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these measurements the following conclusions can
be drawn:

1. The value of the surface anisotropy obtained
from our measurements is in good agreement with
the theoretically computed value 10) and with the
exchange surface anisotropy 11) and has the order
of K g observed experimentally by means of thin
films spin-wave resonance 12),

2. The irregularities of the surface play a minor
role in line broadening as shown by the small dif-
ference between whiskers and electrolytically
polished crystals having largely differing surface
states,

3. The line broadening due to an increase of the
measured area indicates that here the inhomogeneity
of the demagnetising field begins to assert itself.

4. The agreement between the theory referred
to above and the experimental results on bulk sili-
con iron single crystals is good. It is proof that,
at least in some metallic ferromagnets having few

imperfections, the intrinsic resonance linewidth
(without skin effect and surface anisotropy broad-
ening) is under 10 Oe.
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In this note we will show that there exists a re-
stricted class of eigenstates of the pair-force Ham-
iltonian which contain N pairs of particles and
which are natural generalisations of those states
which contain one pair. The wave function of these
N-pair states has the form of an antisymmetrised
product of N 1-pair wave functions and the energy
is a sum of N 1-pair energies. These 1-pair wave
functions and energies are obtained from a 1-pair
Schrddinger equation in which the pairing interac-
tion has been replaced by an effective pairing inter-
action which in turn depends upon the N 1-pair
energies. These eigenstates may be used to study
the effects of including a pairing interaction in the
Nilsson model of the atomic nucleus 1) and also in
some nuclei near closed shells. They may also be
used to evaluate the accuracy of the methods of the
theory of superconductivity which have been used
by many authors 2,3) to include pairing forces in
an independent particle model of the nucleus.

We split the pairing-force Hamiltonian into that
part which describes unpaired (i.e., noninteracting)
particles and that part which describes the paired

particles. Thus

H =H1 +H2 ) (1)

where N
Hy= 2. 2¢Ne-g 2 > bibm, (3
27 (B T T E sy e T @

and where ¢ is the energy of the single-particle
state (f,o) (where ¢ = + denotes states which are
conjugate with respect to time reversal), S is the
set of states outside a finite energy interval about
the Fermi energy (which is specified by the inter-
action) plus those states in this interval that are
occupied by unpaired particles, Ss is the finite set
of states not included in S,

Ng = 3 (a++ g, + ar af_) , (4)

o =~ % > ®)
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and the a*'s and a's are fermion creation and anni-
hilation operators.

Since Hj and Hg refer to different dynamical
variables of the system, the eigenfunctions of H are
products of an eigenfunction of Hy with one of Hy
and the energy is a sum of the corresponding energy
eigenvalues. Since Hj is already diagonal, we will
only consider Hy and its eigenfunctions and we will
restrict f to those values contained in Sp.

The operators Nf and bf satisfy the commutation
relations

[8p Nyl = 40¢ ©)

(b8 1= 6 (1 - 2Np) . )
K we could neglect the term 2Nyson the right hand
side of (7), we would have boson commutation rela-
tions and the diagonalisation of Hg would be straight-
forward. The presence of the term, 2Nf, reflects
the fact thet the p's are products of Fermi operators
which must obey the Pauli principle.

We now formulate a method in which the com~
plicating term, 2Ny, in (7) gives no contribution to
the calculation of the matrix elements of H,,

i. We first expand an eigenstate of Hg as

=% 3 Wy S By 100, (8)
= Vs se e N e 3
fl' .o JEV 21 N
where |0) is the vacuum state.
ii. We can impose two requirements on

L TR Y

1. SinceI{bf, bf'] =0, we require ¥(f1...fy) to be
a symmetric function of its arguments.

2. Since b# = 0, the values of ¥(fj...fn) with two
or more arguments equal are without physical
significance. We are therefore free to choose
these values of ¥ in any convenient way. A con-
venient choice is zero.

These two conditions may be satisfied by letting

¥ fy. .. SN) = (1. SN olS1e - SN) . (9)

where ¢ is a symmetric function of its arguments
and

o(fy...f=1, # f+f, ali#j,
=0, ifa-ani=f_‘7" i#j.
In general it may be verified that
0(f1e.» =ﬂ 1-6 . 10
(fl---IN) i<j( ¥, _f]) (10)

iii. For ¥'s of the form (9) the normalisation is

- (e il2 =1
Wl f1-Z- i (Fe - fN

and the expectation value of Hj is

(11)
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@lHyley = 2
Aee
N

2. 2
84 fooeSicthiy - INST

x P f.- Ji1 a1 fN) - (12)
Note that these are the same results that would
have been gotten using boson commutation relations
for the b's by ignoring the term 2Ny in (7).

iv. We now determine the exact eigenstates of Hp
by requiring ¢ to satisfy the normalisation condition
(11) and the Schridinger equation derived from the
variational equations

o @l H-Ely 6 lm-Ely
6¢*(f1...fN) Mfl‘-'fN) B ¢

Using (9), (12) and 62 = ¢, (13) becomes
Q@eg + ...+ 2¢5 - E) 6(f. .. f) &S - -fN)

