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A FORWARD DYNAMIC PROGRAMMING APPROACH FOR GENERAL
UNCAPACITATED MULTI-STAGE LOT-SIZING PROBLEMS

Abstract

We propose and test a forward dynamic programming procedure for lot-sizing in general
multi-stage production and distribution systems without capacity constraints. The procedure
permits time-varying demands and costs as well as demand for component parts. A simple
yet extremely efficient pruning procedure which relies upon a novel state definition 1s devel-
oped. Under relatively mild conditions, it is shown that the pruning technique limats the size
of the state space (in the worst case) to a linear function of the number of periods in the
study horizon. We also discuss how the procedure can be used to detect forecast horizons.

Computational results are reported.



A FORWARD DYNAMIC PROGRAMMING APPROACH FOR GENERAL
UNCAPACITATED MULTI-STAGE LOT-SIZING PROBLEMS

Introduction

Lot-sizing problems in multi-stage production and distribution systems have received
considerable attention (see Billington, et al. [1983] for a recent review). Most of the effort
has focused on uncapacitated arborescent systems (i.e., pure assembly or pure distribution
systems), but recent work (e.g., Maxwell and Muckstadt, [1985]) is beginning to deal with

more general systems with capacity constraints.

In this paper we propose and test a forward dynamic programming approach for lot-
sizing in general multi-stage production-distribution systems without capacity constraints.
(Extensions of the procedure to capacity constrained systems will be considered in a sequel).
We view the approach as a generalization of earlier work since it permits time-varying
demand and costs for all components. It can therefore handle demand for components as
repair parts.

Using a forward dynamic programming procedure gives us an important capability:

the procedure can identify forecast horizons when they exist. (A forecast horizon is a point

in time beyond which problem data do not affect any decision in the current or previous
periods.) As such, it has the potential for identifying (initial) decisions which are optimal

in the long run even if data are available for only a finite horizon.

There are, however, some limitations of the approach. As a dynamic programming
procedure, it suffers to a limited degree from the “curse of dimensionality.” Although our
state pruning technique (described later) limits the state space to a very small fraction of
the worst case scenario, the procedure would be best utilized for product structures that
have been collapsed or reduced in some fashion. This problem reduction can be done using
the approach of Billington, McClain and Thomas [1983] or of Maxwell and Muckstadt
[1985].

In the next section, we describe the problem assumptions and the basic dynamic

programming procedure. We then describe a state pruning technique which reduces the
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size of the state space and makes the procedure computationally tractable. We also present
a proof that the number of states in a period is uniformly bounded from above when there is
no speculative motive for holding inventory. In section 3, we explain how forecast horizons
can be detected using the proposed procedure. Section 4 presents computational results

using the procedure. We conclude with a discussion in Section 5.

2.0 The General Multi-item Lot-Sizing Problem

We examine lot-sizing problems in general multi-stage production-distribution systems
without capacity constraints. We use the term production-distibution system to reflect the
fact that each item in the product structure can have multiple predecessors and multiple
successors. We assume that demands and costs are deterministic, but they are permitted
to vary with time. External demands for both finished products and components (e.g., for
repair parts) are permitted. We assume that production at each stage and transportation
between stages occur instantaneously. (Constant production times can be incorporated by
an appropriate shift of time indices). We also assume that all demand must be satisfied on

time (i.e., no backordering).

Costs to be included are production and order setup costs, linear production or pro-
curement costs, and linear inventory holding costs charged on end-of-period inventory. We
also assume that initial inventory of all items is zero. If there is no speculative motive
for holding inventory, a problem with positive initial inventory can be transformed into an
equivalent problem with zero initial inventory by using net production requirements instead
of gross demand (see Zabel [1964]). Except for dealing with initial inventory, the procedure
does not require the assumption of no speculative motive. Nonetheless, this assumption in
conjunction with a mild assumption regarding demand is sufficient to guarantee a linearly
bounded state space growth with the study horizon and hence we will assume no speculative

motive for holding inventory.

Consistent with this assumption, we consider uncapacitated problems with solutions
satisfying the Wagner-Whitin [1958] property for each production run or setup. Hence,

whenever production occurs, the quantity produced will satisfy demand (for that item) over
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a set of consecutive periods. This means that an optimal solution exists where demand
for an item is satisfied from the most recent prior production run of the item and where
positive inventory of an item will not be carried into a period in which the item is produced.
This implies that the optimal lot-sizes of each item can be calculated from the optimal
sequence of setups of the items (given the problem structure and demand data) and so we
can concentrate on simply finding the optimal sequence of setups for each item. Limiting
consideration to solutions of this type for uncapacitated problems is consistent with results
in Erickson et al.[1980], which extend the results of Wagner and Whitin [1958] and Zangwill

[1969] to more general networks.

