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Abstract: Exact eigenstates of the pairing-force Hamiltonian are used to study paring models of 
Pb ~°e, Pb 2°* and Pb 2°2. The properties of the eigenstates are discussed as functions of the interac- 
tion strength g and numerical results are given for g = 0.146 MeV. This interaction strength is 
stronger than the value, g = 0.111 MeV, adopted in a previous study of these models which used 
the approximate methods of the theory of superconductivity. However, using the exact eigen states 
and the stronger pairing interaction, the experimentally observed spectra of these three nuclei are 
predicted with an average error of 0.1 MeV. This error is ~ as large as that of the approximate cal- 
culation in which the weaker pairing interaction was used. 

1. Introduction 

In  recent  years  m a n y  au thors  x -6 )  have s tudied pa i r ing  models  o f  the nucleus.  

In  these mode l s  the res idual  in te rac t ion  between those neut rons  or  p ro tons  no t  in 

c losed shells is a p p r o x i m a t e d  by  a pa i r ing  in terac t ion  and  the remain ing  nucleons  are 

assumed to be non- in terac t ing .  The  s tudy o f  these mode l s  has led to  a bet ter  under-  

s tanding  o f  such proper t ies  o f  the nucleus as the odd-even  mass  difference, the 

momen t s  o f  iner t ia  o f  de fo rmed  nuclei  and  the existence o f  an energy gap  in the spectra  

o f  even nuclei  7). In  mos t  cases, however ,  the app rox ima te  me thods  o f  the BCS theory  

o f  superconduc t iv i ty  a) or  the Bogol iubov-Vala t in  canonica l  t r ans fo rma t ion  9,10) 

have been used to s tudy the eigenstates  o f  these models .  Whi le  these app rox ima te  

me thods  can be just if ied in the theory  o f  superconduct ivi ty ,  they canno t  be just i f ied 

when they  are  app l ied  to the  nucleus. F o r  example,  Bayman  11) has shown tha t  the  

cr i te r ion  for  the  val id i ty  o f  the  app rox ima te  g round  state which results  f rom the use 

o f  these methods  is N ~ >> 1, where N is the number  o f  in teract ing pai rs  o f  part icles .  

This cr i ter ion is satisfied for  superconduc tors  but  it  is no t  satisfied for  nuclei  for  which 

N m a y  be a small  number .  We call the  mode l  o f  the nucleus tha t  uses these app rox ima-  

t ions to  ob ta in  the eigenstates  o f  the mode l  H a m i l t o n i a n  the "superf lu id  mode l " .  

In  this  paper ,  we use the  m e t h o d  developed in the  preceding pape r  12) (to be 

referred to as I in the fol lowing)  to s tudy the exact  eigenstates o f  pa i r ing  models  o f  
Pb2, °6, Pb  2°4 and  Pb 2°2. These eigenstates  will be shown to be long to the res t r ic ted 

class o f  eigenstates t rea ted  in subsect.  3.4 o f  I. In  s tudying these eigenstates,  we have 
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two purposes in mind. On the one hand, we investigate the properties of the equations 
derived in I (see eqs. (1.4) through (1.7) below) for a specific single-particle spectrum 
81 and for specific numbers of particles. (The single-particle spectrum is given in table 1 
below and the numbers of particles that we consider are 2, 4 and 6.) On the other hand, 
we evaluate the applicability of the pairing-force Hamiltonian as model-Hamiltonians 
for Pb 2°6, Pb 2°4 and Pb 2°2, by comparing the excitation spectra of the models with 
the experimentally observed spectra. We have chosen these three even isotopes of lead 
because they provide examples of one, two and three pair systems for which the pairing 
interaction is a good approximation to the residual nucleon-nucleon interaction and 
for which the single-particle (hole) spectrum is well defined by the levels of Pb 2°7. 
We have not incl~aded the odd-mass isotopes in our treatment since the pairing inter- 
action is not as good an approximation to the residual interaction for these isotopes 2) 
as it is for the even isotopes and their inclusion would not contribute significantly to 
the understanding of the model. 

Since the eigenstates of these models belong to the restricted class treated in I, 
the wave functions and energies of the states can be given in terms of a few para- 
meters, the pair-energies. These pair-energies can be obtained for each state with 
arbitrary accuracy by solving the coupled system of algebraic equations which they 
satisfy. The ease with which these pair-energies (and consequently the wave functions 
and energies of the states) can be obtained is the principal advantage of our methods 
over existing numerical diagonalizations of the model Hamiltonian 13-15). 

The model Hamiltonian that describes the neutrons of the isotopes under considera- 
tion is taken to be (see eq. (2.1) of I) 

H = Z 2BfNf--~ Z t Z  ' b~bf,, (1.1) 
f f f" 

wherefdenotes the set of single-particle quantum numbers (nljlml), 81 are the single- 
particle energy levels of an external single-particle potential well, and the double 
summation is taken over the set of states S (see sect. 2 of I). We ignore the protons 
since they form a closed shell and are assumed to be non-interacting. In eq. (1.1), the 
single-particle levels es are assumed to contain as many of the effects of the nucleon- 
nucleon interaction as can be included in an independent-particle model, i.e., in the 
sense of a Hartree-Fock treatment of the problem. The pairing interaction is then 
used to approximate the effects of the residual interaction between the neutrons 
(actually neutron holes) in the unfilled neutron shell. This model has been applied 
to these isotopes of lead by Kisslinger and Sorensen 2), who used the approximations 
of the superttuid model, and by Kerman et al 13), who performed a numerical diago- 
nalization of the Hamiltonian. In both these papers a pairing-interaction strength of 
g = 0.111 MeV was used. 

