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A sequence genera tor  is a finite graph,  more general  than ,  bu t  akin 
to, the  usual  s t a t e  d iagram associated wi th  a finite au tomaton .  The  
nodes of a sequence genera tor  represen t  complete  s ta tes ,  and each 
node is labeled wi th  an i npu t  and  an o u t p u t  s ta te .  An element  of the  
behav ior  of a sequence genera tor  is ob ta ined  by  tak ing  the  inpu t  
and output states along an infinite path of the graph. 

Sequence generators may be associated with formulas of the 
monadic predicate calculus, in which the individual variables range 
over the times 0, I, 2, 3, ... , and the predicate variables represent 
complete states, input states, and output states. An unrestricted 
singulary recursion is a formula in which the complete state at time 
r -~ 1 is expressed as a truth-function of the complete state at time 
r and the input states from times T -~- 1 to T -~ h. Necessary and suffi- 
cient conditions are given for a formula derived from a sequence 
generator being equivalent to an unrestricted singulary recursion. 

The fundamental concept is that of a sequence generator. A sequence 

generator is a finite, directed, labeled graph. Each node may or may  
not  be labeled as a root R. Each node is labeled with a pair of t ru th  
values ("t" for true, "f" for false). Figure 1 is an example. 

We are particularly interested in what  we call the "behavior"  of a 
sequence generator (see Fig. 2). The behavior of a sequence generator 

* This  research was suppor ted  by  the  Office of Nava l  Research  Con t r ac t  No.  
Nonr-1224 (21). 

This  paper  is a con t inua t ion  of Burks  and  Wrigh t  (1962). In  the  first p a r t  of 
the  p resen t  paper  we re la te  the  sequence generators  of Burks  and Wrigh t  (1962) 
to graphs;  the  first def inabi l i ty  theorem below is a g raph- theore t ic  vers ion of one 
of the  ma in  resul ts  of Burks  and Wright  (1962). The  second definabi l i ty  theorem 
below is new. 
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Fze. 1. A sequence generator 
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FIG. 2. Two elements of the behavior of Fig. 1 

is a set of matrices of t ru th  values. The pairs of t ru th  values taken from 
the nodes along an infinite path of the graph constitute a two-by-omega 
matrix. Such a two-by-omega matrix belongs to the behavior of a se- 
quence generator if and only if it is taken from a path of the graph which 
begins with a root. For  example, the first element of Fig. 2 is taken from 
the path of Fig. i that starts with the root and always stays in the root, 
while the second element is taken from the path that starts with the 
root and oscillates back and forth between it and the other node. This 
concept of behavior may be connected to the ordinary one by calling 
the upper truth value of a node an input state and calling the lower 
truth value of a node an output state. A sequence generator then deter- 
mines a relation between infinite input sequences and infinite output 
sequences, which relation constitutes its behavior. 

The inputs and outputs labeling nodes may be vectors of truth values 
rather than single truth values. Our results all apply to this more general 
case, but in the interest of simplicity we will present them in terms of 
the case where the input and output vectors are of length one. 

Digital computers or finite automata are closely related to a special 
type of sequence generator called a deterministic sequence generator. 
Figure 3 is deterministic. A sequence generator is deterministic if it  
satisfies these two conditions: (a) There is exactly one root whose input 
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Fla .  3. Determinis t ic  sequence generator for a binary counter 

truth value is t, and exactly one root whose input value is f. (b) For 
each node there is exactly one node immediately following the given 
node and having t as its input, and exactly one node immediately 
following the given node and having f as its input. The deterministic 
sequence generator of Fig. 3 corresponds, in fact, to a binary counter. 

Consider a graph derived from a digital computer or finite automaton 
in the following way. Each pair consisting of an input state and an 
internal state is a complete state. A node of the graph is provided for 
each complete state. The labels on a node give the input state and out- 
put state associated with the corresponding complete state of the 
automaton. Directed arrows of the graph indicate direct transitions 
between complete states. Any graph derived from a digitM computer in 
this way is a deterministic sequence generator, and each deterministic 
sequence generator corresponds to a digital computer. 