Before proceeding with a description of the dynamic programming procedure, we
present notation used throughout the remainder of the paper. Note that we use some
standard network terminology, where the production facility of item ¢ is denoted as node 1,
and successors and predecessors are defined in the usual way for directed graphs. We only

require that the network representation of the product structure is finite and contains no

directed cycles.
Notation:
K;; = setup cost for item ¢ in period ¢,
h, = inventory holding cost for item ¢ in period t,
¢t = variable production cost per unit for item ¢ in period ¢,
N = the number of nodes (items) in the network (item ¢ € {1,2,...,N}),
P; = immediate predecessors of node 1,

r;; = amount of item j required in each unit of item 1 where j € R,

T

number of periods in the study horizon, and
d;; = independent demand for item ¢ in period t.
We distinguish two types of demand for an item in a period: dependent demand which
are requirements for material used in producing immediate successors, and independent

demand which reflect requirements generated outside of the production system. Indepen-

dent demand for each item is given as data, whereas dependent demand for an item will

3



also depend on the sequence of setups made for successor items.

For the sake of notational simplicity, throughout the remainder of the paper we consider
an equivalent problem (see Blackburn and Kunreuther [1974]) using a revised inventory
holding cost, h;;, where h;y = h!, + ¢it — ¢i1+1. This permits us to eliminate reference
to the variable production cost by letting h;; refer to the relative cost of producing and
holding a unit in period t rather than producing it in period t + 1. The assumption of no

speculative motive is equivalent to requiring that h;; > 0 for all s and t.

2.1 The Decision Process and Two Dynamic Programming State Definitions

We first introduce a decision process which gives our interpretation of how decisions
are made in the problem and then we define two equivalent Dynamic Programming (DP)
states. The first state definition, based on setup times, is a natural result of the decision
process and is the easier of the two to understand. We use the first definition of a state
to facilitate our discussion. The second state definition, based on net inventory holding
rates, arises from the information required to determine the costs associated with making
decisions in the future. The second state definition is much easier to use in proving some

of our results and in the coding of the DP algorithm.

We view the problem as making a sequence of binary decisions over time to meet both
independent demand and dependent demand for an item in each period. Our alternatives

are to
1) setup and produce the item, or

2) increase the quantity of the most recent production run of the item and carry the

inventory forward.

To represent the decision process, we define a policy for period ¢ to be the vector Y'(t),

where the 1*» element, Y;(t), is given by
Yit) = { 1, if item ¢ has a setup in period ¢;
710, otherwise.

Note that a policy Y (t) may fix the setup of an item in period t, but does not fix the
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lot-size of the item. The lot-size will not be determined until later setups of the item and

successor items are made.

A state can be represented by a set of ordered sets A(t) with the i** ordered set,
denoted by A;(t), giving the production runs (identifying the periods) for each item which
would increase in quantity with an increase in the the demand for item ¢ in period t. Thus,
A;(t) includes the most recent setup for item ¢ in or prior to period ¢, as well as the setups
of all predecessors of item s which would supply, either directly or indirectly, the material
required in the production run of item s. The set A(t), in conjunction with problem data,
thus stores all the information required to calculate the cost of any future decision which

might affect production quantities in period ¢ or earlier.

There are two reasons for considering the possibility of demand for item 1 increasing in
period t. First, as time progresses, the production lot in or beyond period t for a successor
may increase, thus creating a larger dependent demand in period ¢ for the item. Second, we
may want to increase the inventory of the item in period t to supply independent demand
for the item in a period beyond t. These possibilities must be anticipated to correctly

account for the effects of current decisions on the costs of future decisions.

It is important to note that A;(t) may have more than N elements. For example, this
occurs when two different items, say ¢ and j, with a common immediate predecessor (say
k), may draw from two different production runs of item k. This situation occurs in the

example which follows.

We illustrate the decision process and the DP state with a simple product structure
containing both distribution and assembly characteristics (see Figure 1). Assume that
production of each item requires one item from each predecessor (i.e, r;; = 1 for j € F,)
except that two units of item 4 are required for each unit of item 2 (ro4 = 2). Suppose that

the decisions made over the first five periods result in the setups depicted in Figure 2.

Let a;(t) represent the time of the production run of item ¢ which would directly supply

input material for the production run of a successor in period t. Then the state A(t) can
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Figure 1. Network Representation of an Example Product Structure.

4 L ° ° .
3 L ° °
2 L4 ° ° °
1 4+ ° ° ° °
1 1 l ! 1
T 1 1 1 1
1 2 3 4 5 t

Figure 2. Graphical Representation of Y;(t). (¢ denotes a setup.)

be generated from the a;(t) through the recursive definition

{ {@:()}U{Ujep, 4:(a(8)}, i P #6;
\{a:()}, if P, =0.

A) =

This recursive definition is simply a mathematical statement of the requirement that a state
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must contain the latest setup of item ¢, which is a;(t), plus the setups of item 1’s predecessors

that supply inputs for the setup, which is simply the union of the sets A;(a;(t)) for j € P,.

