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Ann Arbor, Michigan 

This p~/p~r Studies errors in finite automatai An error is defi~ed as a 
pair Of states and errors are then classified according to their pr~b~ 
ability of being corrected (i.e., being taken into the same state). Var- 
ious :re~u!ts .are then given on the partitioning properties of a particu- 
lar type of error called a finite error. 

I. INTRODUCTION 

This problem arose f rom an a t t empt  to make a general s tudy of 
reliability iii :cbinputerlike machines. The classic results 0f:von Neumann  
(yon Neumgnn; 19o6) deal only with networks which do not have any 
feedback.  Thus a malfunction only causes the network to be in the 
incorrect State for a fixed length of t i m e .  

However ;  a malfunction in the general case with feedback can cause 
an error :which persists forever. Fortunately,  not all errors are of this 
type. Some errors are of the type  tha t  can persist only for a bounded 
time. Some; al though they can persist infinitely long, have a probabil i ty  
of being corrected which approaches one as the tapes get longer: Thus 
"almost  ~I1;' Of the " long" tapes correct the error. 

This is t h e  phenomenon which will be studied in this paper.  I t  will be 
shown tha t  errors of the lat ter  type  induce a parti t ion on the set of 
states. The' possibility of adding states to the machine in order to get a 
more reliable one will also be discussed. In  the next section we will 
formalize the problem in terms of the theory of automata .  

II. FORMALIZATION OF THE PROBLEM 

In order to clarify the notat ion and to make the problem more formal, 

* This work was supported in part by Air Force Contract AF 30(602)-3546. 
Section IV represents work done while the author was associated with the Genera! 
Electric Research Laboratory, Schenectady, New York. 
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we will begin by defining a finite automaton and an error in a finite 
automaton. 

DEFINITION 2.1. A finite automation M is a triple 

M = (M', Z, ~). 

M' is a finite set with elements m~ (set of states) ; 
is a finite set with elements a~ (input alphabet) ; 

is a function from M r X Z -+ M' (next state functions). 
Later  we will use M both to denote the finite automaton and its set 

of states. We will also extend ~ to ~*, the set of sequences of symbols 
from Z, in the naturM manner with sequences read from left to right. 

DEFINITION 2.2. a. An error, E, in a finite automaton, M, is a pair of 
states (m~, ms). 

b. An error, (m~, m~.), is corrected by a tape t ( " t ape"  is synonymous 
with "sequence") if and only if 

~(m,,  t) -- ~(m~., t). 

We can think of an error (m~, mj.) as the situation when, due to a 
previous malfunction, the automaton is in state m~ and should be in 
state m~., or is in state ms and should be in state m~. We can see from 
the definition of an error being corrected that  these are both equivalent. 

In this work we will consider sequences being generated by a random 
source. We will say that  a random source with output  alphabet Z has 
property P if and only if it is s tat ionary and there is a number k, greater 
than zero, such that  the probability of the symbol ~ following an arbi- 
t rary  sequence x is greater than k. 

DEFINITION 2.3. Let S be a random source with p ro p e r ty P  and output  
symbols ~, and let M = (M, ~, ~) be a finite automaton driven by S. 
For an error E = (m~, m~-) we define the following: 

a. ~zZ(mi, m~.) = probability that  (m~, mj) is corrected by a tape of 
length 1. 

b. ~,S(m~, m~-) = limz~, ~S(m~, mj) if the limit exists. 
I t  is easy to see tha t  for any source S and any error (m~, mj),  

~2(mi , ms) exists. 
LEMMA 2.1. 

Proof: 

lim ~S(mi , ms) always exists. 
l--~*o¢ 

B S 
1 > ~'t+l(m~ , m3) _-> 71 (m~, mj). 
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Since the limit of a monotonic bound sequence always exists, the theorem 
is proved. 

Now let us consider the following classification of errors in a finite 
automaton M being driven by  a source S as above. 

DEFINITIO~ 2.4. An error E = (m~, mj) is 
a. definite if and only if there is an 1 such that  ~ S ( E )  = 1. 
b. finite if and only if ~S(E) = 1. 
c. correctable if and only if "yS(E) > O. 
d. non-correctable if and only if mS(E) = 0. 

III. FUNDAMENTAL RESULTS 

In this section we will derive some fundamental properties of errors 
and will show the connection between the concept.s of correctable and 
finite errors. 

THEOREM 3.1. I f  ~(m~, ms) = gl and "y(ms, ms) = gs, then 
1 - I g~ - gs I => ¢ ( m ~ ,  m s )  _-> (g~ + g~) - 1. 

