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This paper studies a class of second order forced oscillation systems 
with nonlinear damping and nonlinear restoring forces. The boundedness 
of the solutions is obtained by recognizing the behavior of the solution 
path in the phase plane. All solutions are shown to converge to a unique 
solution provided the characteristics of the nonlinear terms are suffi- 
ciently smooth. The convergence of solutions is investigated by studying 
the asymptotic stability of a second order linear equation with time- 
varying parameters formed from the nonlinear system. Based on the 
Second Method of Lyapunov, two different V functions are used to 
obtain different sufficient conditions on the asymptotic stability of the 
linear system. 

I. INTRODUCTION 

In the last two decades, a considerable amount of work has been given to 
the study of second-order nonlinear differential systems [l-4]. This paper 
is to study a class of second-order differential systems of the form 

2 +f(-q + g(x) = e(t) . (1) 

Figure 1 shows a control system having a particular form of nonlinear 
damping and nonlinear feedback of the type described by Eq. (l), namely, 
with g(x) = Kg,(x) and e(t) = k.?,(t). 

It is the purpose of this paper to investigate (a) the boundedness of x(t) 
and k(t) when e(t) is bounded, and (b) the conditions for asymptotic stability. 
The technique by Loud [4], which was to construct a bounded region, is 
improved and extended to (1) in Section II. Section III studies the stability 
problem of a second-order linear differential equation by means of Lyapunov 
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functions. Sufficient conditions on the time-varying parameters are obtained 
for asymptotic stability. These results are used in Section IV to establish 
the convergence theorems which show that, under certain conditions on 
f(9), g(x), and e(t), the steady state solution will be independent of the 
initial conditions. 

FIG. 1. Nonlinear control system 

II. THE BOUNDEDNESS OF SOLUTIONS 

The scheme described below is to construct a closed curve in the phase 
plane such that every solution of (1) will ultimately move to the inside of it. 
This requiresf(&), g( x , and e(t) to have certain characteristics. Furthermore, ) 
if the forcing function is periodic, the existence of periodic solutions will 
immediately follow with the aid of Brower’s fixed point theorem. 

THEOREM I. Let 

(1) f(y), g(x) and e(t) be wntinuous, 

(2) g(x) be a monotonically increasing function that satisfies the Lipschitz 
cMtdition, 

(3) g(O) = 0, f(O) = 0 
and ;f there exist positive constants b, c, and E such that 

(4) f(y)/y > b, g(x)lx > c, I e(t) I G E 
then for any solution of (I) when t > to (t, depending on the particular solu- 
tion) , 

I 44 I G 1 

++ +- [ 21 l * exp (- 2 1/&S) - 1 )I for c >L 8’4 

( 3(‘(t) 1 < J = 2E/b. 
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REMARKS. For certain special cases, namely, when g(x) = x, f(r) and 
e(t) possess first derivatives, and z = 2, Eq. (1) reduces to the form 

f +f(z> 2 + g(z) = e(t) , 

which can be found discussed frequently in the literature. In general, how- 
ever, such a reduction is impossible. The general form as given by (1) and 
which is discussed in this paper requires only the continuity of f(r), g(x), 
and e(t) in order for the existence of solutions (not necessarily unique). 
The functions f(y) and g(x) may be represented as shown respectively 
in Fig. 2 and Fig. 3. If g,(O) # 0 and fi(0) # 0, these difficulties can be 
removed by letting 

then let 
and f(r) = MY) - .W); 

4) = 40 - gdo) - .fdO) - 

FIG. 2. Characteristics of f,(y) 

PROOF. Letting y = 2 Eq. (1) can be written in the following form: 

Lt=y 

9 = - &4 --f(r) + 4) (2) 
and 

4J = /f(r) -- 
dx Y 

(3) 
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Now consider the following equation 

*=y 

j= - by + (MY Or -g(x) (4) 
and 

dr = E l?(X) --- 
dx -b+lYl Y 

(5) 

Since f(y)/y > b and 1 e(t) ( < E, dy/d x in (3) does not exceed dy/dx in (5). 
Then, if a closed region can be found in which the solutions of (4) will be 
ultimately bounded, the boundedness of the solutions of (2) will be readily 
established. 

FIG. 3. Characteristics of g(x) 

Let a((11 < 0) and p(16 > 0) be such that g(a) = - E and g(p) = E. 
u and /3 are uniquely determined because of the monotonic property of 
g(x). Then - E/c < 01 < 0, and 0 < p < E/c. 

