TRIURANIUM HEPTAOXIDES: HEAT CAPACITIES AND THERMODYNAMIC PROPERTIES OF α - AND β -U₃O₇ FROM 5 TO 350°K*

E. F. WESTRUM, Jr.

Department of Chemistry, University of Michigan, Ann Arbor, Michigan

and

F. GRØNVOLD

Chemical Institute A, University of Oslo, Blindern, Norway

(Received 14 June 1961)

Abstract—Low temperature heat capacities have been measured by adiabatic calorimetry on two phases with composition UO_{2.83} designated α - and β -U₃O₇. They were obtained by oxidation of UO₂ at 135 and 165°C, respectively. β -U₃O₇ was subsequently heat treated at 225°C. Both substances possess UO₂-like structures, apparently tetragonally deformed, with c/a = 0.986 for the face-centered uranium lattice of α -U₃O₇ and c/a = 1.031 for that of β -U₃O₇. Both have normal and almost equal heat capacities over the measured range, except for a small lambda-type anomaly at 30.5° K in α -U₃O₇. At 298.15°K the values of the practical entropy, S⁰, and the free energy function, $-(F^0 - H_0^0)/T$, are 19.73 and 9.66 cal gfw⁻¹ °K⁻¹ for α -UO_{2.833}, and 19.96 and 9.77 cal gfw⁻¹ °K⁻¹ for β -UO_{2.835}, respectively. These new data are correlated with structural and magnetic properties and thermodynamic data for other uranium oxides.

1. INTRODUCTION

THE DISCOVERY of lambda-type heat capacity anomalies in $UO_2^{(1)}$ and in $NpO_2^{(2, 3)}$ and in $U_3O_8^{(4)}$ (properly designated triuranium octaoxide⁽⁵⁾) but not in $U_4O_9^{(6)}$ (properly designated tetrauranium enneaoxide⁽⁵⁾) has led to further interest in low temperature thermophysical properties of the uranium oxide phases. These anomalies are attributed to the changing population of the uranium 5*f* electrons among the available energy states. Since all the known stable phases between UO_2 and $UO_3^{(1)}$ have been examined by cryogenic calorimetry, recourse was had to the study of two metastable phases approximating U_3O_7 in composition obtained by oxidation of UO_2 at temperatures below 200°C.

A compound of composition U₃O₇ was first identified by JOLIBOIS⁽⁷⁾, and shortly afterwards

by GRØNVOLD and HARALDSEN⁽⁸⁾ on oxidation of UO2 at 150°C. The latter authors observed an increase in density upon oxidation which they related to uptake of oxygen at interstitial positions in the UO₂ structure, but were not able at that time to decide with certainty whether the pseudocubic, UO2-like structure of UO2.34 belonged to a new phase or was the limiting oxygen-rich member of the UO_{2+x} solid solution. It was interpreted to be part of a solid solution region by ALBERMAN and ANDERSON⁽⁹⁾ and ARONSON et al.⁽¹⁰⁾, but the work of HERING and PERIO⁽¹¹⁾ ascertained the presence of U_3O_7 as a separate phase. The same conclusion was reached by GRØNVOLD⁽¹²⁾. Further confirmation is found in the work by BLACKBURN et al.⁽¹³⁾, VAUGHAN et al.⁽¹⁴⁾, HOEKSTRA et al.⁽¹⁵⁾ and in neutron diffraction work by ANDRESEN⁽¹⁶⁾. The phase was characterized by PERIO⁽¹⁷⁾ as tetragonal with a c/a axial ratio of 0.991 (a = 5.447, c =5.400 Å). Anderson⁽¹⁸⁾ maintains, however, that oxidation products prepared below 180°C show

^{*} This work was supported in part by the Division of Research of the United States Atomic Energy Commission.

cubic structure with unchanged cell dimensions up to the composition UO_{2.25}, except for some asymmetric broadening of the diffraction lines towards higher angles for more oxygen-rich samples than UO_{2.1}. VAUGHAN *et al.*⁽¹⁴⁾ claim that this is only the case for "active" oxide preparations.⁽¹⁹⁾ The phase has been prepared by the present authors by oxidation of UO₂ in air at 135°C. It is designated here as α -U₃O₇ and gives X-ray photographs corresponding to a tetragonal arrangement of the uranium atoms with axial ratio c/a = 0.986 for the face-centered cell.

Some of the earlier investigators (9,10,13,14,18,20,21) apparently have failed to recognize the differences between this phase and the ones with c/a ratio just above unity, obtainable by oxidizing UO₂ at slightly higher temperatures. One of these phases, designated here as β -U₃O₇, can be prepared by oxidizing UO₂ at temperatures ranging between 150 and 265°C. It has a tetragonal arrangement of the heavy atoms with a c/a ratio of 1.031 and was first found by GRØNVOLD and HARALDSEN⁽⁸⁾ in the composition range UO2.34 to UO2.43. The low density observed for the phase was taken to indicate substitution of oxygen for uranium. It seems, however, as if the oxidation had been carried too far and that the low density $(10.00 \text{ g cm}^{-3})$ was due to admixture of more oxygen-rich phases. Thus, determination of the weight increase on a 150 g sample during the present oxidation experiments indicated the composition of the phase to be $UO_{2.34\pm0.01}$, and its pycnometric density was found to be 11.17 g cm⁻³, in accordance with the assumption of interstitial oxygen uptake. PERIO⁽¹⁷⁾ ascribed the composition UO2.40 to this phase, while ANDERSON⁽¹⁸⁾ favored the composition U16O38, i.e. UO2.375. ARONSON et al. (10) placed the composition at $UO_{2\cdot 34 \pm 0.03};$ other authors^(13-15, 19-22) have placed it at U₃O₇, i.e. UO_{2.383}.

Several authors^(15,17,18,23,24) claim the existence of one more phase with tetragonal structure, characterized by c/a = 1.016 in the composition range UO_{2.30} to UO_{2.33}. The difference between the phase with c/a = 1.031 and the one with c/a = 1.016 was related by PERIO⁽²⁴⁾ to differences in temperatures of preparation (180-400°C for the former and 420-460°C for the latter), while ANDERSON⁽¹⁸⁾ ascribed it to differences in composition (U₁₆O₃₆, i.e. UO_{2.375} for the former and

U16O37, i.e. UO2-313 for the latter). HOEKSTRA et al.⁽¹⁵⁾ obtained the phase with c/a = 1.015 by annealing the β -U₅O₇ phase at temperatures in the range 350-500°C and considered it to have the composition UO_{2.30}. BLACKBURN et al.⁽¹³⁾ noted that although the c/a ratio of the tetragonal structure varied between 1.01 and 1.019 on oxidation of UO₂ powder to UO_{2.33} at 150°C, between 1.016 and 1.032 on oxidation at 200°C, and between 1.029 and 1.032 for UO₂ pellets on oxidation at 250 to 280°C, the unit cell volume was constant. This was taken as evidence of an invariable composition of the U₃O₇ phase, and the small c/aratios observed on oxidizing the powder with large surface area to be the result of interaction with the UO₂ matrix network. It seems more probable, though, that the matrix would cause the c/a ratio to be less than unity on oxidation, just as has been observed by $PERIO^{(17)}$ and the present authors, and that the varying c/a ratios from 1.01 to 1.032 are due to phases with slightly different compositions or a solid solution.

