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Abstract: The effect of screening by atomic electrons on the scattering of relativistic electrons by 
heavy atoms has been computed numerically using different screening models. Exponential and 
Hartree potentials were used to simulate the screening. The asymmetry factor S(0) and the dif- 
ferential scattering cross section d~(0)/d.Q were computed at 15 degree intervaTs from 15°to 165 °. 
We report here the results for (a) 121 keV electrons scattered by gold, Z = 79, using two ex- 
ponential potentials of different range, (b) 79 keV (v/c = 0.5) electrons scattered by mercury, 
Z = 80, using exponential and Hartree fields, (c) 46 keV (v/c ~ 0.4) electrons scattered by 
mercury as in (b). The asymmetry factor S(0) and d~/d.Q(0) were computed using a partial wave 
expansion in which the phase shifts were obtained both by numerical integration of a suitably 
transformed Dirac radial equation and also computed in WKB approximation. The results are 
compared with corresponding calculations for the Coulomb field. In general the differences are 
no more than a few percent, but below 30 ° the screened field cross-sections are as much as 
50~o smaller. 

1. Introduction 

One of  the methods in  current  use for measur ing the transverse polar izat ion o f  

electron beams with energies below 500 keV is Mot t  scattering 1, 2). This method  

assumes the applicabili ty of  the Mort  theory 3) for the single scattering of  electrons 

by heavy atoms, in which the effect of  screening by atomic electrons, a mong  other 

phenomena,  is ignored. In  this paper  we report  the results of  numerical  calculat ions 

which at tempt  to include the screening effect. 

The Mot t  calculations predict that  the electrons scattered out  of  a polarized beam 

by heavy point  nuclei will be distr ibuted with an  azimuthal  asymmetry  abou t  the axis 

of  the incident  beam. This asymmetry  depends on  the transverse polar izat ion of  the 

incident beam, its energy, the scattering angle and  the charge of  the nucleus.  I f  the 

asymmetry factor S(0)  is known  at experimentally accessible angles (which consti tute 

the central fract ion of  the range of  angles reported in  this paper), the polar izat ion 

t Now at Physics Department, Yale University, New Haven, Connecticut. 
tt This work was supported in part by the Office of Naval Research, the National Science Founda- 

tion and the U. S. Atomic Energy Commission, Contract AT(30-1) 1480 and is based in part on the- 
sis submitted by one oftbe authors (S.R.L.) in partial fulfillment of the requirements for the Ph.D.  
degree in Physics at the University of Michigan. 

492 



ELASTIC SCATTERING OF RELATIVISTIC ELECTRONS 493  

of the beam can be deduced from measurements of the azimuthal distribution of the 
scattered electrons. 

The screening effect has been investigated by Bartlett and Welton 4) and more 
recently by Molar and Tassie 5). Unfortunately, the errors in their calculations are 
probably greater than the experimental errors in recent polarization measurements 1, 2) 
which are claimed to be accurate to within a few per cent. The computations reported 
here represent an effort to determine the screening effect as accurately as possible. 
As screening potentials, we first chose one-term exponential potentials for gold and 
mercury and then calculations for mercury with Hartree * potentials 6) were added. 
The low-/ phase shifts are calculated by the numerical integration of differential 
equations, and the high-/phase shifts are obtained from the WKB approximation. 
All computations are carried out on IBM-704 and IBM-7090 computers at the Uni- 
versity of Michigan and at the AEC Computing Center, New York University. 

In the following section, we first discuss the procedure used to obtain phase shifts 
by the numerical integration of differential equations. Sect. 3 is devoted to the 
discussion of the results for six different computations. In the final section, we offer 
our conclusions. 