Proof: Let TO be the set of tapes that  do not correct (ml ,  ms) or 
(ms, ms) ; T1 be the set tha t  corrects (m~, ms) or (ms, ms) but  not both; 
T2 be the set that  corrects (m~, m2) and (ms, ms); and T3 be the set 
that  corrects (m~, ms). We know that  TO, T1, and T2 are mutually 
disjoint and that  T2 c T3 c T2 U TO. We will use Pr~(T) to mean the 
probabili ty that  a tape t of length 1 is in T. Therefore, we have 

g~ ÷ g2 = lira (Pr~(T1) -~ 2Prz(T2))  
1-->~ 

= lira Prz(T1) + 2 lira Prz(T2).  

But  we also have for all l, Pr~(T1 ) + Pr~(T2) =< 1. Therefore 

gl -4- gs =< 1 ~- l imPr l (T2 )  =< 1 ~- g~ 
1~¢o 

where gs = 7 ( ml ,  m~). Hence g~ > g~ -4- g2 -- 1. Likewise, letting T l l  be 
the set of tapes which corrects ( s h ,  ms) and not (ms, ms), and T12 be 
the set which corrects (ms, ms) and not (m~, ms), we have 

~/l(m~, ms) = Pr~(Ts) d- Prz(T11) 

and 

Thus 

~q(m2, ms) = Prz(T2) + Prz(T12).  

] ~ t (ml ,  ms) -- 7z(ms, ms) I -- [ P r z ( T l l )  -- Prz(T12) [. 
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But 

[ P rz (Tl l )  - Pr~(T12) ] =< Pr~(T1) =< 1 - (Pr~(T0) + Prz(T2)) 

Now taking limits as i goes to infinity we get 

[gl-g~l < l - g ~  

g~ =< 1 -- [ g l - -  g2[. 

COROLLARY 3.1. The set of finite errors in an automaton • driven by a 
source with property P induces a partition on the set of states. That is, there 
is a Partition ~r~. on the states of M so that E = (m~, ms) is finite if  and 
only i f  m ( : ~ :  mj ( rF ) .  

Proof:: I t  is obvious that  if ~,(m~, ms) = 1, then ~'(ms, mi) = 1 by the 
symmetry of the definition of being corrected. Likewise ~,(m~, m~) = 1. 
Now by Theorem 3.1 we have that  if ~,(m~, ms) = 1 and ~,(m~., ink) = 1, 
then ~,(m~, m~) = 1. Hence, :the finiteness relation is an equivalence 
relation and partitions the set of states, 

T~EOREM 312. Let C c M X: 'M be the relation (m~ , m~) C C if  and 
only i f  (m~, m~) is a correctable error. Then an error E = (m~ , ms) is 
finite i f  and only i f  (m~, m ~ ) ~  C and for all tapes t, (~(m~, t), 
~(ms, t)) C ¢. 

Proof: If (m~, ms) is finite then obviously (m~, ms) i s  correctable. 
If there is a t~pe t such that  (6(m~, t), 6(mj,  t) ) is not correctable, then 
for all t'(6(m~, tt'), 6(ms, tt')) is not correctable. Hence, ~,(m~, ms) 
< 1 - (k) z°(t) < 1 where lg( t )  is the length of the tape t, and k is the 
constant greater than zero associated with the source. Therefore 
(m~, ms) is not a finite error. Conversely, let us assume that  for all 
t (~(m~, t ) ,~(mj ,  t)) C C. LetA = {(mk,ml) ] for some t~(m, ,  t) = m~ 
and ~(mk, t) = ml}. Then, for each (mk, m~) ~ A, pick a { which cor- 
rects (m~, m~). Let p - U where r = max lg(t'). Then ~,~(m~, ms) => 
1 -- (1 , '~p)  ~/~l where [//r] is the greatest integer less than~//r. Hence 

limy~(m~., ms) ~ 1 -- lira (1 -- p ) ~ / ~ .  : 

Since p > 0 we have Y(m~, ms) = 1. 
From this theorem we can get some idea of the connection of C and 

H~. We can also see that  since the concept of an error being corrected 
is not dependent upon a source, the property of it being finite is also 
independent of the source. (This is true only as long as  we are only 
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dealing with a source with property P.)  The next theorem is a stronger 
characterization of 7r~ with respect to the relation C. 

THEORE~ 3.3. ~rr is the largest partition with the substitution property 
such that m~ ~ mi(~r~) ~ (m~, mj)  C C. 

Proof: Let ~- be a parti t ion with the substitution property such that  
m~ -=- m~(~r) ~ (mf,  mj) C C. Then, if m~ --= mj(~r), (m~, mi) ~ C. 
Also, since ~r has the substitution property, for all tapes t ~(m~, t) = 
~(mj,  t)(Tr) and hence (~(m~, t), ~(mj,  t))  C C. But by Theorem 3.2, 
this means that  m~ = mj(~rF). Therefore ~r = ~rF. 