In addition to the phases already discussed, PERIO⁽²⁴⁾ reported the existence of a fourth phase with tetragonal structure and c/a = 1.010 obtained in the temperature range 460–520°C. During the present work a fifth phase was observed in the same composition range. It was obtained by continued heating of α -U₃O₇ in air at 135°C during a period of six months and was found to have the composition U₈O₁₉ or UO_{2.37} and a structure of lower symmetry than tetragonal (as discussed below).

The relationships of these phases to the stable phases UO_{2+x} , $U_4O_{9\pm y}$ and U_3O_{8-z} are shown in Fig. 1. The phase boundaries of the stable phases according to GRØNVOLD⁽¹²⁾ are indicated by solid lines and show, as the phase designations indicate, significant variations with temperature. Somewhat conflicting values for the phase boundary compositions have been obtained by electrical conmeasurements⁽²²⁾ and ductivity magnetic measurements⁽²⁵⁾ for example, but this is not surprising in view of the difficulty in reaching true equilibrium in the uranium oxides below 500°C. Gas equilibrium studies by BURDESE⁽²⁶⁾ in the range 500-900°C confirm the unusual temperature dependence of solubility of oxygen in the UO_{2+x} Extensive metallographic work phase. bv SCHANER⁽²⁷⁾ differs only slightly with regard to

FIG. 1. Diagram of uranium oxide phases in the UO₂-U₃O₈ region. Phase designations in italics indicate metastable equilibria. Shaded regions indicate approximate conversion temperatures. Solid lines are based on the work of GRØNVOLD⁽¹²⁾, dotted lines on that of BURDESE and ABBATTISTA⁽⁴³⁾, and dashed lines on that of SCHANER⁽²⁷⁾, and marked dashes on that of BLACK-BURN⁽²⁹⁾.

the UO_{2+x} phase boundary and indicates closing of the solubility loop between the UO_{2+x} and U_4O_{9-y} phases around 950°C, but results in a surprisingly wide homogeneity range of the U_4O_{9+y} phase. From electrochemical cell measurements by ARONSON and BELLE⁽²⁸⁾ closing of the solubility loop might be inferred to take place at 940°C, while oxygen pressure measurements by BLACKBURN⁽²⁹⁾ indicate the presence of two uranium oxide phases at 1080°C with compositions $UO_{2\cdot228}$ and $UO_{2\cdot249}$, respectively.

Lack of agreement is also present with regard to the existence ranges of the metastable phases obtained by low temperature oxidation of UO_2 . Hence, the shaded lines in Fig. 1 represent the current views of the authors.

2. EXPERIMENTAL

(a) Preparation and purity of the samples

The starting material, Mallinckrodt Analytical Reagent uranyl nitrate, of normal isotopic composition, was purified following in the main lines the procedure by HÖNIGSCHMID⁽³⁰⁾. The nitrate was first dissolved in water and precipitated with ammonia. The ammonium nitrate formed was dissolved in hydrocloric acid and traces of foreign metals precipitated with hydrogen sulfide gas. After filtration, ammonia was again added, the precipitated ammonium uranate carefully washed, and then dissolved in ammonium carbonate. The carbonic acid was decomposed and uranyl sulfide precipitated by means of ammonium sulfide. The uranyl sulfide was dissolved in nitric acid, crystallized as uranyl nitrate, and dissolved in water. To this solution oxalic acid was first added in a small quantity. After standing overnight the solution was filtered, the precipitate discarded, and oxalic acid added to complete precipitation of the uranium. The uranyl oxalate was converted to triuranium octaoxide by heating at 800°C in a platinum dish, the oxide treated with hydrochloric acid and dissolved in nitric acid. The uranyl nitrate formed on evaporation was recrystallized and dissolved in ether, the water laver discarded and the uranyl nitrate converted by heating at 800°C to triuranium octaoxide, which in turn was reduced to uranium dioxide by means of dry, purified hydrogen gas. The oxide was placed in an alumina boat inside an alumina tube, heated to 1200°C and kept there for four hours. It was then allowed to cool overnight under hydrogen before being transferred for weighing to the dry box filled with nitrogen.

The β -U₃O₇ sample was obtained by heating uranium dioxide in air in a drying oven. The temperature was increased in steps up to 165°C and the weight increase observed at suitable time intervals. When the composition U₃O₇ was reached, the heating was stopped and the sample transferred to a pyrex tube. After sealing the sample was homogenized for one week at 225°C. X-ray photographs of this sample showed the same tetragonal structure as earlier reported by GRØNVOLD and HARALDSEN⁽⁸⁾ for oxides in the range around $UO_{2.40}$ when the oxidation took place above 150°C. The lattice constants of the face-centered uranium sub-cell are a = 5.363 Å, c = 5.531 Å, c/a = 1.031. R. W. M. D'EYE considers (cf. ANDERSON⁽¹⁸⁾) that the true unit cell dimension should be $A = a\sqrt{2}$ and C = 2c. In Table 1 X-ray data for identification of β -U₃O₇ and other oxides in the UO₂-U₃O₈ region are presented.

UO ₂				U4O9		α−U₃O7		
d (Å)	<i>I/I</i> 0	hkl	d (Å)	I/I ₀	hkl	d (Å)	I/I ₀	hkl
3.158	100	111	3.146	100	111	3.140	100	111
2.735	40	200	2.720	60	200	2·723 2·696	30 20	200 002
1.934	50	220	1.924	80	220	1·926 1·918	20 25	220 202
1.649	45	311	1.641	80	311	1.645 1.628	20 15	311 113
1.579	10	222	1.571	20	222	1.567	15	222
1.368	8	400	1-360	13	400	1·366 1·349	5 5	400 004
1.255	20	331	1.248	35	331	1·253 1·246	10 10	331 313
1.223	13	420	1.216	25	420	1·223 1·210	10 10	420 204
1.117	15	422	1.110	30	422			201

Table 1. X-ray data for uranium oxide phases in the UO2-U3O8 region

β-U3O7			U8O19		U ₃ O ₈			
d (Å)	I/I ₀	hkl	d (Å)	I/I ₀	hkl	d (Å)	<i>I/I</i> 0	hkl
3.126	100	111	3.164	30		4.143	100	001
			3.121	100		3.426	100	110
2.767	20	002	3.094	20		3.357	50	200
2.683	35	200				2.639	90	111
			2.755	10		2.501	50	201
1.926	40	202	2.734	25		2.073	30	002
1-895	20	220	2.706	10		1.992	20	020
			2.690	10		1.952	40	310
1.656	20	113				1.795	20	021
1.622	30	311	1.943	10				(112
			1.929	10		1.769	60	311
1.563	12	222	1.918	10				202
1			1.892	20		1.714	15	220
1.383	3	004	1.650	30		1.678	7	400
1.340	6	400	1.635	8		1.583	20	221
			1.622	15		1.555	9	401
1.249	15	313				1.437	13	022
1.230	10	331	1.584	5		1.421	25	312
		1	1.566	20		1.382	6	003
			1.548	5				