In sect. 2, we determine the parameters of the model. These parameters are the 
single-particle spectrum ef and the pairing-interaction strength g. For the single- 
particle spectrum el, we follow Kisslinger and Sorensen 2) and use the observed states 
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of  Pb 2°7. For  the pairing-interaction strength g, we derive a relation between the 
observed pairing energy of  a nucleus and the value of  g in our model of  that nucleus. 
Using this relation and the pairing energies obtained from the mass data given by 
Everling et al. 16) we find that any value of  g between 0.135 and 0.165 MeV will 
reproduce the pairing energies of  these three nuclei, within the experimental errors. 
We further determine g by requiring that our model give the same average excitation 
energy as that of  the observed states of  these three nuclei which can be identified as 
neutron excitations. This leads to the value g = 0.146 MeV, which is considerably 
stronger than the value 0.111 MeV used by Kisslinger and Sorensen. 

In sects. 3, 4 and 5 we obtain some of  the eigenstates of  the models of  Pb 2°~, Pb 2 o, 
and Pb 2°2 for the above choice of  parameters. In choosing which states to discuss we 
have, somewhat arbitrarily, restricted ourselves to some of  the low-lying seniority- 
zero and seniority-two states. These states have been chosen either because they 
correspond to the experimentally observed states or because they exemplify the prop- 
erties of  the equations being solved. We also compare the excitation energies of  these 
states with the experimentally observed excitation energies of  these nuclei in these 
sections. Here, we find that our treatment of  the model predicts the experimentally 
observed levels of  these nuclei with three times the accuracy of  those of  the Kisslinger 
and Sorensen treatment. Sects. 4 and 5 also include rather long digressions on the 
existence and interpretation of  complex pair-energies. 

For  easy reference, we now summarize the results of  I that we shall use in our study 
of  the isotopes of  lead. The wave functions and energies of the restricted class of 
N-pair eigenstates of (1.1) are 

N 

tP(fl . . . f s )  = C E P{ I-I (2efk-- Epk)-I }, (1.2) 
P k = l  

E = Epl + . . .  + E p ~ ,  (1.3) 

where C is a normalization constant and ~ e P  
the indices Pl • • • PN. The Ep, are roots of the N coupled equations 

where 

is a sum over the N. t permutations of  

F(Ep,) = g(1,  (1.4) 

(1.5) 

(1,6) 

= g + a E ( e , ,  - e,.)- ', 
j~g 

F(E) = E ( 2 8 : -  E) - I  
$ 

The restriction on this class of  eigenstates is the requirement that the pair-energies 
Ep, must be distinct, i.e., they must satisfy 

Ep, ~ Epl , all i # j ,  (1.7) 

in addition to (1.4). 
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2. Determination of  the Parameters of  the Model 

In discussing a pairing-model of a specific system, we must first determine the 
parameters of the model s s and g. For the even isotopes of lead that we are studying, 
we follow Kisslinger and Sorensen 2) and use the observed single-particle (hole) 
spectrum of Pb 2°7 to determine the levels ey contained in the set S. These levels, 
together with (lj) "< and the pair degeneracy 12, = j+½, are given in table 1. We use 
the index n defined in this table to denote the levels, instead of (lj)". 

TABLE 1 

The  single-particle levels in S in MeV 

n (0) ~ Q .  e n 

1 (p~)-  1 0.00 
2 ( q ) -  3 0.57 
3 ( p ] ) -  2 0.90 
4 ( i ~ )  + 7 1.63 
5 ( f~)-  4 2.35 

In order to determine g, we consider the neutron pairing energy defined by 

P(ZA P) = 2E(2.A/'- 1)-E(ZA p) -E(ZA r -2) ,  (2.•) 

where E(Z.,V'-#), # = 0, 1, 2, is the observed ground-state energy of the nucleus 
with ZA r -  # neutrons and z protons. We suppress the z-dependence of all the quan- 
tities in (2.1) since we are only considering the isotopes of lead. We assume that the 
three model ground states in (2.1) belong to the restricted class of eigenstates of the 
pairing-force Hamiltonian described in sect. 1. The model expressions for the energies 
E ( Z . U - a )  are then 

X 
E(ZA P) = ~ Ep,(2...V') + {the energy of the z protons), 

i=1 

.N'-I  

E(ZA/'-  1) = E Ep,(ZA/'- 1)+Sp.c+{the energy of the z protons}, 
i=1 

d - 1  

E(2.A/'-2) = ~ Ep,(ZAP-2)+{the energy of the z protons), 
i = l  

where Ep,(2.A/'-#) is the pair-energy of the ith pair of neutrons in the ground state 
of Z A / ' - #  neutrons. Substituting these expressions into (2.1), we obtain the model 
expression for P 

em.a(ZA/') = 2so, -Ep,.(2.A/" ) 