Now in Eq. (5) let dy/dx = 0 

-by=g(x)-E for Y>O (6) 
-by=g(x)+E for y<O. (7) 

These two curves are shown in Fig. 4. To the left of the curve (6), dy/dx > 0, 
and therefore the solution curve must move upward and to the right until 
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it reaches a maximum of y when crossing. After crossing, it must move 
downward and cross the line x = fi before it reaches the x-axis at some x >,5. 
Furthermore, for x > ,8, as y decreases and .lc increases, Cayjdx becomes 
increasingly negative for y > 0. The solution path must move concave 
downward toward the x-axis. After crossing the x-axis, dJf/dx becomes 
decreasingly positive for x > /3 and y < 0. The solution path now moves 
concave toward the curve (7). 

A similar set of statements can be made regarding the solutions of (4) in 
the half plane y < 0. 

Let C, be the solution path which starts at (/I, yr) with yr > 2E/b, passes 
through (x2 , 0) and then intersects with the line x = 01 at (or, ya). 

Let 

G(X) = j)(r) dx. 

Y 

FIG. 4. Phase-plane curve 
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Integrating (5) from (& yr) to (x2, 0), and from (x2 , 0) to (xi, yi), which 
is the minimum point of C, , on the curve (7), one has 

+ r: = b s,” ydx + G(G) - G(B) - E(x, - B) (8) 

-1 
-+ = b /;:ydx + G(xi) - G(x,) + E(xi - x2). (9) 

If x, < /?, then g(xJ <g@) = E, so that 

y,= -&i)+E> 213 
I b b ’ 

If xi > p, one observes that the integrals in (8) and (9) represent the areas 
between the solution curves and the x-axis, and because the solution curve 
is concave, they are greater than the areas of the triangles formed by replacing 
the solution curves by straight lines. That is 

and 

b 
s 

ydx 
B 

> ;Yl(x2 - IQ, 

b 
s 

Since xi > j?, from (7), 

lYt, ,gM+E- 23 
b b 

so 

b j-“ ydx > E(x, - x,). 
=a 

In addition, utilizing the relations 

Yl>y, ‘34 - ‘3) > 0, 
gives 

b 
> ( 

2E 
7 Y1- 7 ) 6% - 8) > 0. 

Hence for yr > 2E/b, yr > 1 yt I. Now consider the case when yr = 2E/b. 
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Suppose now that xi > j3, then it follows that 1 yi 1 > [g(p) + El/b = 2&b 
by (7). However, by (lo), yf - yf > 0 or 1 yi 1 < yi = 2E/b which is a 
contradiction. Hence xi < p and ( yi ) < 2E/b. Thus, it has been shown that 
for all points in arc C, , the inequality 1 y 1 < yi with yr > 2E/b is true. 
A similar statement can be made for the corresponding arc C, starting at 
(CY, y4) with y4 < - 2E/b to (8, ya) as shown in Fig. 4. 

Now let R be the region bounded by a closed curve r. r consists of C, 
and C, with y1 = I y4 1 = 2E/b, and the straight line portions from (/3, ys) 
to (8, n) and from (01, y3) to (01, YJ. 

Consider outside r any solution of (5). Let this solution first cross x = /3 
at y = ylO. The uniqueness fo this solution is guaranteed by g(x) satisfying 
the Lipschitz condition. Then this solution will cross the line x = j3 at 

Y = Yll ) YIZ 9 Y13 *a* after consecutive turns through the lower half plane 
and back to the upper half plane. By (IO), yr,, , yri , ylZ 0.. form a monotonic- 
ally decreasing sequence as long as they are not less than 2E/b. If, as t - ~0, 
the solution still could not enter R, then y would have a limit and the solu- 
tion would have a limit cycle outside of r. But this contradicts the statement 
I y 1 < yr for y1 > 2E/b. Therefore the solution will spiral into R in finite 
time. 

Since dy/dx in (3) does not exceed dy/dx in (5) the solution curve of (2) 
can cross that of (4) only from left to right. Hence all solutions of (2) are 
carried into R. Once the solution curve enters R or either it starts in R, it will 
remain permanently in R. 