We use the example of Figure 2 to illustrate this definition. Since item 4 has no

predecessors, A,(t) simply stores the most recent setup of item 4. Hence,

Ai(t) ={ai(1)} = {1} for t=1,2;
A(t) ={ay(3)} = {3} for t=3,4; and

A,(5) ={a((5)} = {5}.

Now consider item 3. In order to produce a unit of item 3 we must have produced two

units of item 4 in the same or prior period. Thus A;(t) = {as(t)} U A((as(t)), and

As(t) ={1,1} for t=1,2,3; and

A3(t) ={4,3} for t=4,5.

A (t) can be determined in a similar fashion.

We now turn to item 1. Since item 1 uses items 2 and 3, which in turn require item
4, the set A;(t) must include at least 4 elements. However, two different production runs
of item 4 may supply input to item 1 via items 2 and 3. For instance, in period 5 of the
example there is a setup of item 1 which requires input from the production runs of items
2 and 3 in periods 5 and 4 respectively. The production runs of item 4 that supply these
particular production runs of items 2 and 3 occur in two different periods: in period 5 to
supply item 2 and in period 3 to supply item 3. So we have, after expanding the A;’s for

the predecessors of item 1:

Ay (t) = {a1(t), a2(a1(t), as(az(as(t))), as(as(t)), au(as(as(2)))},

and in our example, 4, (5) = {4,2,1,4,3}.

To write the dynamic programming functional relationship we define

S; = the set of states of period t, and
f.[A(t)] = the minimum cost to reach state A(t) € S, from the initial state A(1).
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Then

flA(@®)] = min {C[A(t-1),A(t)] + fi-1[A(t - 1)]},

(t—1)€S¢-1
where C[A(t — 1), A(t)] is the cost of reaching state A(t) from state A(t — 1), which is

infinite if it cannot be done.

The cost of the minimum cost strategy for a T period problem is

fr= min {fr[A(T)]}.

A(T)eSr

If a policy Y (t) from state A(t — 1) leads to the state A(t) of the next period, then we

write A(t — l)y-g)A(t) to denote this relationship. We also say that A(t — 1) reaches A(t)

when a policy Y (t) exists such that A(t - l)Y—(t*)A(t).

The cost of any decision in period ¢ is the cost of setting up and producing d;; (including
holding costs to supply input to the production) if ¥;(t) = 1 or the cost of producing d;; in
the period indicated by A;(t — 1) and holding it until period t if ¥;(t) = 0. Computation
of the cost of reaching any state is simplified by two facts. First, in any valid state it is
necessary to have the time of a setup for item s to occur at or before the time of a setup
for item j if 1 is a predecessor of j since otherwise there would be component backorders.
Second, since variable production and inventory holding costs are linear functions, for any
production run of an item, there is always a least cost source (production run) for each
predecessor. When h;; > O for all 1 and ¢, this least cost source is always the most recent
production run of the item. Thus, for any given state A(t) each demand for a finished
product or component has a unique set of source production batches, and thereby also a
unique cost per unit associated with producing and holding inventory which we call the
net (revised) holding cost. This leads to our a second definition of a DP state based on net

holding costs.

Let H;[A(t)] represent the marginal inventory holding cost which would be incurred if
one more unit of item ¢ were produced using the setups in A(t) to satisfy demand in period

t. Note that H;[A(1)] = O for the initial state A(1) since we assume Y;(1) = 1 for each 1.

If Y;(t) = 1, then the demand would be satisfied by production in the same period,

8o there is no inventory holding cost. On the other hand, if Y;(t) = 0, then updated net
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inventory cost is the inventory holding cost already incurred up to period t — 1 from using
Y
the setups in A(t — 1), where A(t — 1) —(ﬁ)A(t), plus the cost of holding the unit for one

more period, i.e., period t — 1. Hence, for an item ¢ with no predecessors we have

{ Hi[A(t - 1))+ higoq, fYi(t)=0;

Hi[AQt)] = (1)

L O, ifY;(t) =1.
For items with predecessors, we can express H;[A(t)] in terms of the net holding costs
for its immediate predecessors (provided these costs have already been computed). That
is,

HiA(t - 1))+ hieoy, if Vi(t) =0;
Hi[A()] = {

2
\ EJ‘GP.- ri; Hi[A(t)], if ¥;(t) = L. @

If item ¢ is not produced in period t, then the net holding cost is the cost already
incurred up to period t — 1 plus the cost of holding item ¢ for one additional period, namely
period t — 1. If item ¢ is produced in period ¢, then only the predecessor-related inventory
costs need to be considered. All predecessors are included in the summation since each
H;[A(t)] accounts for its own predecessors and the computations begin with those items

having no predecessors.