.h"- 1 

+ Z 2 E p , ( 2 . / V ' - -  1 ) - E o , ( 2 c ~ ) - E p , ( 2 . A / ' - 2 ) } .  ( 2 . 2 )  
iffil 

P 

Note that the expression for P (2.1) reflects only the effects of the residual nucleon- 
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nucleon interaction when the contribution of the self-consistent field to E(ZW'-#)  
can be approximated by a linear function of #, i.e., all contributions in a "Taylor 
series" expansion of this part of E(ZW'-/~) proportional to #2, #3 . . . .  are ignored. 
We also note that the last term of (2.2) also vanishes if quadratic and higher powers 
of/~ are ignored in expansions of Ep,(ZW'-/0. It is therefore consistent to ignore the 
last term in (2.2) if we are to identify P with Pmoa- We now determine g by requiring 
P(2.W') = Pmod(ZAr). This leads to the relation 

P ( 2 ~ )  = 28v.c-Ep,.(2./ff ). (2.3) 

Thus, the pairing energy determines Eper, the pair-energy of the.W'th pair in the 

ground state of ZW" particles. The ¢4/" equations (1.9)then determine the remaining 
(JV'- 1) pair-energies E p , . . .  Ep,r_ 1 of the ground state and the interaction strength g. 

Since we are dealing with the interactions between holes in the 126-neutron shell 
in the isotopes of lead, eq. (2.3) requires a small modification. If  we let 2N be the 
number of neutron holes in the 126-neutron shell, i.e., 2N = 126-ZA/" and let 
P(2N) = P(2.W') then a repetition of the steps that led from eqs. (2. I) to (2.3) shows 
that 

e ( 2 n )  = (2.4) 

Therefore, the pairing energy defined by (2.1) determines the pair-energy Ep~. 1 (2 N+  2) 
of the (N+ 1)th pair of holes in the ground state of 2N+2 holes. 

We use the mass data given by Everling et aL 16) to obtain the pairing energies 
0.65_0.20, 1.39__+0.22 and 1.44-t-0.39 MeV for Pb 2°8, Pb 2°6 and Pb 2°4, respectively. 
Eqs. (2.4) and (1.4) then relate these energies to the pairing-interaction strengths in 
our models of Pb 2°6, Pb 2°4 and Pb 2°z. Using the solutions of eqs. (1.4) described 
in sects. 3, 4 and 5, we obtain the result that any interaction strength between 0.135 
and 0.165 MeV will reproduce the three pairing energies within the experimental 
errors. 

We further choose the value of g by requiring our model to give the same average 
excitation energy for the observed excited states that are identified as neutron excita- 
tions as is given by experiment 17). This leads to the value # = 0.146 MeV. Note 
that this value of g lies within the range determined by the observed pairing energies. 
Therefore, with this value of g our model predicts the observed pairing energies and 
it predicts the correct average excitation energy for the observed ecxited states of 
the neutrons of these three nuclei. 

In sects. 3, 4 and 5, we consider the solution of eqs. (1.4) for Pb 2°6, Pb 2°4 and 
Pb 2°2 using table 1 for the levels contained in S and g = 0.146 MeV. We label the 
states by the configurations to which they correspond in the limit g-~ 0. Thus, 
(1) z and (1)2(2) 2 will denote the ground states of Pb 2°6 and Pb 2°4 (even though, 
for g # 0, these states are not pure configurations). 
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3. The One-Pair System P b  2°6 

For  the seniority-zero states of the one-pair system Pb TM, eqs. (1.4) reduce to the 
one equation 

g -*  = 2 ~ . (2~ . -Ep , ) -*  = F(Ep,) (3.1) 
n 

for the pair energy E~,. The restrictions (1.7) p layno role since we only have one pair. 
We shall define the index p ,  by requiring 

lim Ep, = 2~p,. (3.2) 
g=O + 

Eq. (3.1) may be solved by tabulating or plotting F(E),  using 8 n and 12n given in table 
1, and then picking those values of  E for which (3.1) is satisfied. 

The energies of  the seniority-zero states are the pair-energies Epl. The energies of  
the seniority-two states are just the independent-particle energies 8~ +sin, where l and 
m are the levels occupied by the two unpaired particles. 

TABLE 2 

T he  excitation spec t rum o f  Pb 2°e in MeV 

Model  Exper iment  

Ext .  Ext .  
Contig. (spin)~ v Pair  energies (spin)n 

energy energy 

(1) 9 0 + 0 Ex = --0.59 0.00 0 + 0.00 
(1)(2) 2 + 2 1.16 2 + 0.80 

(2) j 0 + 0 Ea = 0.44 1.03 (0 +) 1.19 
(1)(2) 3 + 2 1.16 3 + 1.34 
(1)(3) 2 + 2 1.49 (2 + ) 1.47 

