
INFORMATION AND CONTROL 5, 204-212 (1962)

Sequence Generators, Graphs, and Formal Languages*~

ARTHUR W . BURKS

Department of Philosophy, University of Michigan, Ann Arbor, Michigan

AND

JEss~ B. WRmHT

Logic of Computers Group, University of Michigan, Ann Arbor, Michigan

A sequence genera tor is a finite graph, more general than , bu t akin
to, the usual s t a t e d iagram associated wi th a finite au tomaton . The
nodes of a sequence genera tor represen t complete s ta tes , and each
node is labeled wi th an i npu t and an o u t p u t s ta te . An element of the
behav ior of a sequence genera tor is ob ta ined by tak ing the inpu t
and output states along an infinite path of the graph.

Sequence generators may be associated with formulas of the
monadic predicate calculus, in which the individual variables range
over the times 0, I, 2, 3, ... , and the predicate variables represent
complete states, input states, and output states. An unrestricted
singulary recursion is a formula in which the complete state at time
r -~ 1 is expressed as a truth-function of the complete state at time
r and the input states from times T -~- 1 to T -~ h. Necessary and suffi-
cient conditions are given for a formula derived from a sequence
generator being equivalent to an unrestricted singulary recursion.

The fundamental concept is that of a sequence generator. A sequence

generator is a finite, directed, labeled graph. Each node may or may
not be labeled as a root R. Each node is labeled with a pair of t ru th
values ("t" for true, "f" for false). Figure 1 is an example.

We are particularly interested in what we call the "behavior" of a
sequence generator (see Fig. 2). The behavior of a sequence generator

* This research was suppor ted by the Office of Nava l Research Con t r ac t No.
Nonr-1224 (21).

This paper is a con t inua t ion of Burks and Wrigh t (1962). In the first p a r t of
the p resen t paper we re la te the sequence generators of Burks and Wrigh t (1962)
to graphs; the first def inabi l i ty theorem below is a g raph- theore t ic vers ion of one
of the ma in resul ts of Burks and Wright (1962). The second definabi l i ty theorem
below is new.

204

SEQUENCE GENERATORS, GtL~_PHS~ FORMAL LANGUAGES 205

t f
f

Fze. 1. A sequence generator

R

I t ttttt---I
f f f f f f . . .

R

I t ft ftf.-- 1 ftftft...
FIG. 2. Two elements of the behavior of Fig. 1

is a set of matrices of t ru th values. The pairs of t ru th values taken from
the nodes along an infinite path of the graph constitute a two-by-omega
matrix. Such a two-by-omega matrix belongs to the behavior of a se-
quence generator if and only if it is taken from a path of the graph which
begins with a root. For example, the first element of Fig. 2 is taken from
the path of Fig. i that starts with the root and always stays in the root,
while the second element is taken from the path that starts with the
root and oscillates back and forth between it and the other node. This
concept of behavior may be connected to the ordinary one by calling
the upper truth value of a node an input state and calling the lower
truth value of a node an output state. A sequence generator then deter-
mines a relation between infinite input sequences and infinite output
sequences, which relation constitutes its behavior.

The inputs and outputs labeling nodes may be vectors of truth values
rather than single truth values. Our results all apply to this more general
case, but in the interest of simplicity we will present them in terms of
the case where the input and output vectors are of length one.

Digital computers or finite automata are closely related to a special
type of sequence generator called a deterministic sequence generator.
Figure 3 is deterministic. A sequence generator is deterministic if it
satisfies these two conditions: (a) There is exactly one root whose input

206 BURI£S AND WRIGHT

f t

f t

Fla . 3. Determinis t ic sequence generator for a binary counter

truth value is t, and exactly one root whose input value is f. (b) For
each node there is exactly one node immediately following the given
node and having t as its input, and exactly one node immediately
following the given node and having f as its input. The deterministic
sequence generator of Fig. 3 corresponds, in fact, to a binary counter.

Consider a graph derived from a digital computer or finite automaton
in the following way. Each pair consisting of an input state and an
internal state is a complete state. A node of the graph is provided for
each complete state. The labels on a node give the input state and out-
put state associated with the corresponding complete state of the
automaton. Directed arrows of the graph indicate direct transitions
between complete states. Any graph derived from a digitM computer in
this way is a deterministic sequence generator, and each deterministic
sequence generator corresponds to a digital computer.