We can easily calculate the cost C[A(t — 1), A(t)] in terms of the net holding costs
where A(t - l)Y—(-‘*)A(t) as

ClA(t - 1), A(t)] = 2 di i A(8)] + i (t) K.
From this relationship we see that the net holding cost vector H[A(t — 1)] is sufficient to
determine the cost of any policy Y (t) selected while in state A(t — 1) and hence defines
a DP state; our second DP state definition. Thus, using the net holding rate vector as
the DP state and, for the moment, writing H(t) instead of H[A(t)], we can recast the DP

formulation in the following way.
First, to simplify the presentation, we redefine
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St = the set of states of period t which we will index as (1,2,---,s,),
H*(t) = the k' state of period t, where H*(t) € S,,

f[H*(t)] = the minimum cost to reach state H*(t) € S, from the initial state H(1),

and use H' (t - l)y—(:)H *(t) to indicate that the policy Y (t) out of state H(t — 1) produces

the state H*(t).

Then the DP recursion becomes

Y (t)

fe[H*(t)] = min {Z [die HF () + Ya(8) K] + fooo [HY (2 - 1)]} ) (3)

i

where H'(t — 1) € S,—, and HY(t - l)Y—(-:)H" (t). The net holding rate vector H*(t), in
terms of H7(t — 1) and Y (t) is

HI(t—1)+hiyoy, ifYi(t)=0;
Hf ()= Tiep raHF(t), iY()=1and P, #0 (4)

0, otherwise.

Finally, the cost of the minimum cost solution is

k

fr =, min_{fr[E*)]).

To illustrate the updating of the new state definition, we again consider the example
of Figure 2. In this problem, let the costs be stationary with h; denoting the one period

holding cost per unit of item 1.

Since Y;(1) = 1 for all ¢, we have H;(1) = 0 for all 1. To update for period 2, we observe
that items 3 and 4 had no setups, giving H,(2) = h, and H;3(2) = hs + H,(1) = hs, while
items 1 and 2 did have setups, yielding H,(2) = 2H,(2) = 2h, and H;(2) = H;(2)+Hs(2) =
2h4 + hs. Observe that the last value arises because one unit each of items 2 and 3 are
required to produce item 1. There is no inventory holding cost due to item 2 directly;

however, for each unit of item 2 two units are required of item 4 which were produced in
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period 1. Hence, there is a cost of holding inventory of item 4. In addition, there is the

cost of holding item 3 from period 1 for the item 1 setup in period 2.

Now consider period 5. The reader can verify that H(4) = (2h; + 3hy, 2h; +
2hy, hy, hy). We then have H,(5) = O since a setup occured for item 4 in period 5 and
item 4 has no predecessors. Also H3(5) = hy + H3(4) = hs + hy, and H,(5) = H,(5) =0
since item 2 has item 4 as its only predecessor and both have setups in period 5. Finally,
H,(5) = hy + H,(4) = hy + 2h; + 3hy.

We now have the necessary definitions to discuss the decision process in more detail.
This procedure might be viewed as an implicit enumeration scheme. As such, the primary

concern is that of limiting growth of the state space. Next we discuss a pruning procedure

to accomplish this.

3. A Pruning Technique

We present a pruning technique which identifies and eliminates unnecessary states,
considerably reducing the size of the state space. Although more sophisticated pruning
techniques can be implemented in which states in one period prune states in other peri-
ods, we only consider pruning of states in the same period. This limits the information
required for the pruning to information already available for (and required by) the dynamic

programming procedure. First we present a definition of pruning.

Definition:

Let A(t) and B(t) be two distinct DP states. Then A(t) is said to prune B(t) iff
the optimal solution through period T restricted to using A(t) is no more costly than the

optimal solution restricted to using B(t).

There are two simple requirements which are sufficient for A(t) to prune B(t). First,
the cost to reach A(t) from the initial state is no more that the cost to reach B(t) from
the initial state. The second requirement loosely relates to the “cost to go,” or the cost to
complete the problem from period ¢t + 1 onward. The requirement is that for each item ¢

the cost of meeting future demand using only the setups indicated in A(t) up to time ¢ is
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less than or equal to the cost of meeting future demand using only the setups in B(t) up to
time t. If both requirements are satisfied, removing B(t) does not eliminate any uniquely

optimal solution, so it can be pruned.

To check for the second requirement, we need to capture the effect of constraining the
solution to using state A(t) or B(t) on the cost to satisfy demand of each item ¢ until its
first production run occurring after period t. We also need to capture the cost due to a
potential increase of demand (of any item) in period ¢ which might result from batching

at a successor stage in period t to satisfy demand beyond period t, or from independent

demand beyond period t.