(2) 2 4 + 2 1.73 4 + 1.68 
(1)(3) 1 + 2 1.49 (1 +) 1.72 

(2) ~' 2 + 2 1.73 (2 + ) 1.85 
(2)(3) 1 + . . .  4 + 2 2.06 4 + 2.00 
(1)(4) 7 -  2 2.22 (7-)  2.20 
(1)(4) 6 -  2 2.22 (6-)  2.38 
(2)(4) 4 - . . .  9 -  2 2.79 (5-)  2.78 
(1)(5) 3 +, 4 + 2 2.94 (4 +) 2.95 
(3)(4) 5 - . . .  8 -  2 3.12 (5-)  3.02 

The pair-energies E x and E2 and the excitation energies of some states of our model 
of Pb 2°6 are given in table 2. In this table the excitation energies are compared with 
the experimentally observed excitation energies. (We have identified each experi- 
mentally observed level with the level of the model which has the same spin and 
parity and whose energy lies closest to that of  the experimentally observed level.) 
From this table, we see that the one level which does not fit into our model is the 
lowest 2 + state. This is a general feature of  the model since the lowest 2 + states of 
even nuclei are collective levels 2) and they are not described by our model Hamiltonian 
(1.1). Excluding this lowest 2 + state from consideration, we see that our model 
reproduces the observed excitation spectrum of  Pb 2°6 with an average error of 0.! 
MeV. 
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4. The  Two-Pair  S y s t e m  Pb 2°4 

Eqs. (1.4) for the two pair energies of the seniority-zero states of Pb 2°4 are 

g-l+ 2 _v(ep,), 
Ep2 - Epi 

9_ 1 _ _ 2  = F(Ep,). (4.1) 
Ep2 -- Ep~ 

These equations are valid whenever the restriction Ep, ~ Ep2 is also satisfied. Due to 
the coupling of these two equations, they are vastly more complicated than eq. (3.1) 
for the one-pair system. Therefore, we first discuss the behaviour of the roots of 
(4. l) as functions of g and then return to our model of Pb 2 0,. 

4.1. THE ROOTS OF THE TWO-PAIR EQUATIONS AS FUNCTIONS OF g .  

In discussing the roots of (4.1) as functions of  g, the first question to be answered 
is whether these are any values of  g for which the restrictions E t # E 2 are not satis- 
fied (for simplicity, we use Et and E 2 to denote Epl and Ep2). For, our formalism does 
not apply at these values of g. Eqs. (4.1) are not in a form which allows the easy 
calculation of these "singular" values of g for which E1 = E2. However, in I, we 
mentioned that E t and E 2 could be complex conjugates of each other. We may 
therefore determine the singular points by first letting E t = E* and then calculating 
the values of g for which Im ( E t )  ----- 0. We shall show that this approach gives ex- 
plicit expressions for the singular values of g. After calculating the singular values of 
g we shall give physical interpretations of  the complex roots and draw 
qualitative pictures of El(g) and E2(g ) for the ground state and the lowest seniority- 
zero excited state. 

In I we asserted that when the roots of (1.4) are complex, they occur in complex 
conjugate pairs. For the two-pair systems, this assertion may be proved by using 
(4.1) and the requirement that the total energy of the state be real, i.e., Im (El)  = 
- I ra(E2) .  The proof is accomplished by showing that Re (El) # Re (E2) is in- 
consistent with E 1 and E 2 satisfying eqs. (4.1) and Im (El)  = - I m  (E2). For i f  
we assume that 

E1 = { l+iq ,  E2 = ~2-ir/, 

with I1 # 42, then we have three unknowns 41, 42 and q to solve for. Equating the 
real and imaginary parts of the two equations of (4.1) gives four equations for these 
three unknowns. It is then a simple matter to show that these four equations cannot 
be satisfied for 4x =/= 42 and r/ # 0. However, if 

Et = {+in,  E2 = {--it/, (4.2) 

then the second equation of (4.1) is just the complex conjugate of the first and we have 
two equations for the two unknowns { and t/, which may then be solved. Thus, if 
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E 1 and E2 are complex, they have the form (4.2), where ~ and r/satisfy the equations 

fa . (2e.-  {) 
g 1 

.~ (28.- ~)2 +,12' 

f2. 
1 r/2 X" 

(28.- ¢)5 + 

(4.3a) 

(4.3b) 

which are obtained by substituting the expressions (4.2) into eq. (4.1). Note that the 
sign of  r/is undetermined since only r/2 appears in (4.3). Thus the choice of  the plus 
and minus signs that was made in (4.2) is not significant. 

We now determine the singular values of  g, for which E1 = E2 by determining 
those values of  g for which (4.3) implies ~ = 0. We first show that (4.3b) implies 
that r/ = 0 if~ = 2era. For, let us assume that ~ = 2e,, and r/ ~ 0, then (4.3b) becomes 

1 = ~Qm"l-rl2n~mZ ( 2 8 n _ _ 2 ~ m ) 2 + r / 2  ' 

which cannot be satisfied since f2,, > 1. Thus, we seek those values of # for which 
= 2era. It can easily be shown that these values of g are all the possible singular 

points of  (4.1). For, i f E  1 = E2 = ~, the left hand sides of  eqs. (4.1) are singular and 
must be some value for which F(~) is singular. But, this is just the set of  points 
= 2sin. A direct substitution of  ¢ = 2s,  and r / =  0 into (4.3a) yields the result 

g = 0. But this is a misleading result and one must consider instead the limit of eqs. 
(4.3) as ~ -* 2em. For example, let us consider the case in which m = 1. We let 

= 2e 1 - A and keep only the lowest order terms in A; then we let A ~ 0 at the end 
of  the calculation. Using ~ = 2e l -A ,  fll = 1, and the fact that r/2 is of order A 
or A z, eq. (4.3b) becomes 

712 5 
1 - - - -  + r/2. S'~2 f2. 