2. C o m p u t a t i o n  o f  P h a s e  Sh i f t s  

2.1. LOW-/ PHASE SHIFTS 

To obtain the low-/phase shifts, we have to integrate either 3) 

dF~ I+2  

dr r 
F l + flGl, 

where 

o r  

~ d G l  1 
- ~(Ft- - Gi, 

dr r 

i }  1 (E_V+_mc2)  ' 

d2gt+__dr 2 { k 2  1(1 + 1)r2 U~} g~ = O. 

Here Ua is the effective Dirac potential 

2E V 2 
UI ~-~ ~ c  2 V -  ~2¢---~ 

1 + 1 =' =,2 ,~, 
. . . .  

r ~ 

(1) 

(2) 

The phase shift 6l is defined in such a way that the asymptotic forms of g~ and G~ are 
proportional to sin ( k r - ½ h z + 6 z ) .  The functions g~ and G~ are regular at the origin. 

* We are indebted to Dr. Martin J. Berger of the National Bureau of Standards for informing one 
of  the authors (S.R.L.) of the existence of the numerical data on the Hartree field for mercury. 
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Similarly &_ ~_ 1 isa  phase shift with l replaced by - (l+ 1) in the asymptotic solutions 
of eqs. (1) and (2). When we try to integrate eqs. (1) or (2) numerically using the 
Runge-Kutta integration scheme, the Adams method or the predictor-corrector 
scheme, we find that these procedures are either extremely time-consuming or the 
solution becomes unstable after the long-range integration. We, therefore, introduce 
convenient transformations to facilitate the numerical integrations. In the following 
we describe two transformations that we use in the computations. 

2.1.1. First transformation 

To integrate eq. (2), we introduce the transformation 

g,(C) = A,(C)sin(C + th(C)), 

C = kr.  (3) 

After the differentiation, we have 

dgl _ dAt sin (C + rh) + At cos (~ + r/t) + drh At cos (C + r/t). (4) 
de dC dC 

Since we can choose either At(O or rh( O arbitrarily, we impose the condition 

dA---2~ sin (C+r/t)+ dr/t At cos (C+r/,) = 0. (5) 
dC dC 

Then eq. (4) reduces to 

dg-3 = A z cos (~ + ~h). (4) 
dC 

Using eqs. (2), (4)' and (5), we have two equations: 

1 .  °A .~, ~-~ = + sin (~ + r/t) cos (C + r/,), (6) 

dr / ,_  [~+ U,] 
dC ~ sin2 (¢ +r/')" (7) 

The properties of At(C) and r/t as r --* oo are 

r/t ~ & : - } I n ,  A: ~ constant. 
t .--~ o0  t - ~ c O  

Since eq. (2) has the same form as the radial part of the non-relativistic Schrt~dinger 
equation, we can use formally identical methods to obtain the phase shifts. We recall 
that in the Schr6dinger theory these quantities can be determined from the ratio 
(I/g~)dg~/dC where the latter quantity is evaluated at some point G0 in a region where 
V(r) is negligible for all r _~ ro. In a similar way the ratio of (1/gz)dgz/d~ in the region 
where U t is negligible compared with other terms is all we need for the determination 
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of  phase shifts in the relativistic treatment. Thus we have to integrate eq. (7) alone. 
It turns out that eq. (7) can be integrated efficiently by the Runge-Kutta 8, 9) fifth- 
order numerical procedure. The necessary initial values of r h are obtained from the 
power series expansions of ~h and Ut in terms of ~ near the origin, with the condition 
that gt be regular there. 