The cost of satisfying demand d; ;. for any non-negative k using A(t) is

t+k-1
dirr § Hi[AD+ D hij ¢,
\ j=t )

and using B(t) is

t+k—1
di,t+k H; [B(t)] + Z h;,- .
{ =t )

Observe that the summations are equivalent as is the constant term d; .4, o it is
sufficient to compare H;[A(t)] and H;[B(t)]. Note also that these are the respective costs
of using the setups in A(t) and B(t) to satisfy a unit of demand in period t. Thus, the only
information we need to determine the minimum of the two costs above are the net holding

cost rates H;[A(t)] and H;[B(t)].
The pruning procedure checks whether

1) the minimum cost of reaching A(t) is no more than the minimum cost of reaching B(t),

that is, f,[A(t)] < fe[B(t)], and

2) the net inventory holding cost rate for item 1 in A(t) is no more than the net inventory

holding cost rate for item ¢ in B(t) for each ¢, that is, H;[A(t)] < H;[B(t)] for all 1.
Next we prove that if these conditions hold, then A(t) prunes B(t).
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Theorem 1. Let A(t) and B(t) be any two distinct states in S;. If fi[A(t)] < fi[B(t)] and
H[A(t)] < H[B(t)], then A(t) prunes B(t).

Proof:

Let fi+x[A(t + k)| A(t)] be the cost of the minimum cost strategy to state A(t + k)
from the initial state restricted to using the state A(t) at time t. A sufficient condition for
A(t) to prune B(t) is for the cost of a minimum cost strategy to any future state B(t + k)
restricted to using the state B(t) to be greater than or equal the cost of a minimum cost
strategy to some state A(t + k) restricted to using the state A(t) for all k > 0. That is, for
each state B(t+ k), k > 0, there exists some state A(t+ k) such that f,.,[B(t+k)|B(t)] >
fe+k[A(t + k)|A(t)]. Given f,[A(t)] < f:[B(t)], this condition is satisfied if we can find a
state A(t+ k) for each state B(t + k) where the minimum cost to reach A(t + k) from A(t)

is no more than the minimum cost to reach B(t + k) from B(t) for all k=1,2,..-,T — ¢t

We will show the assumptions of Theorem 1 allow us to satisfy this sufficient condition
for a particular state A(t + k): the state of period t + k which is reached from state A(t)

using the same sequence of policies used to reach state B(t + k) from state B(t).

We divide the proof into two parts: 1) a proof that the holding cost inequality H;[A(t+
k)] < H;[B(t + k)] holds for all items ¢ and k = 1,2,-++,T — t, and 2) a proof that the
cost inequality C[A(t), A(t + k)] < C[B(t), B(t + k)] holds for k = 1,2,---,T — t, where
C|A(t), A(t + k)] is the cost to go from state A(t) to A(t + k) following the same sequence

of policies which leads from B(t) to B(t + k). We prove these results by induction on k.

Part 1. Assume the holding cost inequality, H[A(t + m — 1)] < H[B(t + m — 1)], holds
forallm =1,-.-, k. It obviously holds for m = 1 as it is an assumption of the theorem. We
will prove H[A(t+k)] < H[B(t+k)]. We consider two cases: Y;(t+k) =0and Y;(t+k) =1
for each item ¢ taken in order so that all predecessor net holding rates in period t + k have

been updated prior to updating the same for item s.

Case 1. If Y;(t + k) = O then

H,[A(t + k)] = H; [A(t + k- 1)] + hi,t+k—1;
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and

H;[B(t+k)]=H;[B(t+k—1)] +hypr-1.

Obviously, H;[A(t + k — 1)] < H[B(t + k — 1)] implies H;[A(t + k)] < H;[B(t + k)] for this

case.
Case 2. If Y;(t + k) = 1 and item 1 has no predecessors, then H;[A(t + k)] = H;[B(t +
k)] = 0, so the inequality is true for all components with no predecessors.

Now we inductively show the inequality is true for the general case where s has prede-

cessors.

Since Y;(t + k) = 1, then

Hi[A(t+ k)| = Z rij Hi[A(t + K],

JEP;

and

Hi(B(t+k)] = ) r,H;[B(t+k).

JEP;

Let No denote the set of items with no predecessors and define (recursively) N; as
the set of items with at least one predecessor in N;_; and all predecessors among the sets
No, Ny,---, Ni_;. We have already shown the inequality holds for 1 € N,. Assuming that

it holds for + € Ny for k =1,2,--,1, we will show the inequality also holds for N, ;.

Consider the items in N, ;. Their predecessors are contained in Ny, k = 0,1,:--,1,

so for all j € P; where { € N, we have H;[A(t + k)] < H;[B(t + k)]. This implies

> riHilA(t+ k) < Y v Hy[B(t + ),

JEP; JEP;
which, by definition of H; gives
Hi[A(t + k)] < Hi[B(t + k)).