The boundary of R in y is clearly ( y 1 < J = 2E/b. The maximum of 
I x I is the larger of xa and I x5 1. However, the bound for x can be improved 
by choosing a starting point of the solution curve as close to the point M on 
the curve (6) as possible. Let a solution curve of (4) start at (0, 2E/b) instead 
at (8, 2E/b) and intersect the x-axis at .Y; , and let a solution curve of the 
following system 

k=Y 
Jo = - by - es + E (11) 

4 
z= 

-b-F+; w9 

start also at (0,2E/b) and intersect the x-axis at X, . For y > 0 and x > 0, 
dy/dx in (5) never exceeds dy/dx in (12). Hence xi < x, . The same reasoning 
can be applied to the corresponding curve in the lower half plane, so that 
both xh and ] x; ] are not greater than xr which is considered to be the bound 
of x. 

If 4c/b” < 1, the solution of (11) with initial condition (0,2E/b) is 

x = (E/c) + DIepI’ + D,evzf 
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where 

Pl = -p+&)“-c, p2=+ ;“-& 
4 1 

D1=-;[l-&g.], D2+[l+Jq. 

Since p, < 0, p, < 0, D, < 0, and D, < 0 then x7 < E/c. Hence 

x; d x7 < E/c for 4c/b2 < 1 (13) 

If 4c/b2 > 1, the solution curve of (11) starting at (0, 2E/b) intersects the 
x-axis at x7 which is obtained as 

Hence 

-__ 
?L 
b2 

1 sexp (- n 
2 1/(4c/b2) - 1 )I 

$--l*exp(- 
7r 

* 
2 d(4c/b2) - 1 )I (14) 

Figure 5 shows the bound for x vs. c with E = b = 1. This completes the 
proof of this theorem. 

0 .2 .4 .6 .8 I 1.2 
FIO. 5. Bound of x when E = 1, b = 1 
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Having constructed a closed region from which no solution path can leave, 
the existence of periodic solutions will follow immediately if the forcing 
function is periodic. Let (x0 , ya) be any initial point in R of the t = 0 plane. 
Then s = r(t, x,, , yO) and y = y(t, x,, , yJ continue to exist as functions 
of t, x0 , and y,, . In particular, in the plane t = T, the point 

.v=~(T,xo,yo) Y =Y(T,-Q ,yo) 

defines a transformation of a closed region into itself. This transformation 
is continuous since the right members of (2) are continuous and the solution 
paths are all continuous. By the Brouwer’s fixed point theorem, there exists 
at least one fixed point (x*, y*). If a solution starts at (x*, y*), the transforma- 
tion will carry it back to (x*, y*) at T. Since e(t + T) = e(t), a second 
transformation from T to 2T is identical to the first one. Hence a solution 
x(t + T), y(t + T) with initial point at (x*,y*) will be the same as the 
solution x(t), y(t) with the same initial point, i.e., 

s(t) = x(t + T) = s(t + nT), 

n = an integer. This shows the system as defined by Eq. (1) to have at least 
one periodic solution with period T. 

For autonomous systems, i.e., e(t) = 0, by Theorem 1 R vanishes. Under 
these conditions the system is asymptotically stable in the sense that any 
disturbances produced within the system will tend to zero. However, this is 
not true in nonautonomous systems. For example, consider the system 
shown in Fig. 1 but which contains a sinusoidal input, a linear plant and a 
nonlinear feedback such that it is described by a Duffing equation of the form 

i+bx+x+ax3=Esinwt. 

This equation may have three periodic solutions which corresponds to two 
stable fixed points, and one unstable. In Section III, the existence of only 
one stable fixed point is to be shown subject to further conditions imposed 

on f(r) and g(x). 

III. STABILITY OF SECOND ORDER LINEAR SYSTEM 

The differential system considered is of the form 

ii + p(t) zi + q(t) u = 0 

which is equivalent to 
zi=v 
ti = -p(t) v - q(t) u 

(15) 

(16) 

6 
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where P(t) and q(t) are assumed to be continuous and q(t) > or > 0. The 
Second Method of Lyapunov is used to study the stability problem. Two V 
functions are considered. 

(A) Consider the function’ 

V=+Au2+uv + 3 Bv2 (17) 

where A and B are constants, and A > 0, AB > 1. Then V is definite posi- 
tive. 

or 
r = - {q(t) u* + [&7(t) + p(t) - A] uv + [BP(~) - 11 v”> 

v = - [q (u + Bq +; - A v)’ + (BP - 1 _ Q + ‘;- A’2) 41 . (18) 

Since q(t) > ql > 0, and if the coefficient of vs is 

BP - 1 - (p + Bq - A)2 

I 

2 l 

+l ’ 
(19) 

where E is a small positive fixed quantity, then r is definite negative, V is a 
Lyapunov function and the solution of (15) is asymptotically stable. Equa- 
tion (19) when rearranged gives 

P”-2BPq+B2q2-2AP-2(AB-2)q+A2+4qc<0, 

or 

(p - Bq - A)2 - 4(AB - 1 - c) q < 0, cw 

which represents in the p - q plane the region bounded by a parabola. 
From (19), 

P>$(l+E+ (P + Bq - Al2 * )>O, 

so the parabola must lie only in the first quadrant of the p - q plane. The 
equation of the parabola has two terms on the right side, namely, 

P=Pz+Pc, p, = Bq + A (straight line), 

P,=f2dAB- 1 - E & (parabola). 