2.1.2. Second transformation 

To integrate eq. (1), we introduce the transformation lo) 

Gt = At(r) cos ~b,(r) , 
r 

F, = At(r ) sin ~b,(r) , 
r 

(8) 

then after substitution into eq. (1) and some manipulations, we get 

1 dA  t _ l + l  cos 2~b t -- mc----~2 sin 2 tkt, (9) 
A t dr r hc 

dtk, _ l + 1 sin 2d& + 1 (E--  V) mc2 
dr  r hc - h-c- cos 2~b,. (10) 

Again, as in subsect. 2.1.1. we can show that to determine phase shifts, we need the 
ratio (1/Gl)dGJdr, which from eqs. (1) and (8) is 

G ~ _  ctFl + l _ u t g ~ b l +  l 
Gl G l r r 

at points r > a where V(a) ~, 0 compared with E. Thus we can integrate eq. (10) 
instead of eq. (1). The initial value of t# z is obtained by the expansion of tkt in a power 
series in r near the origin with the condition that Gt be regular at the origin, Eq. 
(10) is again integrated by the Runge-Kutta fifth-order method. In practice the 
combination of  the two transformations is found to be the least time-consuming 
method. Therefore we use this combination in computing most of  the phase shifts for 
small L 

In actual calculation, a further change of variable for small r was introduced. 
Following Hartree 7), we set 

Y = l n ~  =lnkaBX. 

We used this transformation in the region r < laB. In this region 0 < X < 1 
where X = r/a B, the intervals (0, 1) in X-axis corresponds to the interval ( -  oo, 0) in 
Y-axis. The integration step size is then A Y = AX/X ,  and the advantage of  this 
transformation lies in the fact that a constant step size A Y corresponds to a varying 
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step size in AX in X-axis.  Thus  the  necessity o f  changing  step sizes in X-axis as X 

increases was t aken  care o f  au tomat ica l ly .  

2.2. HIGH-/PHASE SHIFTS 

F o r  h i g h - / p h a s e  shifts, the W K B  app rox ima t i on  developed by  G o o d  ~t) is used. 

In  table  1, we list the phase  shifts compu ted  by  the me thod  o f  subsect ion 2.1 and  the 

W K B  approx ima t ion  for  gold  at  T = 121 keV. 

TABLE 1 

Comparison of phase shifts by different methods 

Z = 7 9  T =  121keV 

Methods 

subsect. 2.1.1 subsect. 2.1.2 WKB approx. 

1 6 t 6_t_ 1 ~1 (~-/- I ~/ ~ - 1 - I  

0 4.29475 4.29477 4.24460 
1 3.25030 3.61141 3.25072 3.61186 3.23199 3.56269 
5 1.93856 1.98080 1.93839 1.98067 1.93632 1.97680 

10 1.32039 1.33880 1.32030 1.33868 1.31890 1.33716 
20 0.74803 0.75552 0.74781 0.75534 0.74787 0.75503 
30 0.46728 0.47130 0.46738 0.47142 0.46728 0.47132 
40 0.30491 0.30736 0.30486 0.30728 0.30525 0.30763 
50 0.20376 0.20527 0.20435 0.20590 0.20452 0.20600 
60 0.13914 0.14018 0.13918 0.14021 0.13988 0.14082 
70 0.09582 0.09648 0.09604 0.09670 0.09651 0.09711 
80 0.06664 0.06470 0.06685 0.06728 0.06663 0.06735 
90 0.04674 0.04705 0.04682 0.04715 0.04677 0.04706 

100 0.03305 0.03327 0.03296 0.03317 0.03305 0.03338 

Phase-shifts are given in radians. 

As can be seen f rom table  1, the  W K B  phase  shifts begin to be in good  agreement  

with those ob ta ined  f rom the numer ica l  in tegra t ion  o f  the differential  equat ions  

for  values o f  I as low as l ~ 10. 

We est imate that  the er rors  in the phase  shifts may  reach + 0.001 r, but  abou t  80% 

o f  the phase shifts have smal ler  errors  (on the average,  the error  is + 0.0007 r). 