The rows of truth values in the infinite matrices introduced earlier 
define predicates on the natural numbers. This suggests the use of 
logical formulas to represent sequence generators. We do this in an 
interpreted system called the sequential calculus (see Biichi (1962)). 
The symbols of the sequential calculus are: individual variables, in- 
terpreted as ranging over the natural numbers; monadic predicate 
variables, interpreted as ranging over predicates of natural numbers; 
the individual constant zero; the successor function; truth-functional 
connectives; and quantifiers on both individual and predicate variables. 

I t  is possible to associate with each sequence generator a formula of the 
sequential calculus. Let 1 ~ be any sequence generator with no more than 
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2 ~ nodes. In addition to the labels in r assign to each node a distinct 
n-tuple of truth values, called the code-word of that node. Predicates 
st . . .  s~ (abbreviated s) are associated with a sequence generator in 
such a way that for a node-path xo, xl ,  xs, . . .  , with x0 as a root, 
si(r) is true if and only if the ith truth value assigned to x, is t. The 
sequence generator 1 ~, without reference to its behavior, is represented 
by the conjunction of the formulas for st(0) - . .  s~(0), sl(r') ""  s~(r'). 
The behavior of 1 ~ is represented by conjoining equivalences for the 
input predicate i and for the output predicate o, and existentially 
quantifying s. The formula corresponding to Fig. 1 is 

(3s){s(0) &(Vr)[(s(r) V s(r ' ) )  &(i(r) =-s(r) ) & (o(r) =- s(r))J}. (1) 

The existential predicate quantifier "there is an s" asserts the existence 
of an infinite sequence of nodes satisfying four conditions: s(0) says 
that this hlfinite sequence of nodes begins with the root R, 
(Vr)[S(r) V 8(r')] that  i t i s indeedapa thof thegraph ; i ( r )  -- s(r) and 
o(r) =- s(r) define the input and output predicates for the path. This 
correspondence between formulas and sequence generators is such that 
a pair of predicates of natural numbers (i, o} satisfies the formula if and 
only if the corresponding two-by-omega matrix of truth values belongs 
to the behavior of the given sequence generator. 

Every formula derived from a sequence generator can be put in the 
normal form 

(3s){R[s(O)] & ((Vr)P[s(r),  s(r'), i(r), o(r)])}, (2) 

where R and P are both truth functions. Conversely, one can derive 
from any normal form formula a corresponding sequence generator. 
There is thus a one-one correspondence between normal form formulas 
and sequence generators, which correspondence preserves behavior. 

The formulas of the sequential calculus can be studied by means of 
sequence generators, to which combinatoriaI methods can be easily 
applied. We will next present a theorem which was arrived at by working 
with sequence generators but is more easily stated here as a theorem 
about formulas of the sequential calculus. 

We introduce the following definition for a formula e(i,  o) containing 
i and o as the only free variables, e(i ,  o) is uniquely solvable if and only 
if for each predicate i there is exactly one predicate o such that the 
pair (i, o) satisfies e(i ,  o) in the intended interpretation. I t  is clear that 
when a formula e(i,  o) is uniquely solvable, it implicitly defines a func- 
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tion i such that o = if(i) ff and only if e(i ,  o). ff is a function which 
maps the set of all monadic predicates of natural numbers into the set 
of all monadic predicates of natural numbers. 