It was rather more difficult to obtain the low temperature phase α -3 O_7 in a pure state, and especially without admixture of the β -U₃O₇ phase. To do so required very careful and slow oxidation in air and avoidance of partial superheating of the large sample. Finally a sample was obtained which had the composition UO2.33 and in which neither UO_2 nor β -U₃O₇ could be observed. This sample was prepared by increasing the temperature of the dioxide in small increments from 50 to 135°C over a period of one week. After holding it at this temperature for about three more weeks, the composition UO_{2.33} was reached. The powder photographs showed line splitting with reversed intensities, characteristic of a tetragonal cell with c/a ratio smaller than unity, as described first by PERIO⁽¹⁷⁾. Data characterizing this phase are also found in Table 1. For the face-centered uranium sub-cell the lattice constants are a = 5.472 Å, c = 5.397 Å, c/a = 0.986.

Further oxidation of α -U₃O₇ at 135°C resulted in the formation of a new phase with composition close to UO_{2.37} or U₈O₁₉. Its symmetry is apparently lower than tetragonal as evidenced by the splitting of the 111 and 222 reflections into three components (cf. Table 1). This phase seems to occur as an impurity in both the α - and β -U₃O₇ samples of the order of 5 per cent.

A spectrographic analysis of the purified uranium dioxide showed only the presence of the following impurities (in p.p.m.): A1 (33), B (10), Mn (< 1), Si (10). The repeated reductions and other handling to produce the α -U₃O₇ sample resulted in an increase of the silicon content and the presence of a small amount of copper while the other impurities remained about as before: Al (33), B (8), Cu (2), Mn (1), Si (100).

Analysis of the β -U₃O₇ sample was kindly carried out at the Los Alamos Scientific Laboratory through the courtesy of Dr. C. E. HOLLEY, Jr. The oxygen content of the oxide was determined by ignition in oxygen at 750°C to be $UO_{2\cdot330 \pm 0\cdot001}$, and the major impurities detected by spectrographic analysis were (in p.p.m.): Al (25), Fe (15) and Si (85). No other elements were reported in amounts greater than 10 p.p.m.

(b) Calorimetric technique

The cryostat⁽³¹⁾ and the adiabatic method employed are being described elsewhere. The copper calorimeter (laboratory designation W-7) was loaded with the sample and evacuated. Before sealing, purified helium gas of 4.0 cm pressure was added at 300°K to speed the establishment of thermal equilibrium. Temperatures were determined with a capsule-type platinum resistance thermometer (laboratory designation A-3) located in a central well in the calorimeter. The thermometer was calibrated by the U.S. National Bureau of Standards over the range 10-373°K. Below 10°K the provisional temperature scale was established by the equation $R = A + BT^2 + CT^5$ fit to the resistance at the helium boiling point and to the resistance and dR/dT at 10°K. The temperature scale is considered to reproduce the thermodynamic scale within 0.1°K from 4 to 10°K, within 0.03°K from 10 to 90°K, and with 0.04°K above 90°K. The ice point was taken to be 273.15°K. Calibrated instruments were used in the determination of all the experimental quantities including the duration of the energy input. The heat capacity of the empty calorimeter with identical amounts of solder and of Apiezon-T grease for thermal contact was determined in a separate series of measurements. It constituted between 30 and 45 per cent of the total observed heat capacity above 30°K, and a rapidly decreasing amount at lower temperatures.

3. HEAT CAPACITY RESULTS AND DISCUSSION

The experimental heat capacity data are presented in chronological sequence in Table 2. Corrections have been applied for the finite temperature increments employed to obtain the limiting value of $\Delta H/\Delta T$. These experimental temperature increments can usually be inferred from the adjacent mean temperatures in Table 2. The data are presented in terms of a formula weight of $UO_{2\cdot333} = 275\cdot40$ g in defined thermochemical calories equal to $4\cdot1840$ abs. J. The calorimetric sample of α -U₃O₇ weighed 132.078 g; that of β -U₃O₇ weighed 166.233 g (*in vacuo*).

The heat capacities of the two U_3O_7 phases (cf. Fig. 2) are very nearly identical. However, a small lambda-type anomaly with a maximum at 30.5° K occurs in α - U_3O_7 with an enthalpy of 2.5 cal gfw⁻¹ and an entropy of 0.09 cal gfw⁻¹ °K⁻¹ associated with it. If this peak were occasioned by UO₂, the presence of about 10 per cent of this substance as an impurity would be required to account for the

fractional transition entropy increment of 0.87 cal gfw⁻¹ °K⁻¹ found in UO₂. Since the over-all composition of the sample was represented by the composition UO_{2.33}, the presence of a significant percentage of another phase with higher oxygen content would also be required. X-ray powder photographs failed to reveal such contaminations, except for the presence of about 5 per cent of the U_8O_{19} phase, even though some of the UO_2 lines should then have shown up with at least $\frac{1}{4}$ of the intensity of neighboring α -U₃O₇ lines. This is a rather unlikely situation, and the peak is therefore tentatively ascribed to the α -U₃O₇ phase. It should also be noted that the heat capacity anomaly in UO2⁽¹⁾ has its peak at 28.7°K, i.e. 1.8° K lower than found for α -U₃O₇. Since UO₂ and α -U₃O₇ apparently have no mutual solubility (cf. Fig. 1), no elevation in the transition temperature for the UO₂ phase in the presence of α -U₃O₇ would be anticipated. In a partially oxidized UO₂ sample the α -U₃O₇ formed would be expected to introduce compressional strains in the central parts of each particle where UO₂ might still be present. In that case, however, the peak would not be expected to be as sharp as actually observed. On the other hand, the material used by JONES et al.⁽¹⁾ was stated to be 99.3 per cent UO_2 and 0.7 per cent UO3 with traces of other metal oxides, and its transition temperature might thus possibly be lower than for pure UO2. Although no details of the preparation or thermal history of this sample were reported, it should presumably,

Table 2. Heat capacities of α -U₃O₇ and β -U₃O₇ in cal gfw⁻¹ °K⁻¹ 1/3 α -U₃O₇ = α -UO_{2.333}; gram formula weight = 275.40 g.