A2 .k- q 2 = (2en-- 2,sl) 2 

to the lowest order in A. The solution of  this equation, to first order in A, is 

,12 = I A I / A ,  

where 

(4.4) 

Substituting ~ = 2Ca- A, f21 = 1 and the expression (4.4) into eq. (4.3a) gives 

~2 12. (4.6) o_1_ A A +  
(2e . -Ze l )"  IAI 

Thus, g ~ 0 for ~ = 2~1 and g as a function of ~ is discontinuous at ~ = 251. I f  we 

A2 = ~ 12. (4.5) 
.=2 (2~.-2 ,1)  2" 
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use the values ofe ,  and f~n given in table 1 in eqs. (4.5) and (4.6), we obtain the results 

lira g = 0.115 MeV, lim g = 0.209 MeV. (4.7) 
A ~ 0  + A - * 0 -  

I f  we consider the other values of  m, rn = 2 . . .  5, then we have for ¢ = 2~m- A that 
r/2~A 2 and g~zA. This leads to the qualitative picture of  ~ as a function of g given in 
fig. 1 and the result that the singular points ofeqs .  (4.1) are located at g = 0, 0.115 
and 0.209 MeV. The critical role played by the fact that f2~ = 1 in the discontinuous 
behaviour of  ¢ at ~ = 2e 1 should be pointed out. For if  ~ = 281 -A  and 121 > 1, 
then r/2ccA 2, there would be no discontinuity at ~ = 2e~, and the value o f g  for which 

= 2el would be g = 0. The existence of  the discontinuity for f2~ - 1 reflects the 
fact that the Pauli principle does not allow two pairs to occupy level 1 for g = 0. 

._2ff_5 _ ,. 

_2:4_ - - ~  . . . . . . . . . .  

267 - £ ~ -  ~ . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . .  

.261 ~ Y 
= , 

Fig. 1. The qualitative behaviour of ~(g) for the states of Pb ~°4. 

There remains the question of  the physical interpretation of  the various branches of  
¢(g) shown in fig. 1. The interpretation of the upper four branches is clear from their 
g = 0 limits. They correspond to the four seniority-zero states (2) 4, (3) 4, (4) 4 and 
(5) 4. However, the lowest branch does not have a # = 0 limit. In order to interpret 
this lowest branch of  ¢(g), one must consider the real roots of  (4.1) for g < 0.115 
MeV. One then sees that the lowest branch of  ~(g) is connected to two real roots, 
El(g) and E2(g), of  (4.1) which satisfy 

El(0)  = 2el, E2(0) = 2e2, 

E1(0.115)  = ~ ( 0 . 1 1 5 )  = 2~,. 

Thus, the g = 0 limit of  the lowest branch of  ~(g) is the configuration (1)z(2) 2 and 
this branch of  ~ corresponds to the ground state (1)2(2) 2. The branch of  ~ which is 
second f rom the bot tom and which corresponds to the state (2) 4 seems to end at 
g = 0.209 MeV where ~ = 2el. However, at this point it is connected to two real 
roots El(g ) and E2(g ) of  (4.1) which satisfy 

E1(0.209) = E2(0.209) = 2e 1, 

EI(oo ) = - oo, 2el < Ez(oo) < 2e2. 
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This leads to the qualitative pictures of  the pair-energies for the states (1)2(2) 2 and 
(2) 4 as functions o f #  given in figs. 2 and 3. We use here and later the convention 

Re (E  0 _~ Re (Ej), for i < 

to number the pair-energies. 
Thus the singular points of  (4.1) are located at g = 0.115 MeV for the ground state, 

g = 0 and g = 0.209 MeV for the state (2)*, and g = 0 for the states (3) 4, (4) 4 and 
(5) 4 . The remaining seniority-zero states have no singular points. These singular 
points can be interpreted as the values of  g for which the roots of  (4.1) change f rom 
being real to being complex or vice versa. 

2Ez 

2Et x 
0 

Fig. 2. The qualitative behaviour of the pair-energies in the ground state of Pb 2°4. 

_2h._, 

2El 

\ .  £2 

Fig. 3. The qualitative behaviour of the pair-energies in the state (2) 4 of Pb 2°~. 

4.2. THE LEVELS OF Pb 2°4 

Having discussed the structure of  the roots of  (4.1), we are now able to apply 
these equations to our model of  Pb 2°* for which g = 0.146 MeV. The results of  our 
calculations are given in table 3. In addition to the observed states of  this nucleus, 
we have included in our calculations the two lowest excited 0 + states as examples 
of  the roots of  eqs. (4.1). 