1 Starzinsky [7’J used the same function but a different approach. His result is 
incomplete and too restrictive. 
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The stability region is also bounded by the line q = q1 as shown in Fig. 6. 

FIG. 6. Stability region 

Consider the case 

O~Pl~P(OdP,~ 0 < Ql G !7P) G 42 

which represents the region bounded by a rectangle. In order to see the rela- 
tionship between these parameters for which the rectangle will be located 
in the stability region, let a parabola pass through (ql , pl) and some point 
(q; , p,), qk > qz , as shown in Fig. 7. These two points will determine the 
constants A and B. Then 

p,=Bq,+A-221/AB-1-cfi (21) 

p,=Bq;+A-221/AB-l---a (22) 

p;=Bq,+A+2dAB-l-dG. 

From (21) and (22), 

(23) 
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A*=(d;i;;i+Z/Tl)2B*; l+E 
4 & 

4;; must be such that (for A* and B* are real values) 

(25) 

The rf sign indicates that there are two sets of B and A, i.e., two parabolas 
passing through the same points (ql , p,) and (qi , pr). Subtracting (21) 
from (23) and by (26), 

P;(q,,P,,q,‘,E)*=pl+41/AB- 1 - l ‘m, 

x 
[ 
Pl f l/p: - wz - 6g2 (1 + 4 1 * (28) 

Evidently, pi on the parabola of B+ and A+ is greater than p: on the parabola 
of B- and A-, i.e., 

It is apparent that as 41; increases in (28), p;(ql , p, , qi , e)+ decreases. When 
qi increases to such a value that the equal sign in (27) holds, the two parabolas 
converge to a single one. On the other hand, as qi decreases, ph(ql , p, , q; , e), 
increases (see Fig. 7). Since qi is not allowed to be smaller than q2 , then a 
maximum pi can be obtained by taking the parabola passing through (ql , pl) 
and (q2 , p,) with B = B, and A = A+. For stability consideration, the 
conditions 

P2 G PXPl9 Ql I 42 14+ (29) 

(30) 

must be satisfied. 
Now consider an E = 0 parabola, and let this parabola pass through the 

points (ql , pl) and (q2 , PA with 

B = B(P, 9 q1sq-z 9 01, and A = &,vql, 42 3 01, - 
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It is evident from (28) that 

P~(P,,ql,q,,o)+>P;(Pl,q,,q,,')+>Pz. 
Since 

= W-G + 6iJ2 1 
4 B+ + B+(q1 7 Pl * q2 30) 

FIG. 7. p -q plane representation 
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and 

~@oP;(ql ,A 3 42 3 4+ = P&71 ,A ,Pz,O)+ 

= Pl(%l + 42 + 2 +a + 4 (!I1 + d/4142) dP12 - <G - 1/41)2 
wii- a2 

then, for a given 8 = pi(ql , PI , q2 , O), - p, , an E can always be chosen 
so small such that 

Pi(41 3 Pl 9 42 3 O)+ - P&z1 , Pl , $2 ,4+ < 8. 

Hence one concludes that the conditions for stability are 

P2 < 
Pl(%l+ 42 + 2 6) + 4 (41 + A.&G) y’p12 - (49, - d-g)2 

w-ii - da” 

PIxGr-TiI. (32) 

The latter follows immediately from (30): 

Relation (31) gives the restriction onp, explicitly in terms ofp, , ql , and q2 . 
Conditions will now be found which gives the restriction on q2 explicitly in 
terms of q1 , p, , and p, . Only the E = 0 parabola is considered here since 
it is the limiting case. 

pl=Bq,+A-2dAB-ldl/q, (33) 

p,=Bq;+A-2-a (34) 

(35) 

From (33) and (35) 
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From (33) and (34) 

+2dAB-- -2/,=4/p 2(P, - PA -1 . 
B l 

__-- 
(P, + P,) f 2 l/PIP2 - 4!Il I 

(36) 