An immediate consequence of this theorem is a decomposition of the 
automaton as follows. 

COROLLARY 3.2. I f  M is a finite automaton with a finite error partition 
7rr , then M can be state behavior realized by a cascade connection of two 
automata M/~rF and T, where all errors in T are finite, and M/~rF has no 
finite errors. 

Proof: By Theorem 3.3, ~re is a partit ion with the substitution prop- 
erty. Hence we know (Hartmanis,  1962) that  we can decompose M into 
a cascade connection of two automata where the state of the front 
automaton distinguishes between blocks of the partit ion and the back 
machine distinguishes the elements of a single block. 

Let us now look at an example in order to demonstrate these theorems. 
Let M = ({a, b, c, d, e}, {0, 1}, ~) where ~ is the mapping shown in Table 
I. I t  is easy to show that  

C = {(a, d), (d, a), (b, c), (c, b), (e, a), (a, e), (e, d), (d, e), (b, e), 

(e, b), (e, e), (e, e), (a, a), (b, b), (e, e), (d, d), (~, e)} .  

There are four equivalence relations with the substitution property con- 
tained in C. 

~ = {a, 6, e, c~, el 

~,  = {a, d, 5, e, el 

~ = {a, b, c, 3, e} 

~r4 = {a ,  d, b, c, e l .  

The greatest one is m • Thus the only finite errors are 

{(a, a),  (b, b), (c, c), (d, d), (e, e), (a, d), (d, a),  (b, c), (c, b)}. 

Also usirtg Theorem 3.3 we can get a simple proof of a special case of a 
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T A B L E  I 

A~TOMATON A 

0 1 

a b d 

b a b 

c a b 

d b d 

e a d 

theorem which was proved b y  Winograd  (1964),  and also in another  
context  by  Gilbert  and Moore  (1959). 

COROLLARY 3.3. Al l  errors in an automaton M are finite i f  and only i f  M 
has a reset tape. ( A  tape t is a reset tape i f  6(m~ , t) is independent of m~ .) 

Proof: F r o m  Theorem 3.3 we find tha t  all errors in an  a u t o m a t o n  M 
are finite if and only if all errors are correctable. Define a tape 
t = ht~ • • • t~_l(k = number  of states of M )  as follows: 

h corrects ( m l ,  me) 

h+l corrects (~(ml , h " "  t~), ~(mi+2 , h " "  h) ). 

If  it is possible to const ruct  such a t, then  t is a reset sequence. I t  is not  
possible to const ruct  such a tape if and only if for some i, 
(~ (ml ,  h " ' "  t~), ~(m~+2, h " ' "  h ) )  is no t  a correctable error. Bu t  then, 
this (~(m~, t~ . . .  t~), ~(m~+2, h . ' -  t~)) is not  finite. Hence we can 
const ruct  t if and only  if all the errors are finite. 

Let  us now look a t  another  example to show the  use of this theorem. 
Let  M = ({a, b, c, d}, {0, 1}, ~) where 8 is shown in Table  I I .  I t  is easy 
to see tha t  all the errors are correctable. Hence rr~ = { ~ }  and all 
errors are finite. Upon  examinat ion it can be seen tha t  the tape  000 is a 
reset tape since a(m~, 000) = d regardless of me. 

IV.  E R R O R S  I N  E X P A N D E D  A U T O M A T A  

This section will discuss the possibility of adding states to a finite 
a u t o m a t o n  so t h a t  the new a u t o m a t o n  has, in some sense or another,  
be t te r  error propert ies and still is a realization of the original au tomaton .  
I t  will be shown tha t  for one sense of "nicer"  this is not  possible and tha t  
the reduced a u t o m a t o n  has the best  error properties. We will use E ( M )  
for M X M,  the set of ordered pairs of s tates of M, and E ( A )  <- E ( B )  
for the  concept,  which has not  been made  precise yet ,  of the error proper-  
ties of an  a u t o m a t o n  A being bet ter  than  those of an  a u t o m a t o n  B. 
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o 1 

a b c 

b c d 
c d b 
d d b 

There are three properties which we intuitively require for a notion 
of < :  

1. I t  must  be source independent. 
2. The comparison of errors in A and in B must  be a total  comparison. 

Tha t  is, every error in A must  be compared to at  least one error in B 
and vice-versa. 

3. For any  source, an error in A must  have at  least as high a probabil i ty 
of correction as tha t  of those in B to which it is compared. 