F rom figs. 2 and 3, we see that the pair-energies for the two seniority-zero states, 
(1)2(2) 2 and (2)*, are complex for g = 0.146 MeV. They are given by (4.2), where 
and ~/satisfy (4.3). The calculated values of  ~ and r/2 for g = 0.146 MeV are listed 
in table 3. The remaining seniority-zero state that we treat, (1)2(3) 2 , has real pair- 
energies which we label according to (3.2). The energies of these states are given by 
(1.3). 
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TABLE 3 

The excitation spectrum of Pb 2°* in MeV 
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Model Experiment 

Exc. Exc. 
Config. (spin)n v Pair energies (spin)t energy energy 

(1)2(2) 2 0 + 0 ~ = --0.30 0.00 0 + 0.00 
r/2 = 0.15 

(1)2(2)2 2 + 2 Ea = --0.39 1.35 2 + 0.90 
(1)2(2)~ 4 + 2 Ex = --0.39 1.35 4 + 1.27 
(2) ~ 0 + 0 ~ = 0.43 1.46 

~z = 0.093 
(1)2(2)(3) 1 + . . .  4 + 2 E1 = --0.41 1.66 4 + 1.56 
(1)9(3) 2 0 + 0 E1 = --0.43 1.73 

Es = 1.56 
(1)3(2)(4) 4 - . . .  9- 2 E1 = --0.44 2.36 9- 2.19 

The equat ion  for the pair  energy of  the seniority-two states of  Pb  2°* is the same 

as (3.1) with 12 n replaced by 12, -6~1-6,m,  where l and  m are the levels occupied by 

the two unpai red  particles. Here the two Kronecker  deltas express the blocking effect 

of  the two unpai red  particles (see I). The energies of  these states are 

E = Ep l+S l+~rn .  

F r o m  table 3, we again see that  the one experimental ly observed level which does 

no t  fit into our  model  is the collective 2 + level. The three remaining  observed excita- 

t ion  energies are predicted with an  average error of 0.1 MeV. 

5. The Three-Pair System Pb 2°2 

Eqs. (1.4) for the three pair-energies of  the seniority-zero states of  the three-pair 

# _ l +  2 + 2 - F(Et) ,  (5.1a) 
E 2 - - E  1 E 3 - E  1 

# - 1  2 + ~ 2  = F(E2), (5.1b) 
E 2 - E t  E 3 - E  2 

a - 1  2 2 - F(E3) , (5.1c) 
E 3 - E  1 E 3 - - E  2 

system Pb 2°2 are 

where again we have used E~ to denote Ep,. These equat ions are valid as long as the 

E i are distinct, i.e., the E i mus t  satisfy the three restrictions Ei # Ej, for i # j ,  in 

addi t ion  to eq. (5.1). In  discussing the structure of the pair-energies Ei, we are led to 

an invest igat ion of  the singular points  of  eqs. (5.1), i.e., those values of  g for which 

some E i = Ej for i # j .  This may be done in  complete analogy with our  discussion 
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of  the structure of  the roots of eqs. (4.1) for Pb 2°*. However, since we now have 
three pair-energies instead of two and we. have a large number of seniority-zero 
states (29 to be exact), a general discussion of  the singular points of  (5.1) is a long 
and tedious job. We therefore restrict our discussion of the singular points of (5.1) to 
those that appear in the ground state and the lowest seniority-zero excited state since 
these are the states that we shall consider in our model of Pb 2°2. After this discussion 
of  the singular points we shall return to our model of Pb 2°2. 

5.1. THE ROOTS OF THE THREE-PAIR EQUATIONS AS FUNCTIONS OF g. 

We now discuss the behaviour of the roots of  (5.1) as functions of g for the two 
seniority-zero two states, (1)2(2) 4 and (1)2(2)2(3) 2 , that we shall treat in our model 
of  Pb 2°2. This discussion is completely analogous to that given for Pb 2°* and we 
draw upon many of the ideas developed there. 

2- E2 - L'~, 

"~" ~. .  j,~ 
%. 

x .9 261 ~. " \  ,_ 

"\.\ 

Fig. 4. The qualitative behaviour of the pair-energies in the ground state of Pb2°L 

The g = 0 limits of the pair-energies for the state (1)2(2) 4 are given by 

Ex(0) = 2gx, E2(0) = E3(0) = 252. 

Thus g = 0 is a singular point of the equations for the pair-energies of this state. 
By analogy with the state (2) 4 of Pb 2°4, we assume that E1 is real and E2 and//;3 are 
complex as in (4.2) for this state for g # 0. Eqs. (5.1) then become 

g_~+ 4(¢-E~) - F ( E 1 ) ,  (5.2a) 
(4-E1)2+, t  2 

-1 2(4 - E,)  t2,(2e, - 4) (5.2b) 
o (4_E1)2+ 2- 2i2 _4)2+.2, 
1 + 2q2 _ q2 S' f2. (5.2c) 

( 4 - E 1 ) 2 + n  2 "7' (2~,-4)2 +n  2 '  

for E1 and for the real and imaginary parts of E2 and Ea (4 and +_~/). There are no 
other singular points in the equations for the pair-energies of  this state and eqs. (5.2) 
plus the boundary conditions 

E,(0)  = 2~,, 4(0) = 2e:z 
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determine the ground-state pair-energies for all g > 0. A qualitative picture of  
E x ( g )  and ~(g) for this state is given in fig. 4. From this picture we see that the value 
of  g for which ~ = 2ca could be a singular point. However, it is~not since r / ~  0 at 
this point. 