					-	
<i>T</i> (°K)	Cp	<i>Т</i> (°К)		<i>Т</i> (°К)	Cp	
Series I		Series II-cont		Series I	Series III-cont	
		9.98	0.200	291.29	1 16.87	
54.41	4.022	10.96	0.243	300.55	17-12	
59.40	4.443	12.25	0.309	309.98	17.30	
64.10	4.902	13.63	0.371	319.54	17.51	
69.26	5.334	14.97	0.451	329.14	17.71	
75.11	5.818	16.32	0.538	338.63	17.91	
81.64	6.370	17.69	0.638	346.98	18.06	
88.92	6.970	19.26	0.736		10 00	
96.89	7.580	20.75	0.831	Series IV		
105-23	8.199	22.80	1.005			
113.95	8.830	24.87	1.213	11.64	0.275	
122.72	9.478	27.52	1.551	12.85	0.330	
129.41	9.927	30.73	2.190	14.05	0.392	
138-25	10.52	34.64	2.138	15.27	0.467	
147.33	11.09	39.23	2.578	16.57	0.558	
156.45	11.65	43.17	2.964	18.02	0.666	
165.60	12.17	46.96	3.332	19.63	0.758	
174.84	12.64	51.35	3.745	21.42	0.886	
184.05	13.10	55.37	4.104	23.28	1.053	
193.34	13.54	59-83	4.501	25.02	1.233	
202.38	13.93	64.53	4.943	26.20	1.374	
211-49	14.31			27.23	1.505	
220.83	14.68	Serie	es III	28.34	1.677	
	1			29.06	1.834	
Seri	es II	227.77	14.96	29.59	2.291	
		237.10	15.27	30.05	2.589	
6.14	0.065	246.70	15.60	30.41	3.746	
7.04	0.090	255.82	15.86	30.81	1.975	
7.53	0.106	264.42	16.12	31.32	1.862	
8.27	0.133	273.14	16.38	32.04	1.921	
9.07	0.206	282.13	16.62	33.58	2.037	
				1	1	

Table 2. Heat capacities of α -U₃O₇ and β -U₃O₇ in cal gfw⁻¹ °K⁻¹—cont.

<i>T</i> (°K)	C_p	T (°K)	Cp	T (°K)	C_p
Series I		Serie	es III	Series V	
140.54 150.65 160.35 169.87 179.92 190.37 200.32 209.71 219.07 228.42	$\begin{array}{c} 10 \cdot 81 \\ 11 \cdot 44 \\ 12 \cdot 00 \\ 12 \cdot 53 \\ 13 \cdot 04 \\ 13 \cdot 55 \\ 13 \cdot 99 \\ 14 \cdot 38 \\ 14 \cdot 76 \\ 15 \cdot 10 \end{array}$	74-21 81-45 88-31 95-31 102-84 110-86 119-00 127-28 135-66	5.853 6.474 7.046 7.586 8.159 8.762 9.351 9.937 10.50	4.82 5.49 6.66 7.63 8.63 9.64 10.85 12.36 18.37 20.82	$\begin{array}{c} 0.056\\ 0.074\\ 0.110\\ 0.136\\ 0.193\\ 0.222\\ 0.285\\ 0.360\\ 0.715\\ 0.855\\ \end{array}$
237.84	15.45	Serie	es IV	22.84	1.028
<u></u>				24.53	1.171
Series II		7.07	0.114	26.00	1.307
·	·	8.88	0.200	27.32	1.433
231-99 241-22 250-49	15-23 15-55 15-86	9·78 10·72 11·69	0·222 0·275 0·331	28.52 29.62 31.13	1·552 1·671 1·821
259.90	16.15	12.68	0.377	33.54	2.046
269.40	16.43	13.81	0.434	36.26	2.324
278.83	16.68	14.91	0.204	39.20	2.622
288.31	16.93	15.90	0.566	42.92	2.990
297.87	17.17	17.00	0.633	47.17	3.410
307.52	17.38	18.29	0.714	52.12	3.882
316.99	17.59	19.58	0.787	57.88	4.416
326.50	17.78	21.00	0.883	64.13	4.984
336.38	18.00	00		70.75	5.560
346.41	18.20				

 $1/3 \beta - U_3O_7 = \beta - UO_{2.333}$; gram formula weight = 275.40 g.

if quenched, consist of the supersaturated phase $UO_{2.01}$ or, if carefully annealed, consist of UO_2 with about 3 per cent of $UO_{2.25}$ as a contaminant. In the first event, the behavior on transition might be significantly different from that of UO_2 , and might also afford an explanation to the rather unusual shape of the heat capacity curve in the transition region. A redetermination of the thermophysical properties of this anomaly in UO_2 of higher purity is desirable.

The anomaly in α -U₃O₇ is thus considered to be a property of the compound and is presumably of magnetic origin. The practically identical dimensions of the UO₂ and α -U₃O₇ structures in the *ab* plane might be a contributing factor for the retention of the transition (a = b = c = 5.46852 Å at 26.5°C for UO₂,⁽³²⁾ a = b = 5.467 Å at 20°C for α -U₃O₇). The antiferromagnetic-paramagnetic nature of the transition in UO₂ has been confirmed by the magnetic studies of ARROTT and GOLDMAN^(25, 33), and by neutron diffraction work of HENRY⁽³⁴⁾ and of HENSHAW and BROCKHOUSE⁽³⁵⁾. The presence of a related transition in U₃O₈ has been confirmed by magnetic measurements.⁽³⁶⁾ In U_4O_9 and β - U_3O_7 no transitions have been found so far, but it will be noted on inspecting Fig. 2 that the heat capacity of U_4O_9 is diverging from that of the heptaoxides above 275°K. This trend is at present unexplained, but is presumably related to the decrease in the lattice constants of U4O9 between 20 and 86°C observed by GRØN-VOLD⁽¹²⁾, and perhaps signalizes the beginning of a transition from an antiferromagnetic to a paramagnetic state.

FIG. 2. Heat capacities of uranium oxides; • represents UO₂, \triangle : UO_{2.25}, \Box : α -UO_{2.353}, \blacktriangle : β -UO_{2.353}, \bigcirc : UO_{2.667} and \blacksquare : UO₃.

4. THERMODYNAMIC FUNCTIONS

The heat capacities read from a smooth curve through the experimental results, identical with the values obtained by a digital computer least squares fit of the data, are presented together with some thermodynamic functions obtained by the computer integration of the heat capacity in Table 3. The heat capacity values are considered to have a probable error less than 0.1 per cent above 25° K, 1 per cent at 10°K and 5 per cent at 5°K. A Debye T^{8} approximation was used to extrapolate the heat capacity below 5°K. Nuclear spin and isotope mixing contributions are not included in the entropy and free energy functions. The estimated probable error in the thermodynamic functions is 0.1 per cent above 100°K, but the tabulated values include one more digit than is justified by the probable error in order to make the table internally consistent and to permit interpolation.