Hence the inequality holds for I + 1. By induction on [, the inequality holds for all { and
therefore for all items ¢. Since the holding cost inequality is true for k = 0 it follows by

induction on k that the holding cost inequality holds for k =1,2,---,T —t.
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Part 2. We prove C[A(t), A(t + k)] < C[B(t), B(t + k)| by induction on k. Assuming
C[A(t), A(t+m)] < C[B(t), B(t+ m))] is true for m = 0,1, ,k — 1, we will prove the cost
inequality is true for m = k. Obviously, this holds for m = 0 as both costs are zero. By

definition of the cost of a sequence of policies,

C[A(t), A(t + k)] =C[A(t), A(t + k- 1)] + C[A(t + k — 1), A(t + k)], and

C|B(t), B(t + k)] =C[B(t),B(t + k — 1)] + C[B(t + k — 1), B(t + k),

where C[A(t + k — 1), A(t + k)] is the cost of making in state A(t+ k — 1) the same decision
as made in state B(t + k — 1). Since C[A(t),A(t + k — 1)] < C[B(t),B(t + k — 1)] by
assumption, it is sufficient to show that C[A(t+k—1), A(t+ k)] < C[B(t+k—1), B(t+k)]

to prove the case for m = k.

By definition,

ClA(t+k—1),A(t + k)] =) dios e H:[A(t + k)] + Yi(t + k) K; o1k, and

)

C[B(t+k-1),B(t+k)] =) disss Hi[B(t+ k)] +Yi(t + k) Ki k-

The terms Y;(t + k)K; .+, in both equations are identical. In part 1, we proved that
H;[A(t+ k)] < H;[B(t+ k)], hence d; ¢4 x H;[A(t + k)] < d; ¢4 H;[B(t + k)] and so C[A(t +
k—1),A(t+ k)] < C[B(t + k- 1), B(t + k)]. Thus the cost inequality is true for the case
m = k. Since the inequality inequality holds for m = 0, C[A(t), A(t+k)] < C[B(t), B(t+k)]
for k=0,1,---,T —t by induction on k. ®

Theorem 1 allows us to do pruning with one state in a period since the state will
remain unpruned when done. However, to exploit the full power of pruning, it is necessary
to consider all states as potential pruning states, or full pruning. Hence, we need to show
that full pruning can be done so that for every state which is pruned an unpruned state
exists which can still prune it. It turns out that the pruning operation is transitive which

immediately implies that pruning can be safely performed in any desired order.

Theorem 2. Pruning 1s transitive: tf U prunesV and V prunes W then U prunes W.
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Proof:

Let U, V, and W be three states of period ¢ where U prunes V and V' prunes W.
By the pruning conditions, f,[U] < f:[V] and f,[V] < f;(W], hence f,[U] < f:[W]. Also,
H;[U] < H;[V] and H;[V] < H;[W] for all items ¢, hence H;[U] < H;[W] for all items 1.

Thus pruning conditions are satisfied for U to prune W. &

3.1 A Linear Bound on the Number of States

In this section we show that under relatively mild conditions there exists a uniform
upper bound on the number of unpruned states at any time ¢. Although this bound is not
of practical significance because it is a very loose bound, it is of theoretical significance

because it indicates that the maximum number of unpruned states at time ¢ is independent

of t.

Theorem 3. Let A*(t) denote the state with production setups for all sitems in period t.
If
(1) all revised inventory holding costs are uniformly bounded below by h > 0 (i.e.,

there 18 no speculative motive for holding inventory),

(i) the per period independent demand for all finished products is uniformly bounded

below by d > 0 in each period,
(%) all setup costs are finite and uniformly bounded above by K, and
(#v) all items require at least one unit of each immediate predecessor (r;; > 1 for
JEPR),
then 2N K/hd ig gn upper bound on the number of unpruned states in any period t if A*(t)
1s used as the basis for pruning in period t.
Proof:

We first show that A®(t) prunes all states B(t) containing a setup prior to some period
7. To do this, we first show that the minimum cost to reach B(t) from the initial state has
a lower bound which is larger than an upper bound on the minimum cost to reach A®(t)

from the initial state. With these cost bounds and the fact that H[A*(t)] = O we show
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that A(t) prunes B(t). Finally, we show that ¢t — 7 is uniformly bounded from below by a
quantity that is independent of t, thereby giving an upper limit on the number of unpruned

states at any time ¢.

Let f, be the minimum of f;[A(t)] over all unpruned states A(t). Since A°(t) has

production setups for all items in period ¢, we must have
filA(t)] = fe-r + Z K

< fi-a[B(t - 1]+ VK,

where B(t — 1) is such that B(t — I)Y—(t)B(t) in the minimum cost strategy to reach B(t)

from the initial state.