Since qi > q1 , the term inside the bracket must be greater than 1, i.e., 

2(P2 - PI) 
Pa + Pl f 2 dPIPS - 4% 

-l>l, 

or 

- 2P, > + 2 dPIP2 - 4% * 

This inequality is true only when the - sign on the right side is utilized. 
Then there is only one parabola, i.e., only one qi for each fixed pa . It can 
be shown that when 

Pz=Pl+ 

in (36), qi is maximum, and 

!7;max = (dii + PI)” * 

Therefore the condition for stability is 

if 

then 

- 4!7, 
- 11’ Ql 

if 

then 

(37) 

Relation (38) follows from the fact that one can take the parabola passing 
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through 6.~1, A + (8&i) + 4 A&> instead of the one passing through 

(91 9 P2)- 
(B) Consider the function 

Then 

(39) 

(40) 

Now if 

4+ 2P9, E or * > cl . 
2’ -- 

4 ‘T 299’ (41) 

then r is semidefinite negative. This implies that the solution is stable only. 
In addition, if p is also bounded from above, i.e., p < a, < *, then the solu- 
tion is asymptotically stable. In this case it requires the existence of Prt, , 
whereas for the V function in (A) this is not necessary. The equal sign in (41) 
defines a surface in the three dimension space, in which p is allowed only 
in one side of the surface. 

To show the asymptotic stability under these conditions, it is sufficient 
to show that as t + a, V + 0. Suppose that instead V approaches a position 
constant V, as t + 03. Let V, < V < V, + e1 for t > t, , l 1 > 0. 
Since 0 < l/a2 < l/q < I/a, , then 

1 1 
22 + ---& aa < 242 + $ v2 < u2 + & v2 . 

V is a nonincreasing function so that 

v, < v < u2 + ; v2 and u2+-$2$v<v~++ 

Hence, the solution path for all t > ti must be circulating in the region 
bounded by the two ellipses: 

L,:l(p++/= v,+q 

L, : u2 + J- v2 = 00 
a1 

as shown in Fig. 8. 
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FIG. 8. u - ej plane representation 

Assume a solution path pass (0, as) at t, and (u2 , q) at t, , with CX* > 01~ > 0. 
Integrating (15) from t, to t, , one has 

s 
t2 

ddt = - 
t1 J ‘1: b(t) w + q(t) 4 dt- 

Since 

and 

so that 

then 

and 

P < - a; < 0 for t, < t < t, . 
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Hence 

dV= v,- v2>cE01; a2-a1 >o. 
a3a3 + asA 

This shows that as long as the solution path lies outside L, , P’ decreases at 
least by 4 (a2 - ~J/(a30r, + a2&) in each arc such as shown in Fig. 8. 
Now since the solution considered has an infinite number of such arcs, V 
would have to eventually become negative, which is a contradiction. Hence 
V, = 0, or V -+ 0 as t + 00, and the solution is asymptotically stable. 

IV; CONVERGENCEOFSOLUTIONS OF THE NONLINEARSYSTEM 

The results in Section III will be used now to establish two theorems. 

THEOREM II. Let 

(1) f(r), g(x) and e(t) be continuous, 

(2) f’(y) e&ts and 0 -C A d f’01> < P, , 
(3) g’(x) exists and 0 < q1 < g’(x) < 4.2 ) 

then all solutions of (I) converge to a unique (steady state) solution provided 
relations (31) and (32) or (37) and (38) hold. 

PROOF. Let xl(t) and x2(t) be any two distinct solutions, 

% + f(4) + g(3) = e(f) 
5, +fP2) + g(x2) = 4) . 

Subtracting (42) from (43), 

(42) 

(43) 

2, _ 2, + fV.8) -f@l)(,2 _ jil) +&a) - &l) 
k2 - 21 x2 -x1 (x2 - Xl) = 0. WI 

Letting 

II = x2 - x1 , v = ti = 4 - il = y2 - y1 

in the above equation, the following equation is obtained: 

where 

ii + p(t) zi‘+ q(t) 24 = 0 (15) 

$)(q =f@2) -f(4) 
k, - 4 ' 
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and 

q(q = d4 - &l> 
* x2 - x1 

Now to prove the convergence of x is equivalent to showing that u + 0 as 
t --+ 03. By assumptions (2) and (3), p and 4 have the following properties: 

(a) p and 4 are continuous functions of t, 

(b) O<P,<P<P,, O<q,<q<q,. 