The thermodynamics of the uranium oxygen system have been reviewed by BREWER et al.⁽³⁷⁾ and discussed by WAGNER⁽³⁸⁾. Additional data are

now available that allow better descriptions of the U_4O_9 and U_3O_7 phases and might be used for testing inconsistencies reported⁽²⁹⁾ to be present in the thermodynamic tables of COUGHLIN⁽³⁹⁾. The thermodynamic values for UO₂ at 298.15°K presented in Table 4 are based upon the low temperature heat capacity data by JONES et al.⁽¹⁾ and heat of combustion data for U and UO_2 to U_3O_8 . For the reaction $U(\alpha) + 1.333 O_2(g) = UO_{2.67}(s)$ HUBER et al.⁽⁴⁰⁾ report -284.5 ± 0.5 kcal and POPOV and IVANOV⁽⁴¹⁾ -285.5 ± 1.0 kcal. The value chosen here is $\Delta H f^0 = -284.8$ kcal at 298.15°K. For the reaction $UO_2(s) + 0.333 O_2(g)$ = UO_{2.67}(s) HUBER et al.⁽⁴⁰⁾ report $\Delta H = -25.34$ \pm 0.03 kcal, which is adopted here. Other recent values are -25.7 kcal by TOLMACHEV⁽⁴²⁾ and -27.5 kcal by BURDESE and ABBATTISTA⁽⁴³⁾. The resulting value for the molar enthalpy of formation of UO₂ at 298.15°K is $\Delta Hf = -259.5$ kcal. In deriving the entropy of formation, the entropy values $S_{298\cdot 15}^0 = 12.00 \text{ cal gfw}^{-1} \,^{\circ}\text{K}^{-1}$ for U by FLOTOW and LOHR⁽⁴⁴⁾, and $S_{298\cdot 15}^0 = 49.01$ cal

T (°K)	Cp	S ⁰ -S ⁰ ₀	$H^0 - H^0_0$	$\frac{-(F^0-H_0^0)}{T}$
	$\left(\frac{\mathrm{cal}}{\mathrm{gfw}^{\circ}\mathrm{K}}\right)$	$\left(\frac{\mathrm{cal}}{\mathrm{gfw}^{\circ}\mathrm{K}}\right)$	$\left(\frac{\mathrm{cal}}{\mathrm{gfw}}\right)$	$\left(\frac{\mathrm{cal}}{\mathrm{gfw}^{\circ}\mathrm{K}}\right)$
5	(0.041)	(0.014)	(0.05)	(0.003)
10	0.200	0.084	`0 •61	0.023
15	0.452	0.210	2.20	0.063
20	0.793	0.386	5-30	0.121
25	1.218	0.605	10.26	0.195
30	1.698	0.899	18.42	0.285
35	2.172	1.225	28.96	0.398
40	2.656	1.546	41·01	0.521
45	3.145	1.887	55.52	0.653
50	3.617	2.243	72-42	0.795
60	4.523	2.983	113.13	1.097
70	5.404	3.746	162.76	1.421
80	6.244	4.523	221.00	1.760
90	7.040	5.304	287.44	2.110
100	7.809	6.086	361.72	2.469
110	9.559	6.966	443.59	2.922
120	0.791	7.641	522.7	2.000
120	0.070	9.411	532.7	3.572
130	10.62	0.174	722.0	3.373
140	11.26	0.020	941.5	4.210
150	11-20	9.929	041.2	+'319
160	11.85	10.675	957.0	4.694
170	12.40	11.410	1078.3	5.067
180	12.91	12-134	1204.9	5.440
190	13.38	12.844	1336.4	5.810
200	13.83	13.542	1472-4	6.180
210	14-25	14.227	1612.8	6.547
220	14.65	14.899	1757.4	6.911
230	15.03	15.559	1905.8	7.273
240	15.38	16.206	2057-9	7.631
250	15.70	16.841	2213-3	7.988
260	16.00	17.462	2371.7	8.340
270	16.29	18.071	2533.0	8.690
280	16.57	18.668	2697.3	9.035
290	16.83	19.255	2864.4	9.378
300	17.07	19.830	3034-1	9.716
350	18.12	22.544	3914 ∙0	11-357
273.15	16.38	18.26	2585	8.80
298.15	17.03	19.73	3003	9.66

Table 3. Thermodynamic functions of α -U₃O₇ and β -U₃O₇ 1/3 α -U₃O₇ = α -UO_{8.388}; gram formula weight = 275.40 g.

<i>T</i> , °K	C _p	$S^0 - S_0^0$	$H^0 - H_0^0$	$\frac{-(F^0-H_0^0)}{T}$
	$\left(\frac{\mathrm{cal}}{\mathrm{gfw}^{\circ}\mathrm{K}}\right)$	$\left(\frac{\mathrm{cal}}{\mathrm{gfw}^{\circ}\mathrm{K}}\right)$	$\left(\frac{cal}{gfw}\right)$	$\left(\frac{\mathrm{cal}}{\mathrm{gfw}^{\circ}\mathrm{K}}\right)$
5	(0.056)	(0.016)	(0.06)	(0.004)
10	0.239	0.096	0.70	0.026
15	0.508	0.240	2.53	0.072
20	0.818	0.427	5.81	0.136
25	1.215	0.653	10.92	0.217
20	1.000	0.017	19.40	0.214
30	1.090	0.917	18.19	0.311
35	2.195	1.214	27.84	0.418
40	2.703	1.538	40.00	0.538
45	3.201	1.884	54.71	0.668
50	3.084	2.240	71.93	0.807
60	4.606	3.003	113.60	1.110
70	5.495	3.784	164.35	1.436
80	6.354	4.574	223.62	1.779
90	7-175	5.367	291.07	2-133
100	7.947	6.161	366.51	2.496
110	8.695	6.954	449.74	2.866
120	9.422	7.743	540.5	3.239
130	10.12	8.527	638.4	3.616
140	10.79	9.302	743.0	3.994
150	11.40	10.067	854.0	4.374
160	11.98	10.821	970-8	4.753
170	12.53	11.563	1093.3	5.132
180	13.05	12.294	1221.1	5.510
190	13.53	13.012	1354.0	5.886
200	13.98	13.718	1491.6	6.260
			1.7.1.0	• =••
210	14.40	14.411	1633.7	6.631
220	14.79	15.090	1779.8	7.001
230	15.16	15.757	1929.6	7.367
240	15.51	16.409	2083.0	7.730
250	15.85	17.049	2239.8	8.090
260	16-16	17.676	2300.7	8.447
200	16.44	17.070	2377-7	0.000
270	16.72	10.291	2302-7	0.150
200	10.72	10.095	2720.0	9.130
290	10.90	19.400	2097-2	0.820
300	17.22	20.000	3008.2	7.927
350	18.28	22.800	3955.7	11.498
273.15	16.54	18.48	2615	8.91
298·15	17.17	19.96	3036	9.77

Table 3. Thermodynamic functions of α -U₃O₇ and β -U₃O₇---(continued) $1/3 \beta$ -U₃O₇ = β -UO_{2.333}; gram formula weight = 275.40 g.