The rows of truth values in the infinite matrices introduced earlier
define predicates on the natural numbers. This suggests the use of
logical formulas to represent sequence generators. We do this in an
interpreted system called the sequential calculus (see Biichi (1962)).
The symbols of the sequential calculus are: individual variables, in-
terpreted as ranging over the natural numbers; monadic predicate
variables, interpreted as ranging over predicates of natural numbers;
the individual constant zero; the successor function; truth-functional
connectives; and quantifiers on both individual and predicate variables.

I t is possible to associate with each sequence generator a formula of the
sequential calculus. Let 1 ~ be any sequence generator with no more than

SEQUENCE GENERATORS, GRAPHS, FORMAL LANGUAGES 207

2 ~ nodes. In addition to the labels in r assign to each node a distinct
n-tuple of truth values, called the code-word of that node. Predicates
st . . . s~ (abbreviated s) are associated with a sequence generator in
such a way that for a node-path xo, xl , xs, . . . , with x0 as a root,
si(r) is true if and only if the ith truth value assigned to x, is t. The
sequence generator 1 ~, without reference to its behavior, is represented
by the conjunction of the formulas for st(0) - . . s~(0), sl(r') "" s~(r').
The behavior of 1 ~ is represented by conjoining equivalences for the
input predicate i and for the output predicate o, and existentially
quantifying s. The formula corresponding to Fig. 1 is

(3s){s(0) &(Vr)[(s(r) V s(r ')) &(i(r) =-s(r)) & (o(r) =- s(r))J}. (1)

The existential predicate quantifier "there is an s" asserts the existence
of an infinite sequence of nodes satisfying four conditions: s(0) says
that this hlfinite sequence of nodes begins with the root R,
(Vr)[S(r) V 8(r')] that i t i s indeedapa thof thegraph ; i (r) -- s(r) and
o(r) =- s(r) define the input and output predicates for the path. This
correspondence between formulas and sequence generators is such that
a pair of predicates of natural numbers (i, o} satisfies the formula if and
only if the corresponding two-by-omega matrix of truth values belongs
to the behavior of the given sequence generator.

Every formula derived from a sequence generator can be put in the
normal form

(3s){R[s(O)] & ((Vr)P[s(r), s(r'), i(r), o(r)])}, (2)

where R and P are both truth functions. Conversely, one can derive
from any normal form formula a corresponding sequence generator.
There is thus a one-one correspondence between normal form formulas
and sequence generators, which correspondence preserves behavior.

The formulas of the sequential calculus can be studied by means of
sequence generators, to which combinatoriaI methods can be easily
applied. We will next present a theorem which was arrived at by working
with sequence generators but is more easily stated here as a theorem
about formulas of the sequential calculus.

We introduce the following definition for a formula e(i, o) containing
i and o as the only free variables, e(i , o) is uniquely solvable if and only
if for each predicate i there is exactly one predicate o such that the
pair (i, o) satisfies e(i , o) in the intended interpretation. I t is clear that
when a formula e(i, o) is uniquely solvable, it implicitly defines a func-

208 BURKS AND WRIGHT

tion i such that o = if(i) ff and only if e(i , o). ff is a function which
maps the set of all monadic predicates of natural numbers into the set
of all monadic predicates of natural numbers.

We are interested in a recursive definition of the type Church (1960)
calls an unrestricted singulary recursion. Such a recursion is of the form

s(0) - A [i (0) , . . . i(h)]

s(r ') ~- B[s(r); i (r ') , . . . i(T + h)] (3)

o(r) -~ Dis(r)] ,

where A, B, and D are truth functions and h is a nonnegative integer.
FIgST D~FI~>.BILtTY T~EGREM: For every uniquely solvable normal

form formula C (i, o) ,there exists an equivalent formula (3s) (.r) ~ (s, i, o, r) ,
where ~i(s, i, o, r) is an unrestricted singulary recursion. Furthermore,
the formula (3s) (. r)~(s , i, o, r) can be constructed effectively from the
given formula e(i, o).

The proof of the first definability theorem has three steps. 1 The
first step can be expressed if we think of the natural numbers as discrete
times with r being a time variable. Consider now a uniquely solvable
normal form formula ~(i, o) and the corresponding sequence generator
with input i and output o. The output o at time r may, contrary to
physical reality, depend on input states which occur at a time later than
r. Let k be the number of nodes of the sequence generator. I t turns out
that the amount of anticipation is bounded by k 2, that is, the parameter
h of the unrestricted singulary recursion is in fact k 2. Thus the first step
of the proof of the definability theorem establishes the fact that for a
uniquely solvable sequence generator with k nodes, the output o at
time r is independent of input states after r -~ k ~.