We are interested in a recursive definition of the type Church (1960) 
calls an unrestricted singulary recursion. Such a recursion is of the form 

s(0) - A [ i ( 0 ) ,  . . .  i(h)] 

s(r ')  ~- B[s(r); i (r ' ) ,  . . .  i(T + h)] (3) 

o(r)  -~ Dis(r)] ,  

where A, B, and D are truth functions and h is a nonnegative integer. 
FIgST D~FI~>.BILtTY T~EGREM: For every uniquely solvable normal 

form formula C ( i, o ) ,there exists an equivalent formula (3s)  (.r) ~ ( s, i, o, r ) , 
where ~i(s, i, o, r) is an unrestricted singulary recursion. Furthermore, 
the formula (3s) ( . r )~(s ,  i, o, r) can be constructed effectively from the 
given formula e(  i, o). 

The proof of the first definability theorem has three steps. 1 The 
first step can be expressed if we think of the natural numbers as discrete 
times with r being a time variable. Consider now a uniquely solvable 
normal form formula ~(i, o) and the corresponding sequence generator 
with input i and output o. The output o at time r may, contrary to 
physical reality, depend on input states which occur at a time later than 
r. Let k be the number of nodes of the sequence generator. I t  turns out 
that the amount of anticipation is bounded by k 2, that is, the parameter 
h of the unrestricted singulary recursion is in fact k 2. Thus the first step 
of the proof of the definability theorem establishes the fact that for a 
uniquely solvable sequence generator with k nodes, the output o at 
time r is independent of input states after r -~ k ~. 

The second step of the proof of the first definability theorem involves 
a function or operation on the class of sequence generators, called the 
subset sequence generator operation, and used by Myhill (1957), 
Medvedev (1958), and Rabin and Scott (1959). Let I ~ be a sequence 
generator and let 1 ~* be the subset sequence generator of F. The nodes of 
F* are sets of nodes of F. The arrows of F* are placed according to the 
arrows of P in such a way as to take account of the fact that a binary 
relation induces on the subsets of its domain a function which is single- 
valued. There are two important facts about r*. First, if r is uniquely 
solvable, then for each predicate i there is exactly one path of r* giving 

1 For  the  full proof see Sections 3.3 and 4.2 of Burks and Wright (1962). 
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rise to i. Second, 1 ~* had the same behavior as 1~. Previous users of the 
subset sequence generator operation have shown this second fact to be 
so when behavior is based on finite sequences. This behavioral equiva- 
lence may  be extended to our concept of behavior, which is based on 
infinite sequences, by means of KSnig's (1936) infinity lemma. 2 

As a consequence of steps one and two, our consideration of the normal 
form formula e( i ,  o) is reduced to a sequence generator F* and a num- 
ber Is 2 having these two properties: first, for each predicate i there is a 
unique path in F* giving rise to i; second, k 2 is a bound on the time 
dependence of the predicates s and o on the predicate i, since s(r)  and 
hence o(r)  are independent of the input states after r + ]~2. To obtain 
the unrestricted singulary recursion for C(i, o) we must express s(r ' )  
as a t ru th  function of s( r )  and i ( r ) ,  " "  , i ( r '  + h). For any given 
i we use the predicate s defined by the corresponding path through 
1 s* as the s of the recursion, and we take h to be k 2. A simple argument 
based on the uniqueness of the path will show that  s ( r  I) is a time- 
independent t ru th  function of s(r)  and i ( r ' ) ,  . . . ,  i ( r '  d- h). To 
write o as a restricted singulary recursion of i and s is now essentially 
a matter  of an elaborate t ruth table procedure. 

Our definability result may be generalized to arbitrary formulas of the 
sequential calculus by means of some theorems about this calculus 
established by J. R. Biichi. Biichi's (1962) main result is that  there is 
a decision procedure for whether or not an arbitrary sentence of the 
sequential calculus is true in the intended interpretation. An immediate 
corollary of this result is tha t  there is a decision procedure for unique 
solvability, since an arbitrary formula e( i ,  o) is uniquely solvable if 
and only if the following formula of the sequential calculus is true: 

(i)(Zlo)Ie(i, o) & (ol)[e(i, o) D (z ) (o ( r )  -- ol(r))]}. (4) 