3.  R e s u l t s  

The quanti t ies  we are interested in are  the differential  cross sect ion d ~ / d ~  for  

the  single-scattering o f  unpola r ized  electrons and  the a symmet ry  fac tor  S(O). These 
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quantities are defined as 

where 

if(oil  +1o(o11 
d~2 

S(O)-  i ( fo*-Yf*) ,  
da 
dO 

y(o) = 1--- E [(/+ 1){exp (2i6,)- 1} +/{exp (2i6_,_ 1)- 1}]P,(cos 0), 
2ik i 

(11) 

(121 

(13) 

g(O) = ~ik ~ [exp (2ifi_,_ 1 ) -  exp (2i6,)]P~(cos 0 I. (141 

Eqs. (13) and (14) were summed until the variation in S(O) due to the last thirty 
terms was less than 1%. The polynomials P~ and P~ are generated from the recursion 
relations. The accuracy of  our summation has been tested in several ways, which will 
be discussed in sect. 4. 

We compute da/dQ and S(O) for the following scatterers, potentials and kinetic 
energies: 

a) gold V = - 7 9 e  2 exp (-3r/aB)/r T = 121 keV, 

b) gold V = - 7 9 e  2 exp (-6r]aB)/r T = 121 keV, 

c) mercury V = - 8 0 e  2 e x p ( - 3 r / a B ) / r  fl = v 
C 

d) mercury V = - 8 0 e  2 e x p ( - 3 r / a e ) / r  fl=v_ 
C 

e) mercury Hartree potential 6) fl = v = 0.5, 
C 

f )  mercury Hartree potential 6) fl = v = 0.4. 
C 

= 0.5 (T = 79 keV), 

= 0.4 (T  = 46 keV), 

We want to remark here that in the last two cases, in which the Hartree potentials 
are given in tabulated form, all necessary values not listed were ol~tained by interpo- 
lation. Moreover, the necessary values of derivatives of  these potentials were obtained 
numerically. 

In the following, we discuss each ease separately. 

a) V = - 7 9  e 2 exp(-3r]as)/r, T = 121 keV This is the most interesting case in 

our series of  computations. We can compare our results with Sherman's t2) computa- 
tion for the Coulomb field, the screened-field results of Mohr and Tassie 5) and the 
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Fig .  1. T h e  a s y m m e t r y  f a c t o r  I s (0) l  f o r  g o l d  a t  Y = 121 keV.  T h e  fu l l  l ine  r e p r e s e n t s  S h e r m a n ' s  

r e su l t s ,  t h e  d a s h e d  l ine  is c a l c u l a t e d  f o r  re = ½ a s ;  × r0 = ~ r a ,  <9 M o h r  a n d  Tas s i e ,  • N e l s o n  a n d  
P i d d  (exp.) .  

TABLE 2 

V a l u e s  o f  t h e  a s y m m e t r y  f a c t o r  f o r  g o l d  a t  T = 121 k e V  

s c r e e n e d  N e l s o n  a n d  P i d d  s c r e e n e d  
0 S h e r m a n  

(deg ree s )  ro = ½ a s  ( exp . )  ro = ~ a s  

15 3 . 3 4 7 -  10 - s  3 . 2 6 7 0 "  10 - s  4 . 6 0 0 0 . 1 0  - s  
30 1 . 6 1 6 -  10 -2 1 . 1 4 6 7 "  10 -2 1 .9415 • 10 -2 

45 1 .446 • 10 - s  2 . 2 4 3 4 "  10 -8 4 .9585  • 10 - s  
60  - - 6 . 1 3 3  • 10 -a  - - 5 . 4 4 2 0 . 1 0  -2 - - 5 . 9 0 3 5  • 10 - a  
75 - -  1 .586  " 10 -x - -  1 .6962  • 10 -x - -  1 .5595  • 10 -x 

- - 0 . 2 1 9 4 - 0 . 0 0 8  ( 80 °) 

9 0  - - 2 . 6 6 6 "  10 - l  - - 2 . 7 1 1 8 "  10 -1  - - 0 . 2 7 4 4 - 0 . 0 0 8  ( 9 0  °) - - 2 . 6 2 8 5 "  10 -x 
- - 0 . 3 0 7 4 - 0 . O O 8  (100  °) 