The second step of the proof of the first definability theorem involves
a function or operation on the class of sequence generators, called the
subset sequence generator operation, and used by Myhill (1957),
Medvedev (1958), and Rabin and Scott (1959). Let I ~ be a sequence
generator and let 1 ~* be the subset sequence generator of F. The nodes of
F* are sets of nodes of F. The arrows of F* are placed according to the
arrows of P in such a way as to take account of the fact that a binary
relation induces on the subsets of its domain a function which is single-
valued. There are two important facts about r*. First, if r is uniquely
solvable, then for each predicate i there is exactly one path of r* giving

1 For the full proof see Sections 3.3 and 4.2 of Burks and Wright (1962).

SEQUENCE GENERATORS~ GRAPHS, FORMAL LANGUAGES 209

rise to i. Second, 1 ~* had the same behavior as 1~. Previous users of the
subset sequence generator operation have shown this second fact to be
so when behavior is based on finite sequences. This behavioral equiva-
lence may be extended to our concept of behavior, which is based on
infinite sequences, by means of KSnig's (1936) infinity lemma. 2

As a consequence of steps one and two, our consideration of the normal
form formula e(i , o) is reduced to a sequence generator F* and a num-
ber Is 2 having these two properties: first, for each predicate i there is a
unique path in F* giving rise to i; second, k 2 is a bound on the time
dependence of the predicates s and o on the predicate i, since s(r) and
hence o(r) are independent of the input states after r +]~2. To obtain
the unrestricted singulary recursion for C(i, o) we must express s(r ')
as a t ru th function of s(r) and i (r) , " " , i (r ' + h). For any given
i we use the predicate s defined by the corresponding path through
1 s* as the s of the recursion, and we take h to be k 2. A simple argument
based on the uniqueness of the path will show that s (r I) is a time-
independent t ru th function of s(r) and i (r ') , . . . , i (r ' d- h). To
write o as a restricted singulary recursion of i and s is now essentially
a matter of an elaborate t ruth table procedure.

Our definability result may be generalized to arbitrary formulas of the
sequential calculus by means of some theorems about this calculus
established by J. R. Biichi. Biichi's (1962) main result is that there is
a decision procedure for whether or not an arbitrary sentence of the
sequential calculus is true in the intended interpretation. An immediate
corollary of this result is tha t there is a decision procedure for unique
solvability, since an arbitrary formula e(i , o) is uniquely solvable if
and only if the following formula of the sequential calculus is true:

(i)(Zlo)Ie(i, o) & (ol)[e(i, o) D (z) (o (r) -- ol(r))]}. (4)

The generalization of our definability result involves the concept of a
finitely anticipatory formula. A formula C(i, o) is finitely anticipatory
if for each time r there is an integer h such that the input states from
time zero up to time r Jr h determine the output state at time r. I t
should be noted tha t in an unrestricted singulary recursion h is a con-
stant, whereas in the definition of finitely anticipatory, h is a function
of r. Since _< can be defined in the sequential calculus, the statement
tha t e (i , o) is finitely anticipatory can be expressed by a sentence of

2 See also Section 2.2 of Burks and Wrigh~ (1962).

210 BURKS AND WRIGHT

the sequential calculus. Therefore, the decidability of truth of sentences
of the sequential calculus implies that the class of finitely anticipatory
formulas is effectively decidable.

SECOND DEFIBTABILITY THEOREM: Let C(i, o) be any formula of the
sequential calculus having i and o as the only free variables. There is an
unrestricted singulary recursion ~(s, i, o, r) such that e(i, o) =--
(3s)(r)'tt(s, i, o, r) /f and only f ie(i , o) is both uniquely solvable and
finitely anticipatory. Moreover, there is an a~gorithm applicable to e(i, o)
which yields an equivalent formula, (3s) (r)~t(s, i, o, r), i f one exists.

Roughly speaking, this theorem states that if C(i, o) is a formula of
the sequential calculus, the relationship between i and o can be ex-
pressed by an unrestricted singulary recursion if and only if e(i , o) is
both uniquely solvable and finitely anticipatory. A complete presenta-
tion of the proof of this theorem requires taking Biichi's (1962) proof
of decidability for the sequential calculus and also using regular sets
as defined by Kleene (1956). For this reason we will not present the
proof here, but will make some remarks about it.