For  the g = 0 limit of  the pair-energies of the state (1)2(2)2(3) 2, we have 

Ex(0) = 2~1, E2(0) -- 2~2, E3(0) = 2e3, 

and therefore 9 = 0 is not a singular point of  the equations for the pair energies of  
this state. However, there may exist singular points for g > 0. These would occur at 
those values of  g for which either 

E l = E 2 = 2 8 x ,  or E 2 = E 3 = 2 e 2 .  

The former possibility is the analogue of  the singular point at g = 0.115 MeV in the 
ground state of  Pb 2 ok. The latter possibility cannot in fact occur. This may be shown 
by allowing E2 to approach 2e2 from below and E3 to approach it from above and 
then using (5.1) to try to calculate the value of g that brings this about. However, it 
turns out that f22 must be one in order that E2 equal Ea. Since t22 = 3, the latter 
possibility is excluded and we need only investigate the possibility E 1 = E 2 = 2~ 1. 

To study the singular point at which E1 = E2 = 2el, in the state (1)2(2)2(3) 2, we 
follow the same line of  thought used in our study of  Pb 2°4. In order to locate this 
singular point, we assume that E 1 and E2 are complex as in (4.2). We also assume 
that E 3 is real and 

282 < E 3 < 2~ 3. (5.3) 

The equations for the pair-energies are then the same as eqs. (5.2) with E t replaced 
by E 3. We then let ~ = 2ca - d and calculate # retaining only the lowest order terms 
in A. We first calculate q2 to lowest order in A from (5.2c). Substituting ~ = 2e~ - A  
and f2 x = 1 into (5.2c), we have 

/,12 5 ~ ,  2r/2 
_ + .2  Z (5.4) 

1 A2+q 2 ,=2 ( 2 e , -  2ex) 2 ( 2 e l - E 3 )  2 

to lowest order in A. The solution of  this is, see (4.4), 

rl 2 = ]AI /A ' ,  (5.5) 

where 

5 f2, 2 (5.6) 
A'2 =,=2Z (2e _2el)2 (2~1_E3)2 • 

Note that A' is a function of  E3 and it is not a constant as is A in (4.4). Of  course, 
A '2 must be greater than zero and this places restrictions on the allowable values of 
E3. Using the values ofe ,  and ~,  given in table 1, we find that this restriction is 

lEa[ > 0.73 MeV. 
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However, our assumption (5.3) insures that Ig31 > 2e2 = 1.14 MeV so that this is 
not an additional restriction on E 3. Our next step is to use eqs. (5.5) and (5.2b) to 
obtain g as a function of  E3 to lowest order in A. This gives 

g - 1  _ A A ' +  2 y,5 t2. (5.7) 

IAI 2 e I - E  3 +.----2 2*.--2~ t 

We finally use this result and (5.2a) to obtain the single equation 

A a ' +  6 s f2,, = F(Ea) (5.8) 

for E3. Eq. (5.8) clearly has a root in the range (5.3) since F ( E )  takes on all values 
between + oo and - oo in this range and the left-hand side ofeq.  (5.8) is a smoothly 
varying function of  E 3 in this range. A short calculation yields the results 

lim E 3 ---- 1.52 MeV, lira E 3 = 1.46 MeV 
A - ' 0  + A - ' O -  

2E 3 

2E 2 

~ #  = 0.141 

Fig. 5. The qualitative behaviottr of the pair-energies in the state (1)e(2)2(3) 2 of Pb ~°2. 

for the roots of  eq. (5.8). These values of  E3 can now be used in eq. (5.7) to locate 
the singular points of  eqs. (5.1). The results are 

lim # = 0.141 MeV, lira # = 0.272 MeV. 
. 4 ~ 0  + A - ' 0 -  

These singular points can be identified with the states of the system in the same way 
that the points g = 0.115 and 0.209 MeV were identified for Pb 2°+. The results of 
this identification are that the point g = 0.141 MeV is a singular point for the state 
(1)2(2)2(3) 2 and the point g = 0.272 MeV is a singular point for the state (2)+(3) 2. 
A qualitative picture of the pair-energies of the state (1)2(2)2(3) 2 given in fig. 5. The 
picture of  the pair-energies of  the state (2)+(3) 2 may be obtained by drawing a third 
pair-energy between 2 e  2 and 2e a in fig. 3. 

5.2. THE LEVELS OF Pb s°~ 

We now apply our equations to our model of  Pb 2°2 for which g = 0.146 MeV. The 
results of  our calculations are given in table 4. In addition to the observed states of 
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Pb 2°2, we have included in our calculations the lowest excited 0 + state as an example 
of the roots of eqs. (5.1). 