Compound	C_p	S ⁰	$\frac{H^0 - H_0^0}{T}$	$\frac{F^0 - H_0^0}{T}$	$\Delta H f^0 imes 10^{-3}$	ΔSf^0	Δ <i>Ff</i> ⁰ ×10 ⁻³
UO ₂	15.33	18.63			-259.5	-42.38	- 246 • 9
UO ₂₋₂₅	17.53	20.07	10.17	- 9.90	-270	-47.07	- 256
α-UO2.33	17.03	19.73	10.07	- 9.66	(-273)	-49.46	(-258)
β-UO2.33	17.17	19.96	10.18	- 9.77	(-273)	-49.23	(-258)
UO2.67	18.96	22.51	11.42	-11.26	-284.8	- 54.82	-268.5
α-UO ₃	20.16	23.57		_	- 294	-61.95	-275.5

Table 4. Thermodynamic functions of the uranium oxides at 298.15°K. Units: cal, gram formula weight, °K

 $gfw^{-1} \circ K^{-1}$ for O₂(g) by WOOLLEY⁽⁴⁵⁾ have been used. Apparently, no free energy of formation data are available for checking the derived third law value.

For U₄O₉ the low temperature heat capacity data by OSBORNE *et al.*⁽⁶⁾ have been utilized in combination with the enthalpy for the oxidation reaction UO_{2·25}(s)+0·208 O₂(g) = UO_{2·67}(s). For this reaction BURDESE and ABBATTISTA⁽⁴³⁾ found $\Delta H = -14.9$ kcal, which results in an enthalpy of formation value for UO_{2·25} of -270 kcal.

The enthalpy of formation of U_3O_7 has not yet been determined, but is assumed to be 3 kcal more negative per gram atom of uranium than for $UO_{2.25}$, i.e. $\Delta Hf^0 = -273$ kcal.

Using the heat of formation value for U₃O₈ recommended above, and the entropy data by WESTRUM and GRØNVOLD⁽⁴⁾, the free energy of formation of $\frac{1}{3}$ U₃O₈ at 298·15°K is found to be $\Delta Ff^0 = -268.5$ kcal, or very close to the value given by COUGHLIN⁽³⁹⁾ ($\Delta Ff^0 = -268.0$ kcal).

In the U₃O₈-UO₃ region the phase relationships are still quite uncertain but, even so, comparatively reliable data for the different modifications of UO₃ have been derived by HOEKSTRA and SIEGEL⁽⁴⁶⁾. For the hexagonal modification, α -UO₃, they report $\Delta H f^0 = -294$ kcal gfw⁻¹, which is adopted here. This corresponds to an enthalpy change of -9.2 kcal for the reaction UO_{2.67}(s) + 0.167 O₂(g) = UO₃(hex). For amorphous UO₃ values 3 kcal more positive were reported, which agree with the estimate by BREWER *et al.*⁽³⁷⁾ of -5.8 kcal for the above reaction, and also with the value -5.4 kcal measured by TOLMACHEV⁽⁴²⁾, while BURDESE and ABBATTISTA⁽⁴³⁾ obtained an intermediate value of -7.6 kcal from heat of solution experiments on an oxide presumably also of amorphous nature (obtained by heating uranium peroxide hydrate in oxygen gas to 380° C).

The free energy of formation data are presented graphically on a gram atom basis in Fig. 3. It will be noticed that the free energies of both α - and β -U₃O₇ lie slightly above the straight line connecting the U₄O₉ and U₃O₈ phases. This gives support to the view that they are of questionable thermodynamic stability and lend their presence to the resistance of UO₂ to more drastic structural changes on oxidation at intermediate temperatures.

It has been assumed here that no transitions take place in the oxides below 5°K, for if this were the case with U₃O₇ and not with the neighboring U₄O₉ and U₃O₈ phases, and amounted to more than about 1 cal gfw⁻¹ °K⁻¹, the stability of U₃O₇ would be established. The possibility of additional transitions cannot, of course, be eliminated at present, but the effective magnetic moments of the oxides have all reached such small values at 5°K (< 0.5 μ_B) that no further transitions involving appreciable entropy are expected.

The possibility of checking the free energy data derived here with equilibrium data is limited by lack of knowledge of the heat capacity behavior of the U_4O_9 -phase above room temperature. A

FIG. 3. Free energies of formation of the uranium oxides at 298.15°K and 1300°K. Note shift in energy scales.

rough estimate can be made on the basis of the heat capacities of the adjacent oxides UO_2 and U_3O_8 . The high temperature heat content of UO_2 was measured by MOORE and KELLEY⁽⁴⁷⁾ up to 1462.5°K, and a heat capacity equation

$$C_n = 19.20 + 1.62 \times 10^{-3}T - 3.957 \times 10^{5}T^{-2}$$

derived. Heat capacities of UO₂ in the range 160–603°C by POPOV *et al.*⁽⁴⁸⁾ are in satisfactory agreement with this equation. For U₃O₈ POPOV *et al.*⁽⁴⁸⁾ gave two equations, one for the temperature range 100–320°C and another for the range 400–600°C. A rough fit with their data and those at lower temperatures by WESTRUM and GRØN-VOLD⁽⁴⁾ was obtained with the following equation for UO_{2.67}:

$$C_p = 20.97 + 4.83 \times 10^{-3}T - 3.08 \times 10^{5}T^{-2}$$

The decomposition of the U_3O_{8-z} -phase to U_4O_{9+y} and O_2 gas, as studied by BILTz and MÜLLER⁽⁴⁹⁾ and BLACKBURN⁽²⁹⁾, was assumed to take place according to the equation

$$6.25 \text{ UO}_{2.58}(s) = 6.25 \text{ UO}_{2.26}(s) + O_2(g),$$

and the heat capacity change was estimated, using available data⁽⁵⁰⁾ for oxygen and heat capacity functions for the oxides (linearly interpolated on the basis of their oxygen content) to be

$$C_p = 1.80 - 8.71 \times 10^{-3}T - 3.07 \times 10^{5}T^{-2}.$$

The right hand side of the derived equation

$$(\Delta H_0/T) + I = -4.57 \log p_{\text{Os}} - 4.14 \log T$$
$$-4.36 \times 10^{-3}T - 1.54 \times 10^{5}T^{-2}$$

was evaluated for all experimental values and plotted against 1/T. The combined data could not be well fitted by a straight line, since this would result in an excessively high enthalpy of reaction, and systematic errors are probably involved. From BLACKBURN's data the values of the integration constants are $\Delta H_0 = 82,500$ and I = -24.72, which lead to the following values for the enthalpy, free energy and entropy of reaction at $298 \cdot 15^{\circ}$ K:

$$\Delta H^0 = 83.68 \text{ kcal}, \ \Delta F^0 = 70.00 \text{ kcal}, \ \Delta S^0 = 46.01 \text{ cal} \text{ }^{\circ}\text{K}^{-1}.$$