The generalization of our definability result involves the concept of a 
finitely anticipatory formula. A formula C(i, o) is finitely anticipatory 
if for each time r there is an integer h such that  the input states from 
time zero up to time r Jr h determine the output  state at  time r. I t  
should be noted tha t  in an unrestricted singulary recursion h is a con- 
stant,  whereas in the definition of finitely anticipatory, h is a function 
of r. Since _< can be defined in the sequential calculus, the statement 
tha t  e ( i ,  o) is finitely anticipatory can be expressed by a sentence of 

2 See also Section 2.2 of Burks  and Wrigh~ (1962). 
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the sequential calculus. Therefore, the decidability of truth of sentences 
of the sequential calculus implies that the class of finitely anticipatory 
formulas is effectively decidable. 

SECOND DEFIBTABILITY THEOREM: Let C(i, o) be any formula of the 
sequential calculus having i and o as the only free variables. There is an 
unrestricted singulary recursion ~(s,  i, o, r) such that e(i,  o) =-- 
(3s)(r)'tt(s, i, o, r) /f and only f ie( i ,  o) is both uniquely solvable and 
finitely anticipatory. Moreover, there is an a~gorithm applicable to e( i, o) 
which yields an equivalent formula, (3s) (r)~t(s, i, o, r),  i f  one exists. 

Roughly speaking, this theorem states that if C(i, o) is a formula of 
the sequential calculus, the relationship between i and o can be ex- 
pressed by an unrestricted singulary recursion if and only if e(i ,  o) is 
both uniquely solvable and finitely anticipatory. A complete presenta- 
tion of the proof of this theorem requires taking Biichi's (1962) proof 
of decidability for the sequential calculus and also using regular sets 
as defined by Kleene (1956). For this reason we will not present the 
proof here, but will make some remarks about it. 

The proof uses the generalized normal form 

(3s){R[s(0)] ~ ((3~)G[s(T)]) ~ ((VT)P[s(~), s(~'), i(~), o(~)]}, (5) 

where R, G, and P are truth functions and (3 ~) is an infinite existential 
quantifier. "(3~)G '' means that there exist infinitely many natural 
numbers satisfying G. The infinite existential quantifier (3  ~) is definable 
in the sequential calculus. Biichi has shown that, for any formula 
e(i ,  o) of the sequential calculus having the predicates i and o as the 
only free variables, there is an equivalent generalized normal form 
formula. 

The generalized normal form (5) is the same as normal form (2) 
except for the addition of the conjunct (3%')G. Just as the normal form 
(2) corresponds to a sequence generator as defined in the beginning of 
this paper, the generalized normal form (5) corresponds to an extension 
of the idea of sequence generator in which each node may or may not 
be labeled as a goal G. For sequence generators with goals, the definition 
of behavior is modified by requiring in addition that the infinite paths 
from which the labels are taken, must pass through the set of goal 
states infinitely often. Figure 4 is an example of a sequence generator 
with goals. 8 The generalized normal form formula corresponding to 
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FIG. 4. Sequence generator with goals 

Fig. 4 is 

(~s){,(o) ~ ((3%)s(~)) 
(6) 

( w ) [ ( s ( ~ )  v s ( J ) )  ~ (i(~) - s(T)) ~ (o(~) ~ s(~))]}. 

The effect of the infinite quantifier ( 3  ") of the formula is obtained in a 
sequence generator with goals by  considering only paths which pass 
through the goals infinitely many times. There is then a one-one cor- 
respondence between generalized normal form formulas and sequence 
generators with goals, which correspondence preserves behavior. 

I t  was mentioned in connection with the proof of the first definability 
theorem that  in the case of an ordinary uniquely solvable sequence 
generator with k nodes, the output  o at  time r is determined by  the 
input states from time zero up to time r + k 2. The same is true of those 
sequence generators with goals which are both uniquely solvable and 
finitely anticipatory, so that ,  as before, the amount  of anticipation is 
independent of time. 

RECEIVED: April !2, 1962 
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