A (Zefl +oed + 2efN) Iqta(fl...fN)l2

YA fi-1fSis1- - IN)

(13)

N
-8 2 ; O( . - oSN) OUfy -« it Finte - -FN)

X o f1. e fi-1ff1-- IN) =0 . (14)

Since we obtain the same equation for ¢*, we can
choose ¢ to be real. From the definition of 8 it fol-
lows that

8(f1 .. ) OCA. - fi-1ffin1e - FN)

N
< 0(f.. A1 - Zl oA (19)
(1)
Therefore ¢ satisfies (14) if
(Zsfl + ...+ ZGfN- E)y o(f1.+ - IN)

N N
-g gl ; - ]gl Sf AN fitf g Sy) =0
(1) (16)

For N =1, (16) may be solved without any re-
strictions. For, in this case (16) becomes

(2¢s; = B lfy) - gZ50f)=0.  (17)
The solutions of (17) are
opy(f1) = & Cpy(2€py - Ep)7L, (18)

where gCP1 is a normalisation constant and E= EPI’
where Ep1 is a root of the equation
1=gZs(2¢- Epl)'l . (19)

For N> 1, we will show that there exists a re-
stricted class of solutions of (16) which are natural
generalisations of (18) and (19), i.e.,
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‘Ppl...pN(fP“fN) N
=&V Cpy...py %P (151 (2ep, - Epp)h)  (20)

where gNCp  p is a normalisation constant,

PN

I p P is a sum over the N! permutations of the in-

dices (p4...pv), and

E= 2 Ep. .
=1 P

The Ep, (¢ = 1...N) are N distinct roots of the
coupled equations

(21)

1=gTf Q- Ep)l, i=1..N, (22)
where N .
1
8&=8\1+2¢ — =) .  (23)
1 ( j'-:l Ep] - EPZ)
(+2)

This may be verified by direct substitution of (20)
into (16). However, the restriction

Epz # Ep] ,
is essential to the derivation of (22) and (23).

Given a single-particle spectrum, €7, and an in-
teraction strength, g, the solution of eq. (22) pro-
ceeds in two steps:

1. One must first decide whether the restrictions

(24) on the Epi are compatible with the EPi sat-

isfying (22). This must be carefully checked for
each particular problem. However, for the
Nilsson model of the atomic nucleus 1) (whose
single-particle spectrum satisfies €f + epn for
f # F'), we may choose the indices p; so that

alli #j, (24)

gl-l-gl‘ o= 2¢p;
and therefore (24) is satisfied in this limit,
Study of egs. (22) then indicates that there is a
range of g, g > 0, for which (22) and (24) are
compatible. These same considerations hold
true for any state of a system for which
lim Ep. # lim Ey. i#+7.
g0t p; g0+ i ’ J
Thus, there exists a large class of systems and
interaction strengths for which (22) and (24) are
compatible.
2. For systems for which (22) and (24) are compa-
tible, eqs. (22) may be solved numerieally for
the Ep.. The solution of egs. (22) is greatly

facilitated by the presence of the same function,
F(E) = (2¢s- B)1,

evaluated for different values of its argument in
each equation. This function may be calculated
once and then egs. (22) may be solved by itera-
tion.

Some of the advantages of this method over ex-
isting work (for example, see ref. 4)) on the exact
diagonalisation of the pairing-force Hamiltonian
are:

1. The computational effort needed to solve (22) is
in general much less than that needed to perform
a direct diagonalisation of Hy.

2. General properties of the eigenvalues of Hg may
be studied by considerings eqs. (21) and (22).
For example, the pairing energy can be related
directly to g. The pairing energy is defined as

P(2N) = 2B(2N- 1) - E(2N) - E(2N - 2), (25)

where E(2N-v) is the ground state energy of
2N-p particles. Note that this definition of
P(2N) assumes that E(2N- p) is a linear function
of v plus a discontinuous pairing term and that
it neglects quadratic terms in v. If we assume
that the energies of the paired particles in the
three ground states in (25) are given by (21),
then we obtain the total energies of the states by
adding the energy of the unpaired particles to
that of the paired particles, i.e.,

N-1

E(2N-2) = _Zl Ep(2N-2)
1=
N-1

E(2N-1) = igl Epf2N-1) + ¢f

N

B2N) = 2

i=1

where €p is the energy of the last filled level in

the ground state of 2N noninteracting particles,
Epi(ZN - ) is the energy of the i-th pair in the

EpZ(ZN)

ground state of 2N - v interacting particles, and
Py = F. Substituting these expressions into (25)
and again neglecting terms quadratic in v, we
have

P(2N) = 2¢p - EF(2N) .
Thus, if P(2N) is given, then Ef is known and
the N unknowns in eqs. (22) are g and Ep.,
i=1...N-1. ¢
3. The wave function is given as a rational function
of the N pair energies Epi which may be calcu-

lated as accurately as is desired.

We are now performing detailed applications of
these equations and the results will be reported at
a later date.
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