Consider all item setups in B(t) which directly or indirectly satisfy a finished product
demand in period t. Suppose the earliest such setup occurs in period r for some item i.
Since B(t) indicates only the production runs to be used to satisfy independent demand
in period t (or beyond), the item’s production quantity must be at least d units to satisfy
the minimum possible demand in period t for the finished product it directly or indirectly
supplies. Hence, an inventory of at least d (in the form of item ¢ or some successor of item

1) must be held from period r through period ¢ — 1 at a minimum cost per unit per period

of h. Hence
fi[B(t)] = fi=1[B(t = 1)] + (t - r)hd,

where the inequality is further weakened by ignoring the cost of any production setups in
period t to reach state B(t). By comparing the bounds on f;[A*(t)] and f,[B(t)] we have
fe[A* ()] < £[B(t)] if

hd(t-7) >NK, or

(t-7)>NK/hd

since hd > 0. By definition of A*(t) the holding cost rates H[A*(t)] are zero and H[A®(t)] <

H|B(t)] since all holding costs are non-negative. Thus the conditiions are satisfied for A*(t)
to prune B(t).
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Let

At = NK/hd,

then A°(t) will prune any state B(t) with a production run (for any item) scheduled in
period t — At or earlier. Observe that At is independent of t. Since the number of policies
in each period is 2V, the maximum number of unpruned states in any period is at most

2N At which is also independent of t. B

The conditions on h and d can be relaxed with somewhat more complicated relation-
ships among the h;, and d;; values. In essence, all that is required is that demands and

inventory holding costs not all be zero prior to period t.

The bound described above is a very loose bound, since the number of dynamic pro-
gramming states does not grow as 2V per period as many different sequences of policies
may lead to the same state, nor is the state A*(t) the only state used in pruning other
states. Furthermore, with the assumptions of no speculative motive and no capacity con-
straints, nested schedules in which a production run of an item occurs only if at least one
of its successors also schedules a production run are usually (although not always) optimal,
and nearly all unnested schedules tend to be pruned rapidly. Thus, while there is a worst
case bound on the number of unpruned states in a period which is constant for all ¢, ex-
perimental results (which we discuss later) suggest that the maximum number of states is

much smaller, even when the conditions of the theorem are not satisfied.

4. Detection of Forecast Horizons

One of the primary advantages of a forward dynamic programming procedure is that
it can detect forecast horizons when they exist. In doing so, it permits one to implement
current decisions with confidence that the decision will still be optimal even after additional
data is collected for periods beyond the forecast horizon. Since many lot-sizing procedures
are necessarily implemented using some type of rolling horizon framework, even experimen-
tal evidence that forecast horizons do exist for these problems and estimates of the length

of these horizons (as a function of the problem data) are useful.
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For the problem described above, forecast horizons can be detected in two ways. First,
if at any time ¢ there is only one unpruned state and that state has all non-zero elements,
then that state is optimal as are all decisions which led to that state. The reason that we
require all elements to be non-zero is that a zero element indicates that the batch for the
item in question may not be complete. In other words, consideration of demand beyond
time t may cause the optimal batch size to increase. Thus, the information through time
t is not sufficient to determine the optimal batch size of that item to be produced in the

current period.

Another way to detect a forecast horizon is to examine the set of policies in period ¢
that are part of an optimal strategy leading to an unpruned state of a later period t + k.
If this set contains a single policy then the policy must be optimal in period t. To extend
this concept further, we can also detect a forecast horizon if the set of optimal strategies
to all unpruned states in period t + k use a common state in period ¢. When this happens,
the common state and all decisions leading to it must be optimal for the infinite horizon

problem.

We have found experimentally that forecast horizons often exist, and that (rather
amazingly) they are sometimes detected because only one unpruned state remains (i.e.,
the state with production setups for all items). We report these and other computational

results in the next section.

5. Computational Results

There were several objectives of our computational study. First, we wanted some
assurance that the state space would be “manageable” and computational times would be
acceptable. Second, we wished to obtain an indication of whether forecast horizons existed

for these multi-stage systems, and if so, what order of magnitude they were.

We used the algorithm to solve a variety of four-item problems with the product
structure depicted if Figure 1. The base case had d;; = 500 for all t, d;; = O for
t = 2,3,4 and all t. Costs were constant over time with K; = 200, 300, 400, 900 and
h; = 1.0, 0.3, 0.3, 0.2 for ¢ = 1,2, 3,4, respectively. We also set r;; = 1 for all applicable
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TABLE 1.

Problem Data and Experimental Results

Statistics for Unpruned States

Case mean Std. Dev. Maximum CPU* time
Base case 6.03 1.43 12 5.34
Discounting 7.55 2.23 16 6.87

0.9 per period.

Demand decline 69.17 59.90 213 168.33
10% per period.

Demand growth 3.07 2.17 8 3.19
10% per period.

Requirements change 3.76 1.12 7 3.50
21 = 1, 33 = 2,
T42 = 3, 43 = 4.

Lumpy demand 20.91 25.03 152 mean = 24.64
P(d, = 0) = .25; sd. =9.34
otherwise U[0,1500].

(10 problems solved.)

Time-Varying costs 10.04 4.95 34 mean = 8.03
All costs uniform s.d. = 1.397
between half and
and double the
base case costs.

(10 problems solved.)