Including estimates for the reaction

$$UO_{2.67}(s) = UO_{2.58}(s) + 0.045 O_2(g)$$

with

$$\Delta H^0 = 3.4 \text{ kcal}, \ \Delta F^0 = 2.9 \text{ kcal}, \\ \Delta S^0 = 1.6 \text{ cal} \ ^\circ \text{K}^{-1}$$

and for the reaction

1

$$UO_{2\cdot 26}(s) = UO_{2\cdot 25}(s) + 0.005 O_2(g)$$

with

$$\Delta H^0 = 0.4 \text{ kcal}, \ \Delta F^0 = 0.3 \text{ kcal}, \Delta S^0 = 0.2 \text{ cal} \ ^\circ\text{K}^{-1}$$

the values for the reaction

$$UO_{2\cdot 25}(s) + 0\cdot 21 O_2(g) = UO_{2\cdot 67}(s).$$

are at 298.15°K:

$$\Delta H^{0} = -17.2 \text{ kcal}, \ \Delta F^{0} = -14.4 \text{ kcal}, \\ \Delta S^{0} = -9.2 \text{ cal} \ ^{\circ}\text{K}^{-1}.$$

The agreement with data in Table 4 is not completely satisfactory and suggests either an error in the assumption about the heat capacity increment or in the presumed constant composition of the phases over the temperature range in question, or some slight error in the measured temperature dependence of the equilibrium pressure.

A further test of the U_4O_9 data is possible from studies of the solubility of oxygen in UO_2 at high temperatures by BLACKBURN⁽²⁹⁾ and by ARONSON and BELLE⁽²⁸⁾. For the reaction

$$UO_2(s) + 0.125 O_2(g) = UO_{2.25}(s).$$

the results obtained by BLACKBURN at 1300°K were:

$$\Delta H^{0} = -8.45 \text{ kcal}, \ \Delta F^{0} = -4.98 \text{ kcal}, \\ \Delta S^{0} = -2.30 \text{ cal} ^{\circ}\text{K}^{-1}.$$

By integrating the partial molar free energy, entropy and enthalpy values for the solution of oxygen in UO_{2+x} as given by ARONSON and BELLE, the corresponding values at 1300°K are:

$$\Delta H^{0} = -8.66 \text{ kcal}, \ \Delta F^{0} = -5.20 \text{ kcal}, \Delta S^{0} = -2.77 \text{ cal }^{\circ}\text{K}^{-1}.$$

Using the values listed in Table 4 for the formation of UO_2 at room temperature and the enthalpy, free energy, and entropy increase for the substances in question⁽⁵⁰⁾ the data for the formation of UO_2 at 1300 °K are:

$$\Delta H f^0 = -258.7 \text{ kcal}, \Delta F f^0 = -206.2 \text{ kcal}, \\ \Delta S f^0 = -40.35 \text{ cal} \,^{\circ}\text{K}^{-1}.$$

Hence, the values for the thermodynamic functions of formation of $UO_{2.25}$ at 1300°K are:

$$\Delta H f^0 = -267 \cdot 3 \text{ kcal}, \quad \Delta F f^0 = -211 \cdot 3 \text{ kcal}, \\ \Delta S f^0 = -43 \cdot 0 \text{ cal} \, {}^\circ \text{K}^{-1}.$$

These values compare favorably with those calculated from the room temperature data (listed in Table 4) together with the reported data on the enthalpy and entropy increments of oxygen and uranium between 298 and 1300°K, and estimated values for

UO_{2.25} (
$$\Delta H = 22.2$$
 kcal, $\Delta S = 30.5$ cal °K⁻¹).

This yields:

$$\Delta H f^0 = -267.6 \text{ kcal}, \Delta F f^0 = -210.7 \text{ kcal}, \Delta S f^0 = -43.8 \text{ cal} ^{\circ}\text{K}^{-1}$$

for the formation of $UO_{2.25}$. Reasonably good agreement is obtained by evaluating the high temperature thermodynamic data for U_3O_8 (cf. Table 5) and the available data for the reaction

$$UO_{2 \cdot 25}(s) + 0 \cdot 21 O_2(g) = UO_{2 \cdot 67}(s)$$

which lead to

$$\Delta H f^{0} = -266 \cdot 1 \text{ kcal}, \ \Delta F f^{0} = -210 \cdot 8 \text{ kcal}, \\ \Delta S f^{0} = -42 \cdot 5 \text{ cal}^{\circ} \text{K}^{-1}$$

for the formation of $UO_{2\cdot 25}$. All these results indicate good consistency in the thermodynamic data for the uranium oxides UO_2 , U_4O_9 and U_3O_8 , although the temperature dependence of the high temperature equilibrium between the U_4O_{9+y} and the U_3O_{8-z} phases seems slightly in error.

A graphical representation of the free energies of the phases in the $UO_2-U_3O_8$ region at 1300°K is also presented in Fig. 3 for one gram atom of substance. The concentration dependence of the

Table 5. Thermodynamic functions for $UO_{2.67}$ at high temperatures (Units: cal. gfw. °K; α , β , and γ indicate phases in uranium.)

$\frac{1}{1, \mathrm{K}} = \frac{3^{\circ} - 3_{0}}{1} \left(\frac{(\mathrm{R}^{\circ} - \mathrm{R}_{0}) \times 10^{-3}}{10^{\circ}} \right) = \frac{1}{2} \mathrm{M} f^{\circ} \times 10^{-3} = \frac{1}$	$\Delta Ff^0 imes 10^{-3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} -268 \cdot 5 \\ -262 \cdot 9 \\ -257 \cdot 6 \\ -252 \cdot 4 \\ -247 \cdot 2 \\ -247 \cdot 2 \\ -247 \cdot 2 \\ -237 \cdot 2 \\ -235 \cdot 4 \\ (-232 \cdot 0) \\ (-229 \cdot 7) \\ (-229 \cdot 7) \\ (-229 \cdot 7) \\ (-226 \cdot 9) \\ (-221 \cdot 8) \\ (-216 \cdot 7) \end{array}$

* Values in parentheses are based on extrapolated heat capacities of UOs.67.

free energy within the homogeneity ranges is based upon the results by ARONSON and BELLE⁽²⁸⁾ and BLACKBURN⁽²⁹⁾ for the UO_{2+x} phase and by BILTZ and MÜLLER⁽⁴⁹⁾ for the U_3O_{8-z} phase. The homogeneity ranges of the UO_{2+x} and the U_4O_{9-y} phases overlap, and the composition UO2.26 is reached on the oxygen-rich side. On the uranium-rich side the experimental evidence is conflicting,⁽⁵¹⁾ but most probably the partial free energy of oxygen would decrease rather sharply (and that of uranium increase correspondingly) due to interstitial uranium atoms or macroscopic uranium-for-oxygen substitution in the structure of UO2. The composition of the U3O8-z phase in equilibrium with the UO_{2+x} phase at this temperature is assumed to be UO2.58, and its decomposition oxygen pressure 0.14 mm Hg. The decomposition pressure reaches the partial oxygen pressure in air at the composition $UO_{2.64}$ and about 18 atm in equilibrium with an oxide of stoichiometric composition U_3O_8 .