105 - - 3 . 6 0 1  • 10 -1 - - 3 . 6 3 5 0 "  10 -x - - 3 . 5 4 9 1  • 10 --~ 
- - 0 . 3 7 8 - 4 - 0 . 0 1 2  (110  °) 

120 - - 4 . 1 3 6 "  lO -1 - - 4 . 1 0 3 6 "  10 -x - - 0 . 3 4 4 4 - 0 . 0 1 5  (120  °) - - 4 . 0 8 0 0 "  10 -1 
- - 0 . 3 5 4 4 - 0 . 0 1 5  (130  °) 

135 - - 4 . 0 5 8  • 10 -1 , - - 4 . 0 5 5 5  • 10 -x - - 4 . 0 9 2 5  • 10 -1 
- - 0 . 3 1 4 4 - 0 . 0 1 9  (140  ° ) 

150 - - 3 . 2 6 4 "  10 -1 - - 3 . 3 1 0 1  " 10 -x - - 3 . 0 8 6 4 "  10 - t  
165 - - 1 . 8 2 4 "  10 -x - - 1 . 8 1 4 0 "  10 - t  - - 1 . 7 4 2 6 "  10 -1 
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measurements of  S(O) by Nelson and Pidd 13). We calculated the phase shifts up to 
1 -- 109 by numerical integration of the differential equations and for 110 < I < 300 
by the WKB approximation. We plot all the results t in fig. 1 for comparison and list 
them in table 2. At this energy, from 90 ° and up, the screening effect seems to be small 
(less than 3 %). Our results agree within 2 % with the results of  Mohr  and Tassie 
except at 165 ° where our S(165 °) is much closer to the value for the Coulomb field. 
Our results agree with the measured values of  Nelson Pidd up to 110 °, but above 
that angle the disagreement is large (more than 15%). (Nelson and Pidd attribute 
the difference between their values and Sherman's to the plural and multiple scatter- 
ings of  electrons in the target during the measurements.) 

TABLE 3 

Differential  cross section for gold at  T = 121 keV 

0 screened screened 
(degrees) Sherman ro = ½ aa ro = ~ as  

15 2.349" 10 s 2.0188 

30 1.600.105 1.5516 

45 3.790. 104 3.7397 

60 1.494.104 1.5000 

75 7.591" IO s 7.6475 

90 4 . 4 8 2 - 1 0  s 4.6578 

105 2 .936.103 3.0513 

120 2.093.  10 s 2.1524 

135 1.612.108 1.6918 

150 1.336" 10 s 1.3945 

165 1 .194 .10  s 1.1868 

106 1.5190. 106 

l0  s 1.3945 "105 

104 3.6456" 10' 

104 1.4940.104 

l0  s 7 . 5 7 6 3 . 1 0  s 

l0  s 4 .7876.  103 

10 a 3.1668 "10 a 

l0  s 2.2227. l0  s 

10 s 1.6870 "10 s 

10 s 1.5160" 103 

l0  s 1 .3740 .10  s 

Cross section is given in barns  per  s teradian.  

As for the differential cross section, at smaller angles the screened field gives smaller 
values than the pure Coulomb field as expected, but for 60 ° and up, the differential 
cross-sections for the screened potential are larger than those for the Coulomb field 
(see table 3). 

b) V = - 7 9  e 2 exp(-6r/aB)/r, T = 121 keV. The only difference between this 

case and case a) is that the screening constant r o here is ~an as compared with r o - 
l a  n in ease a). We computed phase shifts up to I = 30 by numerical integration of the 
differential equations and for l -- 31 and up, we used the WKB approximation. From 
fig. 1 and table 1, we can see that this change in r o does not result in any drastic 
change in S(O). As for the differential cross section, the deviations f rom the values 
for the pure Coulomb field are larger than in case a). 

