
468 254538. 8179.5 30.12 4. 600
432 279849, 8382.9 32.38 4,700
Luk 266729. 8537.3 30.24 4.800
408 290489, 8719.4 32.32 4. 900
420 331803. 8929.3 36.16 5.000
LLh 320039. 9084.5 3L4.23 5.100
420 320904. 9272.0 33.61 5.200
420 303987. 9450.0 31.17 5.300
L4o8 341436. 9633 .4 34 44 5.400
384 356519. 9806.0 35.36 5.500
360 351485. 9976.6 34.23 5.610
360 341815. 10191.0 32.54 5.730
384 349885. 10445.0 32.50 5.860
324 421929, 10678.0 38.51 6.000
348 h1o246. 11253.0 35.46 6.310
348 436353. 11552.0 36.77 6.480
336 452038, 11864.0 37.10 6.660
336 469225, 12200.0 37.46 6.850
324 459810. 12563.0 35.60 7.050
324 Lo76k6. 13003.0 37.27 7.300
300 5290836. 13548.0 38.11 7.600
288 574739. 14175.0 39.55 7.950
264 611611. 14903.0 40.05 8.350
264 668707. 15682.0 41,64 8.800
252 741850. 16583.0 43,73 9.300
228 658282, 17794%.0 35.99 9.999
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BF3-3
Number Variance Mean Variance/Mean Gate Length
Of Gates -1 (sec)
600 Ll 2748 2.1750 0.965 .001
600 10.543 4. o817 1.583 .002
600 29.470 8.5467 2.448 .00k
588 59.195 13.162 3.498 .006
600 95.520 16.978 4,636 .008
600 141.10 21.083 5.693 . .010
600 277.09 30.397 8.116 .01k
600 365.18 38.120 8.578 .018
600 506.71 46,545 9.886 .022
600 718.80 61.168 10.75 .028
600 897.33 73.052 11.28 .035
600 1233.2 90.205 12.67 .0L3
600 1224 .4 105.89 10.56 .051
588 1852.5 127.76 13.50 .060
600 2216.6 147.68 14,01 071
600 2458 .9 175.81 12.99 .085
600 2879.9 211.21 21.64 .100
600 3416.8 254 .22 12.44 .120
600 LL486.9 319.33 13.05 .150
600 5707.2 374.30 1k.25 .180
600 7224 .4 4Lk .05 15.27 .210
600 7557.7 506.87 13.91 .240
576 8554.0 565.98 14,11 .270
576 9603.9 633.73 14.15 .300
588 12416. 733.43 15.93 .350
600 16240. 845.53 18.21 .400
600 16126, 949.06 15.99 .450
600 18782. 1052.1 16.85 .500
600 21144, 1206.6 16.52 .570
600 25991. 1359.8 18.11 .650
564 27626. 1536.9 16.98 .730
588 32119. 1723.9 17.63 .820
600 39106. 2104.6 17.58 1.000
600 45314, 2313.3 18.59 1.100
600 47028, 2521.2 17.65 1.200
600 57538. 2741.5 19.99 1.300
588 63610. 2940.1 20.64 1.400
600 69048 . 3163.7 20.83 1.500
600 80198. 3565.6 21.49 1.700
600 87746. 3788.7 22.16 1.800
600 9L826. 3999.1 22.71 1.900
588 99989, 4205.8 22.77 2.000
600 101119. 4h17.3 21.89 2.100
564 99918, 4620 . 4 20.63 2.200
564 120631. 4848.5 23.88 2.300
600 125558. 504k4.3 23.89 2.400
600 133882. 5270.8 24 . 4o 2.500
600 146853. 5470.0 25.85 2.600
600 140980. 5698.8 23.7h 2.700
600 143798. 5888.8 23.42 2.800
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Number Variance Mean Variance/Mean Gate Length
Of Gates -1 gseci
600 169132. 6081.5 26.81 2.900
564 162910. 6326.5 24,75 3.000
600 161667. 6526. 4 23.77 3.100
600 17370k, 6727.0 24,82 3.200
564 180121. 6958.2 24.89 3.300
552 187628. 7154 .7 25.22 3.400
516 197352. 7363.6 25.80 3.500
540 192995. 7583.1 24 45 3.600
528 224183, 7773.6 27.84 3.700
468 210592. 8015.8 25.27 3.800
456 236398. 8212.2 27.79 3.900
480 237680. 8618.1 26.58 4.100
Ly 248552, 8848 .0 27.09 4.200
456 272048, 9072.6 28.99 4. 300
468 269963. 9281.9 28.08 4. 400
480 288333. 9k75.7 29.43 4. 500
456 353850. 9729.8 35.37 4. 600
432 332909. 9933.0 32.52 4. 700
420 382351. 10151.0 36.67 4 .800
456 303159. 10314.0 28.39 4. 900
432 305533. 10532.0 28.01 5.000
432 358595. 10757.0 32.34 5.100
408 334156. 10948.0 29.52 5.200
420 350528. 11153.0 30.43 5.300
420 327887. 11349.0 27.89 5.400
396 372725. 11580.0 31.19 5.500
38L4 354685. 11803.0 29.05 5.610
396 359175. 12060.0 28,78 5.730
372 Lo2668. 12332.0 31.65 5.860
384 433353, 12624.0 33.33 6.000
372 Lh0865. 12940.0 33.07 6.150
360 43654k , 13289.0 31.85 6.310
360 Lhoshy . 13631.0 31.98 6.480
312 505731. 14000.0 35.12 6.660
324 461988, 14412.0 31.05 6.850
324 Lol7h8, 14836.0 32.35 7.050
324 589045. 15380.0 37.30 7.300
312 542013, 15950.0 33.04 7.600
300 609144, 16758.0 35.35 7.950
288 641285, 17575.0 35.49 8.350
276 727448 . 18513.0 38.29 8.800
264 703853, 19592.0 34,93 9.300
252 795052. 21055.0 36.76 9.999
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