* In seconds. Problems solved on an Apollo DN330 minicomputer.

1,7 pairs. Each problem had a 30 period study horizon.

We investigated the effects of discounting, growth and decline of demand over time,
and different r;; values. We also randomly generated some problems with time-varing
“lumpy” demand (some zeros), and time-varying costs. The measures of performance we
were most concerned about were the average and maximum number of unpruned states and
the computing time. The algorithm was coded in FORTRAN and executed on an Apollo

DN330 minicomputer which we estimate to be at least ten to fifteen times slower than most
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TABLE 2.

Forecast Horizons

Case period

Base case n/a
Discounting 8

Demand decline n/a
Demand growth 7
Requirements change 7

Lumpy demand 13,7,9,5,12,7,13,8,6,13
Time-Varying costs 6,9,6,8,9,12,13,12,7

modern mainframe computers.

The problem data and results appear in Table 1. Most problems could be solved within
a reasonable amount of time and with amazingly few unpruned states in any period. The
main exception was the problem with rapid decline in demand. This case is not suprising
— the same type of result occurs in single-product lot-sizing problems. This behavior is
also suggested by the sensitivity to d of the upper bound on the number of unpruned states

found in Theorem 3.

Average computational times for the case of lumpy demand tended to be larger than
the other runs, but this is mitigated by the fact that forecast horizons were readily found as
indicated in Table 2. Considering only results until the first forecast horizon was detected
for each problem, the maximum number of states declines to 93 and and the average CPU

time declines by 75%.

There was little difference between the discounting case and the base case in most of
our measures. This is also suggested by the upper bound of Theorem 3 since the bound
is sensitive to the ratio of the setup and holding costs of a period which is independent of
discounting. However, with discounting a forecast horizon was detected in period 8 of the

problem.

The case with time varying costs produced similar forecast horizons as the case of
lumpy demand. However, the computation times and number of unpruned states per

period were significantly less.
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Figure 1. Network Representation of an Eight Item Product Structure.

In two cases, the base case and the case with declining demand, forecast horizons
were not detected in 30 periods. This may indicate that (1) they do not exist, (2) a long
study horizon is required, or (3) there are alternate optima which which cannot prune one
another. We suspect that the latter was true for some of the problems which, after the

initial period, had only 2 unpruned states in most periods.

It is possible that a more sophisticated pruning procedure using states in one period to
prune states in another period, or relaxing the requirement that the pruning state match

each subsequent setup out of the state to be pruned could lead to earlier detection of

forecast horizons.

We also solved one eight-item problem which is illustrated in Figure 3. Costs were
constant with K; = 300, 400, 700, 600, 200, 50, 100, 1000 and h; = 2.0, 1.0, 0.4, 1.0, 0.5,
0.5, 0.2, 0.05 for ¢ = 1 through 8, respectively. We note that one of the echelon holding
costs is negative (for item 1). Demand for item 1 was randomly generated using U[170,230]

and similarly for item 2 using U[340,460].. All other items have no independent demand.

22



We used a horizon of 40 periods for this problem. The total CPU seconds on an Apollo
DN330 was 1.7 hours, and the time to detect the first forecast horizon (in period 21) was
44 minutes. The mean, standard deviation, and maximum number of unpruned states were

112.9, 32.3, and 186, respectively.

A problem of this size and complexity may be near the practical limit using the cur-
rent implementation. It is conceivable, however, that computation time could be reduced

considerable with more effective pruning or by limiting consideration to nested policies.

6. Summary and Discussion

We have developed a forward dynamic programming procedure for general multi-stage
lot-sizing problems which is shown to be computationally tractable for many problems.
It was found that planning horizons were discovered (relatively quickly) in problems with
time varying problem data, in particular in problems with “lumpy” demand. It is princi-
pally for such demand patterns that this procedure would provide the most benefit in real
applications (versus models using constant demand approximations). Problems with most
other demand and cost patterns, with the exception of rapidly declining demand, required

little computing time and had very few unpruned states at any point in time.

Further research is needed to incorporate more extensive pruning, possibly with prun-
ing of not only states, but also pruning certain decisions for individual items. Pruning
using a limited “look ahead” to consider future data may also reduce the number of states.
Research is also needed to incorporate capacity constraints. Nonetheless, the approach pro-

posed in the paper appears to have promise for solving a wide array of lot-sizing problems.

A new area for research is the study of lot-sizing for problems where the product
structure or a component requirement of an item is time dependent. Such problems are
important, for example, when an engineering redesign of an item results in new requirements
for component items or when an alternative sequence of operations is used to manufacture
a finished product. These situations can be modelled by simply making the requirement
coefficients, r;;, period dependent. Doing this will not invalidate the decision process nor the

pruning technique. Hence, the DP algorithm presented here, with obvious modifications,
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can be used to study general uncapacitated multi-stage lot-sizing problems whose product

structures and requirement coefficients are time dependent.
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