The proof uses the generalized normal form

(3s){R[s(0)] ~ ((3~)G[s(T)]) ~ ((VT)P[s(~), s(~'), i(~), o(~)]}, (5)

where R, G, and P are truth functions and (3 ~) is an infinite existential
quantifier. "(3~)G '' means that there exist infinitely many natural
numbers satisfying G. The infinite existential quantifier (3 ~) is definable
in the sequential calculus. Biichi has shown that, for any formula
e(i , o) of the sequential calculus having the predicates i and o as the
only free variables, there is an equivalent generalized normal form
formula.

The generalized normal form (5) is the same as normal form (2)
except for the addition of the conjunct (3%')G. Just as the normal form
(2) corresponds to a sequence generator as defined in the beginning of
this paper, the generalized normal form (5) corresponds to an extension
of the idea of sequence generator in which each node may or may not
be labeled as a goal G. For sequence generators with goals, the definition
of behavior is modified by requiring in addition that the infinite paths
from which the labels are taken, must pass through the set of goal
states infinitely often. Figure 4 is an example of a sequence generator
with goals. 8 The generalized normal form formula corresponding to

SEQUENCE GENERATORS, GRAPHS, FORMAL LANGUAGES 211

i° t f
f t

FIG. 4. Sequence generator with goals

Fig. 4 is

(~s){,(o) ~ ((3%)s(~))
(6)

(w) [(s (~) v s (J)) ~ (i(~) - s(T)) ~ (o(~) ~ s(~))]}.

The effect of the infinite quantifier (3 ") of the formula is obtained in a
sequence generator with goals by considering only paths which pass
through the goals infinitely many times. There is then a one-one cor-
respondence between generalized normal form formulas and sequence
generators with goals, which correspondence preserves behavior.

I t was mentioned in connection with the proof of the first definability
theorem that in the case of an ordinary uniquely solvable sequence
generator with k nodes, the output o at time r is determined by the
input states from time zero up to time r + k 2. The same is true of those
sequence generators with goals which are both uniquely solvable and
finitely anticipatory, so that , as before, the amount of anticipation is
independent of time.

RECEIVED: April !2, 1962

REFERENCES

Bi~CHI, J. 1~., (1962). On a decision procedure in restricted second-order arith-
metic. In "Logic, Methodology and Philosophy of Science: Proceedings of
the 1960 International Congress," pp. 1-11. Edited by Ernest Nagel, Patrick
Suppes, and Alfred Tarski. Stanford University Press, Stanford, CMifernia.

BURKS, ARTHUR W., AND WRIGHT, JESSE B. (1962). Sequence generators and
digital computers. In "Proceedings of Symposia in Pure Mathematics,"
Vol. 5. Am. Math. Sou., Providence, Rhode Island.

CHURCH, ALONZO, (1960). Application of recursivc arithmetic to the problem of
circuit synthesis. In "Summaries of Talks Presented at the Summer Institute
for Symbolic Logic, Cornell University, 1957." Institute for Defense Analysis,
Princeton.

3 See Section 4.4 of Burks and Wright (1962).

212 BURKS A.ND WRIGHT

KLEENE, S. C., (1956). Representation of events in nerve nets and finite automata.
In C. E. SHXNNON XND J. McCARTHr (eds.), "Automata Studies," pp. 3-41.
Princeton Univ. Press, Princeton, N. J.

I~/:iNIG, D., (1936). "Theorie der Endlichen und unendlichen Graphen." Akademi-
sche Verlagsgesellschaft M.B.H., Leipzig.

M]~DVEDEV, :[. W., (1958). On a class of events representable in a finite automaton.
Translated by J. J. Schorr-Kon from a supplement to the Russian translation
of "Automata Studies," C. E. SHANNON AND J. McCARTHY (eds.). Group
Report 34-73, Lincoln Laboratory, Lexington, Mass.

MrHXLL, J., (1957). Finite automata and representation of events. In: "Funda-
mental Concepts in the Theory of Systems." WADC Technical Report
57-624, ASTIA Document No. AD 1557 41.

RABIN, M. O., AND SCO~T, D., (1959). Finite automata and their decision problems.
IBM J. Research Develop. 3, 114-125.