Acknowledgements—The authors thank TORKILD THURMANN-MOE for assistance in the preparation and X-ray analysis of the α -U₃O₇ sample, and H. GARY CARLSON and ELFREDA CHANG for assistance with the measurements and calculations. One of the authors (F.G.) expresses his appreciation to the Nansen Foundation for financial assistance. The partial support of the Division of Research of the U.S. Atomic Energy Commission is gratefully acknowledged.

REFERENCES

- 1. JONES W. M., GORDON J. and LONG E. A., J. Chem. Phys. 20, 695 (1952).
- WESTRUM E. F. JR., HATCHER J. B. and OSBORNE D. W., J. Chem. Phys. 21, 419 (1953).
- OSBORNE D. W. and WESTRUM E. F., JR., J. Chem. Phys. 21, 1884 (1953).
- WESTRUM E. F., JR., and GRØNVOLD F., J. Amer. Chem. Soc. 81, 1777 (1959).
- 5. Nomenclature of Inorganic Chemistry. Butterworths, London (1959).
- OSBORNE D. W., WESTRUM E. F. JR., and LOHR H. R., J. Amer. Chem. Soc. 79, 529 (1957).
- 7. JOLIBOIS P., C.R. Acad. Sci., Paris 224, 1395 (1947).
- 8. GRØNVOLD F. and HARALDSEN H., Nature, Lond. 162, 69 (1948).
- ALBERMAN K. B. and ANDERSON J. S., J. Chem. Soc. 1949 S303.
- ARONSON S., ROOF R. B. JR., and BELLE J., J. Chem. Phys. 27, 137 (1957).
- 11. HERING H. and PERIO P., Bull. Soc. Chim. Fr. 1952, 351.

- 12. GRØNVOLD F., J. Inorg. Nucl. Chem. 1, 357 (1955).
- BLACKBURN P. E., WEISSBART J. and GULBRANSEN E. A., J. Phys. Chem. 62, 902 (1958).
- 14. VAUGHAN D. A., BRIDGE J. R. and SCHWARTZ C. M., Battelle Memorial Institute Report BMI-1241 (1957).
- 15. HOEKSTRA H. R., SANTORO A. and SIEGEL S., Paper presented at the American Chemical Society Meeting, Atlantic City, Sept. 1959.
- ANDRESEN A. F., Paper presented at the Enlarged Symposium on Reactor Materials, Stockholm, Oct. 1959.
- 17. PERIO P., Bull. Soc. Chim. Fr. 1953, 256.
- ANDERSON J. S., Australian Atomic Energy Symposium 1958 p. 588. Melbourne University Press, Melbourne (1958).
- VAUGHAN D. A., BRIDGE J. R., ALLISON A. G. and SCHWARTZ C. M., *Industr. Engng. Chem.* 49, 1699 (1957).
- JOHNSON J. R., FULKERSON S. D. and TAYLOR A. J., Amer. Ceram. Soc. Bull. 36, 112 (1957).
- DEMARCO R. E., HELLER H. A., ABBOTT R. C. and BURKHARDT W., *Amer. Ceram. Soc. Bull.* 38, 360 (1959).
- WILLARDSON R. K., MOODY J. W. and GOERING H. L., J. Inorg. Nucl. Chem. 6, 19 (1958).
- 23. ANDERSON J. S., Bull. Soc. Chim. Fr. 1953, 781.
- 24. PERIO P., Bull. Soc. Chim. Fr. 1953, 840.
- 25. ARROTT A. and GOLDMAN J. E., Phys. Rev. 108, 948 (1957).
- 26. BURDESE A., Gazz. Chim. Ital. 89, 718 (1959).
- 27. SCHANER B. E., J. Nuclear Materials 2, 110 (1960).
- ARONSON S. and BELLE J., J. Chem. Phys. 29, 151 (1958).
- 29. BLACKBURN P. E., J. Phys. Chem. 62, 897 (1958).
- Hönigschmid O. and Wittner F., Z. anorg. Chem. 226, 289 (1936).
- WESTRUM E. F., JR., and BEALE A. F., JR., to be published.
- KEMPTER C. P. and ELLIOTT R. O., J. Chem. Phys. 30, 1524 (1959).
- ARROTT A. and GOLDMAN J. E., Phys. Rev. 99, 1641 (1955).
- 34. HENRY W. E., Phys. Rev. 109, 1976 (1958).
- HENSHAW D. G. and BROCKHOUSE B. N., Bull. Amer. Phys. Soc. [2], 2, 9 (1957).
- 36. WOLF W. P., unpublished communication.
- BREWER L., BROMLEY L. A., GILLES P. W. and LOFGREN N. L., U.S. Atomic Energy Commission Declassified Document MDDC-1543 (1947); cf. Chemistry of Uranium, Collected Papers, TID-5290, pp. 219-268, Oak Ridge, Tennessee (1958).
- WAGNER C., U.S. Atomic Energy Commission Unclassified Document WAPD-144 (1955).
- COUGHLIN J. P., Contributions to the Data on Theoretical Metallurgy, XII. U.S. Bureau of Mines Bulletin 542, Washington, D.C. (1954).
- HUBER E. J., JR., HOLLEY C. E., JR., and MEIERKORD E. H., J. Amer. Chem. Soc. 74, 3406 (1952).

- 41. POPOV M. M. and IVANOV M. I., Soviet J. Atomic Energy 2, 439 (1957).
- TOLMACHEV YU. M., Trudy Radievogo Inst. im. V. G. Khlopina, Khim. i. Geokhim. 7, 87 (1956).
- 43. BURDESE A. and ABBATTISTA F., *Ric. Sci.* 28, 1634 (1958).
- 44. FLOTOW H. E. and LOHR H. R., J. Phys. Chem. 64, 904 (1960).
- 45. WOOLEY H. W., J. Res. Nat. Bur. Stand. 40, 163 (1948).
- 46. HOEKSTRA H. and SIEGEL S., personal communication.

- MOORE G. E. and KELLEY K. K., J. Amer. Chem. Soc. 69, 2105 (1947).
- POPOV M. M., GAL'CHENKO G. L. and SENIN M. D., Zh. Neorg. Khim. 3, 1734 (1958).
- 49. BILTZ W. and MÜLLER H., Z. anorg. Chem. 163, 257 (1927).
- KELLEY K. K., Contributions to the Data on Theoretical Metallurgy, XIII. U.S. Bureau of Mines Bulletin 584 Washington, D.C. (1960).
- VAUGHAN D. A., MELTON C. F. and GERDS A. F., Battelle Memorial Institute Report BMI-1175 (1957).