TABLE 4 

The excitation spectrum of  Pb 2°2 in MeV 

Model Experiment 

E x t .  E x t .  
C o n f i g .  ( sp in )~  v Pair energies ( sp in )~  energy energy 

(1)~(2) * 0 + 0 ~ = 0 .05  0 . 0 0  0 + 0 .00  
r/2 = 0.51 

Ex = - - 0 . 3 1  
(1)2(2)4 2 + 2 Ex = - - 0 . 1 3  1.45 2 + 0 . 9 6  

Ez = 0 .23  
(1)2 (2)4 4 + 2 Ex ---- - - 0 . 1 3  1.45 4 + 1.38 

E~ = 0 .23  
(1)~(2)2(3) ~ 0 + 0 ~ = - - 0 . 0 4  1.65 

~ = 0 .023  
Ea----- 1.52 

(1)~(2)s(3)  1 + . . . 4 + 2 ~ = - - 0 . 0 1  1 .66 4 + 1 .62 

r/~ = 0 .0063  
(1)~(2)a(4)  4 - . . .  9 -  2 ~ = - - 0 . 0 6  2 .29 5 -  2 .04  

~72 = 0 .035  
(1)~(2)a(4)  4 - . . .  9 -  2 ~ = - - 0 . 0 6  2 .29  9 -  2 .17  

r/~ = 0 . 0 3 5  

The two seniority-zero states that we treat are the s ta te s  ( 1 ) 2 ( 2 )  4 and ( 1 ) 2 ( 2 ) 2 ( 3 )  2. 

For the ground state (1)2(2) 4, the pair-energies are roots of  eqs. (5.2). For the excited 
state (1)2(2)2(3) 2, the pair-energies are also roots of eqs. (5.2) but with E 1 replaced 
by E3. Owing to an error in calculation, this state was incorrectly reported in ref. 18). 

For the seniority-two states of  Pb 2°2, eqs. (1.4) are the same as the eqs. (4.1) 
given for Pb 2°+ but with f2. replaced by t2n-cS.~- 6.m, where l and m are the levels 
occupied by the two unpaired particles. However, the values of g at the singular points 
must be determined for each different set of values of l and m. This can be done by 
retracing the steps of  subsect. 4.1 with the above replacement for t2.. In this way it 
is found that the singular points for the seniority-two states (I)2(2) +, (1)2(2)3(3) and 
(1)2(2)3(4) are located at g = 0.154, 0.143, and 0.137 MeV, respectively, and the 
pair-energies for these states are complex for interactions stronger than these values. 
Thus, for # = 0.146 MeV, the pair-energies for the 2 + and 4 + states (1)2(2) + are 
real and are determined by (4.1) with 12. replaced by I2 . -26 .  2. The pair-energies 
for the remaining states are complex and are determined by (4.3) with t2. replaced 
by I 2 , - 6 . ~ -  cS.m, where m = 3 or 4. 

From table 4, we see that the excitation energies of the observed states of  Pb 2°2 
(excluding the collective 2 + level) are predicted by our model with an aveage error 
of 0.1 MeV. 
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6. Conclusion 

By consider ing pa i r ing  models  o f  Pb  2°6, Pb  2°4 and  P b  2°2 the one, two and three  

pa i r  eigenstates  o f  the  pa i r ing  force Harn i l ton ian  have been discussed as funct ions  

o f  the  pa i r ing- in te rac t ion  s t rength y for  a fixed single-part icle  spectrum.  These eigen- 

states belong to  the res t r ic ted class ofe igens ta tes  t rea ted  in ref. 12) and  the N-pa i r  wave 

funct ions  and  energies can be given in te rms o f  N pair-energies.  In  discussing the 

behav iour  o f  these eigenstates as funct ions  o f  y we have shown tha t  the pair -energies  

change f rom being real  to  being complex  or  vice versa at  those values o f  y for  which 

the res t r ic t ions  are violated,  i.e., those values o f /7  for  which two pair-energies  a re  

equal .  This  behav iour  is discussed in detai l  for  some low-lying states o f  Pb  2°4 and  

Pb  2°2 in subsects.  4.1 and  5.1. 

Numer ica l  results  for  some eigenstates o f  Pb  2°6, Pb  2°4 and Pb 2°2 are given in 

sects. 3, 4.2 and  5.2. These eigenstates  have been calcula ted using a pa i r ing- in terac-  

t i on  s t rength o f  y = 0.146 MeV. This value o f  y was chosen because it r eproduces  

the  observed  pa i r ing  energies (see sect. 2) and  the average exci ta t ion energy o f  the 

observed  states o f  these three nuclei. I t  is cons iderab ly  s t ronger  than  the 0.111 M e V  

value used by  Kiss l inger  and  Sorensen 2) in thei r  app rox ima te  t rea tment  o f  these 

models .  However ,  our  use o f  the exact  eigenstates and  the s t ronger  pa i r ing  in terac t ion  

predic ts  the exci ta t ion  energies o f  the observed states o f  these nuclei  wi th  an  average 

er ror  o f  0.1 M e V  which is ½ as large as the average e r ror  o f  ref. 2). In  add i t i on  to  the 

exci ta t ion energies,  we have given the pair-energies  which m a y  be used to  cons t ruc t  

the wave funct ions  o f  the states. These wave funct ions  m a y  be used to calculate  the  

mat r ix  e lements  o f  opera to rs  using the exact  eigenstates o f  the pai r ing-force  Hami l -  

tonian.  
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