t We r emark  here  tha t  since we p lo t  Is(0)l in fig. 1, the cusp near  45 ° is due to the change of  sign 
in S(O) in the ne ighbourhood  of  45 °. 
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C) V = - - 8 0  e 2 exp(-3r/ae)/r, p = 0.5. Here we calculated phase shifts up to 

I = 40 by numerical integration of  the differential equations and f rom 1 -- 41 to 
1 = 175 by the WKB approximation. The screening effect is most  prominent in this 
case. At 120 ° and 135 ° , where the measurements are usually carried out, the screening 
effect in S(0) is as much as 15 ~o and this should easily be observed experimentally. 
As for the differential cross section, the derivation f rom the values of  the pure 
Coulomb field is again most evident at 15 °. 

TABLE 4 

A s y m m e t r y  f a c t o r s  f o r  Z = 80  

f) 
.8 = - =  0.5  , 8 =  - =  0 . 4  

C C 

0 

(deg ree s )  
C o ~ o m b  

3 r  

v -  z e - ~  
r 

H a r t r e e  C o u l o m b  V =  

3r 

Z e  a s H a x t r e c  

15 
30  
45  
60  
75 
9 0  

105 
120 
135 
150 
165 

1 . 6 0 "  10 - s  
1 . 9 6 "  10 - s  
2.01 • lO-S 

- - 3 . 8 0 "  10-* 
- - 1 . 4 3 "  10 - I  
- - 2 . 6 1  " 10 -1 
- - 3 . 5 6 "  10 -1 
- - 4 . 0 1  " 10 -1 
- - 3 . 8 0 "  10 -1 
- - 2 . 9 5 "  10 -1 

- -  1 . 6 1  • 1 0  - 1  

1 . 6 6 "  10 - s  2 . 9 8 "  10-* - - 4 . 2 5  • l O - t  
2 . 3 4 "  10-* 2 . 3 9 "  10 - s  1.53 • 10 - s  
2 .45  • 10 -= 2 . 4 8 "  10 - t  3 .93 • 10 - s  

- - 3 . 3 7 "  I 0  - I  - - 3 . 2 3 "  10 - s  2 . 1 8 "  10 - s  
- - 1 . 3 6 "  10 -1 - - 1 . 4 2 "  10 -x - - 1 . 0 4 "  10 -1 
- - 2 . 5 6 "  10 -1 - - 2 . 6 1  • 10 -1 - - 2 . 3 4 "  10 -x 
- - 3 . 5 0 "  10 -1 - - 3 . 6 0 "  10 -1 - - 3 . 3 3 "  10 -1 
- - 3 . 5 9 "  10 -1 - - 3 . 8 3 "  10 -1 - - 3 . 7 2 "  10 -1 
- - 3 . 2 9 "  10 -x - - 3 . 6 0 "  10 -1 - - 3 . 4 2 "  10 -1 
- - 2 . 8 6 "  10 -1 - - 2 . 7 4 "  10 -1 - - 2 . 5 2 "  10 -1 
- - 1 . 1 8 "  1 0  - 1  - - 1 . 4 3 "  1 0  - 1  - - 1 . 3 7 "  1 0  - l  

- - 7 . 3 9  
1 . 6 2  

4 .59  
1 . 4 2  

- -  9 . 2 2  

- - 2 . 2 3  
- - 3 . 2 7  
- -  3 .63 
- - 3 . 3 4  
- - 2 . 4 3  
- -  1 . 0 3  • 

1 0 - t  

10-* 
10-* 
lO-S 

10-* 
10-1  
10-1 
10-1  
10-1 
10-x  

lO-X 

- - 6 . 6 5 "  10 -6  
2 . 1 2 "  10 -= 
4 . 8 2 -  1 0  - s  

1 . 4 2 "  10 -a  
- - 9 . 4 2 "  10 - s  

- - 2 . 2 9 "  10 - t  
- - 3 . 2 7 "  10 -1 
- - 3 . 5 6 "  10 -1 
- - 3 . 2 5 "  10 -1 
- - 2 . 3 6 "  10 - t  
- -  1 . 2 4  • 10 -1 