Then it follows immediately that 

u(t) = x&) - x1(t) 3 0. 

v(t) = its(t) - *1(t) --t 0 

as t -+ m provided relations (31) and (32) or (37) and (38) hold. 
This completes the proof of Theorem II. 
Assuming that the conditions in Theorem II are satisfied, one can also 

conclude: 

(i) If e(t) = 0, and g(0) = 0, andf(0) = 0, x = 0 is a solution; then all 
other solutions converge to x = 0. Hence, it is asymptotically stable in the 
large. 

(ii) If e(t) is periodic, all solutions will approach a limit cycle (only one 
fixed point as defined in Section II). 

(iii) If e(t) varies in random fashion, then the steady state solution is 
independent of the initial conditions. 

THEOREM III. In addition to the assumptions in Theorem I, if 

(1) g’(x) is continuous and g’(x) > q1 > 0 in 1 x 1 < I, 

(2) g”(x) exists and 1 g”(x) 1 < C, in 1 x I < I, 

(3) f’(r) exists and f’(y) b P, > 0 in I y I < J, 

then all solutions of (1) converge to a unique (steady state) solution proviakd 
P; > 2-=,/q, - 

PROOF. Consider any two distinct solutions. Equations (44) and (15) 
are used again. By Theorem I, the solutions of (1) will be ultimately bounded 
in R. Since f ‘(y) and g’(x) exist, p and q each have upper bounds in R. Then 
according to (B) in Section III, if the condition p + (4/2q) > l q/2 is satisfied 
u--+0 as t-m. 
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Now 

Let xs be some intermediate values between x2 and x1 , then 

4- 1 
[ x2 

y2g’(x2) - g’(x3) 
+ 

g’(x3) - -- 
2q W(x3) - Xl y 1 *2 

g’(x1) 
Xl 1 

. 
- 

Since xs is in between x2 and x1 , so that 

d(x2) - g’(x3) < &2) - g’(x3) = , gyx*) , < c, , 
x2 - Xl I I x2 - x3 

! 

d&3) - g’(xJ < f&3) - &!‘(xJ 

x2 - Xl I I x3 - Xl 
= I g”(%) I < c, * 

By Theorem I, 

then 

Now if pf > 2EC,Iq1 or p, > 2EC2/q,p, , let k = p, - (2EC,/q&). Since 
q < max g’(x) in R, and p > p, , then an E can be chosen so small such that 

2EC, 

p - qlP1 

2EG _ k > Q ->pp1--- 
QlPl 2 ’ 

Hence 

p+,,, 2q >P- 4>p_ 2. I ‘I =z>rq 
41Pl 2 * 

This completes the proof of this theorem. 
If the conditions in this theorem are satisfied, the same conclusions as 

that following Theorem II can be made. 
Note that the conditions in Theorem III do not depend on the upper 

bounds of f’(y) and g’( x w ic are required in Theorem II. However, the ) h h 
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bounds of 1 e(t) 1 and 1 g”(x) 1 are required in Theorem III but not in 
Theorem II. 

Consider the Duffing equation 

Jo + bx + x + ax3 = E sin wt 

with 0 < b < 2, a > 0. The solutions are bounded as 

1 x(t) 1 < I = E 1 + [ l/sexp(--Z 2/&)- 1 ,I (45) 

(46) 

Since 

g’(x) = 1 + 3a.9 > 1 , g”(x) = 6ax , 

then C, = 6aI, and 

?-%% = 12aEI. 
Ql 

If a or E is sufficiently small such that the inequality 

bz>------ 2t7 - 12aEP[t +ds-p(-2 dt4i.)_l)] (47) 

holds, then all solutions will converge to unique periodic solution having 
the same period as that of the forcing function. Otherwise it may have 
three periodic solutions or subharmonics. 

CONCLUSIONS 

In the last two decades numerous articles have been written on the beha- 
vior of nonlinear second-order differential equations. For the most part 
these articles treated very specific equations. This paper investigates the 
boundedness of the output variable and the time derivative of the output 
variable of a nonlinear second-order system containing a fairly general form 
of nonlinear damping and nonlinear restoring force under nonautonomous 
operation, the only restriction on the forcing function, e(t), being that it is 
bounded. This paper may be therefore considered as an extension and 
generalization of some of the previous works. 

The stability of solutions is investigated by studying the asymptotic 
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stability of a second-order linear time-varying equation which is formed 

from the original nonlinear system equation. Utilizing Lyapunov’s Second 
Method two different functions are used to obtain different sufficient con- 

ditions on the asymptotic stability of the linear system. 
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