We are thus led to the following definition which satisfies these three 
properties. 

DEFINITION 4.1. Let A = (M1, ~, ~1) and B = (M2, ~, ~)  be two 
finite au tomata  with the same input alphabet. We will say errors in A 
are less than  errors in B, E ( A )  < E(B) ,  if and only if there is a mapping 
of pairs of states of B onto pairs of states of A, h: M2 X Ms --* M1 X M1 
onto, with the proper ty  tha t  if (m~, ms) C M2 X M2 is corrected by  a 
tape t, then t also corrects h(m~, m~.) ~ M1 X M1. 

We can see tha t  the definition fits our intuitive notion of the set of 
errors in one au tomaton  being bet ter  than the set of errors in another 
since for any  source S if ~'(m~-, mj.) = c, then ~,(h(m~., m~)) ~ c. Thus, 
h takes finite errors into finite errors and correctable errors into cor- 
rectable errors. Also, h -~ assigns to each error in A at least one error in 
B with the same or a lower probabil i ty of being corrected for any 
s o u r c e .  

We should note at this point that the relation < is not an ordering 

on the set of finite automata. As an example of two automata which are 

not isomorphic and ye t  forwhich b o t h E ( A )  _< E(B)  and E(B)  <= E ( A ) ,  
let A be the two input, rood 4 clock and let B be the two input, mod 4 
counter of ones. The two are not isomorphic and yet  since all the errors 
in both are not correctable and they both have the same number  of 
errors, E ( A )  <- E ( B)  and E(B)  <= E(A) .  
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We will now show some of the properties of this relation. 
LEMMA 4.1. I f  M1 is a submachine of M2 , then E(M1) ~ E(M2).  
Proof: Let h be the identi ty mapping on M~ × M~ and let it map all 

other pairs in M2 X M2 into (ml,  ml), ml C M1. Now if (m~, m~) C 
M~ X M~, then the set of tapes which correct it in M1 is the same as the 
set of tapes which correct it in M2. However, if (m~, m j ) i s  not in 
MI × M~, then h(m~, mj) = (m~, ml) and is thus corrected by  all 
tapes. Therefore h has the desired properties. 

LEMMA 4.2. I f  a finite automaton M~ is a homomorphic image of a finite 
automaton M~, then E(M~) <= E(M2).  

Proof: Let g be a homomorphism of M2 onto M~ and then let h(m~, m j) 
= (g(m~), g(m~)). Also, let t be a tape that  corrects (m~, mj). We have 
~(g(m~)~,t) = g(4(m~, t)) since g is a homomorphism of M2 onto M~. 
Also, g(~2(m~, t)) = g(~2(m~, t)) since t corrects (m~, mj). Thus we 
have ~l(g(m~), t) = g(~2(m~ , t) ) = g(~2(ms , t) ) = ~(g(mj) ,  t) ). There- 
fore t Corrects (g(m~), g(mj))  = h(m~, mj). Thus h has the required 
property. 

TREO~EM 4.1. I f  A is a reduced finite automaton and B is any other 
automaton which realizes A, then E ( B )  >= E ( A  ). 

Proof: If B realizes A, then B is a homomorphic image of a submachine 
of A (Hartmanis and Stearns, 1964). By using Lemmas 4.1 and 4.2 
the theorem is proven. 

COROLLARY 4.1. I f  R is a regular set of tapes, a finite automata with 
minimum errors that recognizes R is the minimum automata which recog- 
nizes R. 

Thus if we are interested in obtaining an automaton which realizes a 
given automaton (or recognizes a given regular set) and which has 
minimum errors under our definition of the ordering, we should use the 
reduced automaton (or the minimum one associated with the set of 
tapes) since any state splitting, or adding states, makes a new automaton 
whose errors are no less than those of the original one. 

The results of this section can be easily misinterpreted. I t  appears to 
claim that  techniques such as triplicating and multiplexing are not 
effective since they increase the number of states. Hence, the errors in 
the multiplexed automaton are greater than those in the original one. 
However, the benefit of multiplexing and triplicating lies in that  they 
reduce the probability of a malfunction causing an error between states 
which are not behaviorally equivalent. Since we consider automata with- 
out outputs the concept of behaviorally equivalent states does not arise. 
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If we want to use our theory to handle such cases, We must consider the 
automaton modulo the relation of behavior equivalence. However, even 
after doing this the multiplexed or triplicated automaton has errors 
which are not less than the original. Thus the advantages of these meth- 
ods, like those of increasing the reliability of components in a physical 
realization of the automaton, do not show up in the theory..On the other 
hand, a possible disadvantage does. 

RECEIVED: November 13, 1964 
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