.8=v-=0.5 
C 

C r o s s  s e c t i o n  f o r  Z = 80  
IJ 

.8 = 0 . 4  
C 

0 

( d e g r e e s )  
C o u l o m b  

3r 

Z e  as  
V - -  H a r t r e e  C o ~ o m b  

3P 

Z e  as  
V - -  

r 

H a r t r e e  

15 
30  
4 5  
6 0  
75 
90  

105 
120 
135 
150 
165 

5 . 3 5 "  los  
3 .48 106 

7 .93 lo s  
3 .09  lo s  
1.59 los  
9 .64  lo s  
6 .56  los  
4 .89  lo s  
3 .95 103 
3 .42  108 
3.15 10 s 

3 .96  
3 .22  
7 .79  
3 ,13 
1 . 6 2  

9.97  
6 .73  
5.21 
4 . 3 4  
3 .60  
3 .04  

los  2 . 8 0 "  lo s  
l o s  2 .55  • lO s 
l o s  6 . 6 4 "  104 
l o s  2 . 8 0 "  104 
l 0  t 1 . 5 2 "  lo s  
I 0  s 9 . 5 4 "  lO s 

l o s  6 . 6 4 .  los  
l 0  s 5 . 1 9 .  l 0  s 
l o s  4 . 3 6 .  10 s 
IOS 3 . 8 0 .  1 0 '  
lO s 3 . 7 0 .  10* 

1 . 4 7 "  l 0  T 
9 . 3 0 "  10 s 

1 . 9 9 "  lo s  
7 . 4 5 "  l o s  
3.81 • 1OS 
2 . 3 5 "  lo s  
1 . 6 6 "  l o s  
1 . 2 9 "  104 
1 . 1 0 "  lo s  
9 .86  • 10 s 
9.31 • 10 s 

8.51 • 
7 .83 • 
1 . 8 8  • 

7.43  • 
3 .89 • 
2 .46  • 
1 . 7 5  • 

1 . 4 1  • 

1 . 2 3  • 

1 . 1 2 "  
1 . 0 6  • 

lO s 
lO s . 
10 5 

l o s  
l o s  
10 4 

lo s  
IOS 
los  
l o s  
1 0 '  

5 . 8 6 . 1 0  e 
• $ . 5 9  10 s 

1".50 106 
6~24 l o s  
3 .50  l o s  
2 .28  l o s  
1.75 l o s  
1 . 4 1  l o s  
1.21 l o s  
1.16 l 0  s 
1.13 l o s  

C r o s s  s e c t i o n  is g i v e n  in b a r n s  p e r  s t e r a d i a n  
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d) V = - 8 0  e 2 exp(-3r/aB)/r ,  fl = 0.4. The only difference between this case and 

case c) is that the electron energy here is lower. We might expect that the screening 
effect in S(O) would be more prominent in this case, but this expectation is not con- 
firmed by our results. Instead, S(O) is now rather close to the Coulomb S(O). The 
difference is less than 7 % in the region 90 ° to 150 °. As for the differential cross section, 
the deviation from the Coulomb case is very large (as much as 50 %). This is much 
larger than the corresponding difference in case c). 

e) Hartree Potential, fl = 0.5. This calculation was made to see whether the large 

screening effects in S(O) seen in case c) is a general characteristic of  screened fields. 
Phase shifts were calculated up t to I = 100 by numericalintegration of  the differential 
equation and from I = 101 to 300, the WKB approximation was used. It turns out 
that with this potential, the screening effect in S(O) is much smaller than in c) at large 
angles. It never exceeds 6 % at large angles (in comparison with c), where it may 
reach 15 %). As for the differential cross section, dcr(0)/d~2 for the Hartree field at 
0 < 105 ° is smaller than those of  the Coulomb and exponential fields, but above 
0 = 135 °, the Hartree field gives the largest cross section. 

f) Hartree Potential, fl -- 0.4. This is the repetition of  case d). Phase shifts were 

calculated up to 1 = 250. The WKB approximation was used for l > 100. We ex- 
pected that the screening would be more prominent than in case e), but we did not 
find this to be the case. The screening effect in S(O) is less than 6 ~ at large angles. 
As for the cross sections, the Hartree field gives the smaller values up to 0 = 90 ° 
then becomes larger at 0 > 150 °. 

4. Discussion of  Errors and Conclusions 

The maximum error in a phase shift is estimated to be less than _+0.001 rad. 
The series (13) and (14) are summed with the usual computer precision (8 significant 
figures) up to the terms where the variation in S(O) contributed by the last thirty 
terms is less than 1%. To check this summation method, we made the following 
tests: 

a) For  two cases, the series (13) and (14) are summed using double precision (16 
digit numbers). The P~(cos 0) and Ptt(cos 0) polynomials were also generated from 
the recursion relation by the double precision method. Comparison of the resulting 
S and da/dI2 for all angles with those S and dtr/dI2 which are calculated by single 
precision, showed that they agree to at least three significant figures in S and four 
significant figures in dtr]dt2. 

b) In summing series of this type, there might be a large relative error, if the large 
neighbouring terms cancel each other strongly, leaving a small, less accurate residual. 
To test this possibility, we separate the summation into two parts, each with the same 

? Since the  Har t ree  potent ia l  decreases m u c h  more  slowly t han  the  exponent ia l  potential  as r in- 
creases, more  phase  shifts are needed here t han  in case c). 
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sign, adding positive and negative terms separately. At the end, the difference of  
the two parts is taken and S and da/df2 are calculated. The resulting S and da/df~ 
agree with the previously calculated S and da/df2 to at least four significant figures, 
showing that cancellation errors are negligible. 

c) To test the round off error in the summation process, we calculate the series 

300 
(2 /+  1)e-°tP,(cos 0) 

1=O 

for a = 0.05 and 0.1 and compare them with the analytically summed results. I t  is 
found that they agree to at least four significant figures in both cases. 

Finally, to estimate errors in S and da/df2, we added and subtracted an artificial 
error e in the phase shifts (1) systematically and (2) randomly. The reason for in- 
troducing e was to determine how sensitively the angular distributions of  S and d~r/dfl 
depend on errors in the phase shifts. I f  artificial errors in tS~ give rise to S(O)and 
da(0)/df2 which are in erratic disagreement with the original values, we have a fair 
idea of  the accuracy of 6~ and 6-~-1 implied by the original smooth distribution. 

For  e = 0.0001 introduced at random in fit and 6_~-1, S(O)showed deviations of  
as much as 20 %. We would infer f rom these rough tests that the random errors in 
our (unaltered) phase shifts are not appreciably larger than those that would distort 
the smooth behaviour of  S(O) and d~r(0)/dfL These tests, together with estimates of  
round-off errors, lead us to estimates for S and da/df2 as follows: the error in S(O) 
is < 3% for 60 ° < 0 < 150 ° and 9% in 15 ° <__ 0 < 45 ° and at 165 ° . The error in 
da/df2 is estimated to be less than 3 % at all angles. We should point out that in the 
interval from 15 ° to 60 °, S(O) is very small so that the errors in the phase shifts produce 
larger relative errors in S(O). 

We would like to express our gratitude to Robert  T. Brown, R. H. Barrels and 
T. Aronstein for their assistance in the computation. We are indebted to the staff 
of  the computing Center at the University of  Michigan and to Dr.  M. Goldstein and 
the staff of  the AEC Computing Center, Courant  Institute of  Mathematical Sciences, 
New York University, for their generous help in the course of  calculation. 
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