THE NODE SYSTEM OF EQUATIONS

BY
W. C. PETERSON! AND J. J. LaRUE®

ABSTRACT

The minimum number of simultaneous equations and unknowns required to
describe the behavior of an electrical network is in many cases obtained by consider-
ing the independent node voltages to be the unknown variables. However, the usual
techniques for writing node equations are not applicable to networks containing ideal
voltage sources not incident to the reference node.

The node system of equations for general networks with ideal current and voltage
sources arbitrarily located, is derived on the basis of a particular type of cut-set or
segregate matrix, and a novel method for writing the node equations of such networks
by inspection is presented. The application to networks containing vacuum tubes,
transistors and magnetic coupling is illustrated.

The behavior of an electrical network may be completely described
in terms of its driving functions, its parameters, and a linearly inde-
pendent set of voltage or current variables. If one junction point or
node in the network is chosen as a reference node, then it will be shown
that some set of voltages between other nodes and this reference con-
stitutes such an independent set ; the corresponding set of equations for
a linear network is here referred to as the node system of equations.
An alternate independent set of variables is called the mesh or loop set
of currents, which appear in the mesh system of equations. The number
of linearly independent equations in each of these two systems is not
generally the same. The node system involves the smaller number of
equations and unknowns in the case of certain networks, and other
advantages for the node system of equations have also been cited (1, 2).2

The usual techniques for writing node equations are not directly
applicable to networks containing ideal voltage sources not directly
connected to the reference node. Equation sets have been written
involving an added current variable for each such ideal voltage source
(3, 4), however, these sets of equations should be called hybrid systems
since they contain both voltage and current variables.

This paper presents a derivation of the node system of equations in
which the unknown variables are exclusively an independent set of node
voltages. A new type of matrix called a node segregate matrix is
introduced. It is shown that this matrix together with a description
of the elements making up the network provides sufficient information
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3 The boldface numbers in parentheses refer to the references appended to this paper.
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to permit formulating the node system of equations. Two methods of
formulating the node system of cquations are described and several
examples are presented to illustrate the application of these methods to
different types of networks.

Throughout the paper, currents and voltages are considered to be
functions of time and the self and mutual admittances to be functions
of the derivative operator p; however for brevity the functional nota-
tion is omitted.

NETWORKS AND ELEMENTS

A network is considered to be composed of a set of interconnected
elements. The type of network diagram used here is a representation of
the network in which elements appear as oriented line segments, which
meet at junctions or nodes. The elements are considered to be exclu-
sively ideal voltage and current sources, and self admittances. In
many cases mutual admittances couple certain self-admittance ele-
ments. These mutual admittances are indicated by writing the ap-
propriate symbol, such as ¥, between the graphical symbols for the
self-admittance elements j and & which are coupled.

A transformer is represented by a number of self-admittance ele-
ments equal to the number of coils, and it is understood that two equal
bilinear mutual admittances are present for every pair of magnetically
coupled coils. A vacuum tube in its small signal or incremental mode
of operation is represented as two self-admittance elements with a
common node, coupled by at least one non-zero unilinear mutual ad-
mittance. Similarly, a transistor in its small signal mode of operation
is represented as two self-admittance elements with a common node,
coupled by two unequal unilinear mutual admittances. In effect, the
transformer, tube and transistor are treated as ‘‘black boxes”’ with
terminal relations described completely by self and mutual admittances.
The use of internal generators in tube or transistor representation is
avoided since these are superfluous when the admittances are known.
The details of the methods for expressing admittance relations for
transformers and vacuum tubes are available in the literature (5).
An indefinite or redundant admittance matrix (6) is useful for specifying
the admittance relations for different types of transistor arrangements,
and this mathematical device can also be used with electronic tube
circuits.

The general types of voltage and current sources usually considered
in the literature are treated here in terms of the more basic elements
which are the ideal dissipationless sources in series or parallel combina-
tion with passive elements. The method is found to permit a direct
analysis of the given network with no added complication or increase in
number of equations or unknowns and without the use of preliminary
“exchange of sources’ (7).
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Each ideal voltage source connected between a pair of nodes is found
to reduce by one the number of equations which would otherwise need
to be solved simultaneously.

Precise identification of variables requires some method of polarity
marking or orientation. An arrow marking on each element indicates
directly the positive sense of element current, and the element voltage is
oriented positively at the tail of the arrow. Any unoriented line seg-
ment in the diagram simply represents a short circuit.

BASIC CONCEPTS

The concept of the segregate (8), which is similar to that of the cut-
set (9), 1s fundamental to the present study. The segregate current
equations for a network may be considered a generalization of the
Kirchhoff current law relations for the network. Node current equa-
tions are a specialized form of segregate current equations.

A B
4
M AS 34
c .
2 9
rO 7 8
G

Fic. 1. A network diagram with elements represented as oriented line segments.

The network of Fig. 1 may be used to illustrate these concepts. In
this diagram, the elements are numbered, but specification of element
type has been intentionally omitted.

Summing the currents out of each of the nodes B and F yields the
node current equations
and

iy — dg — 1y = Q. (2)

Elements four, five, eight and nine may he considered to form a
segregate set (or cut-set), and the corresponding segregate current
equation is

— iy — iy — 1y — 19 = . (3)

It should be noted that segregate current equation (3) may be
obtained by adding node current equations (1) and (2).
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Evidently other node current equations can be written for the given
network. It has been shown that (z — 1) independent node current
equations can be written for any network (10), thus since (¢) > (n — 1),
the coefficients of the linearly independent node current equations may
be arranged to form an (# — 1) X (e) node current matrix of rank
(n — 1). Since segregate current equations may be formed by ele-
mentary operations on the set of node current equations, the coefficients
of the segregate current equations may be arranged in the form of an
(n — 1) X (e) segregate current matrix which also has the rank of
(n — 1) (11). Thus for Fig. 1, the segregate current equations result
in a five row by nine column segregate current matrix of rank five.

The concept of the network tree provides a systematic method for
writing a useful set of segregate current equations. In general, any
set of elements which involves all of the nodes but which does not con-
tain a closed path, constitutes a tree. For Fig. 1 for example, elements
one, two, three, seven and nine form a tree.

Segregate sets may be formed by considering each element of the
tree to be cut in turn thus separating the nodes of the network into two
sets. The elements connecting these two sets of nodes in the original
network constitute one segregate set. For example, for Fig. 1 and the
chosen tree, a cut through element three separates node B from the
remaining nodes. In the complete network, elements three, four and
five connect the two sets of nodes, leading to Eq. 1 which is a node
current equation, or specialized form of segregate current equation in
which one of the node sets is a single node. It is often useful to base the
segregate orientation on the orientation of the cut element in the tree.
Such orientation leads to a reversal of signs in Eq. 1. In the present
example, a second segregate set leading to Eq. 3 results from a cut
through element nine of the tree. Signs are again reversed if the
orientation of element nine determines segregate orientation.

The node voltages of a network are defined as the voltages between
each of (# — 1) nodes and the remaining or reference node, oriented
toward the reference. There may however be less than (z — 1) inde-
pendent node voltages. In particular only one node voltage associated
with any subtree of ideal voltage sources in the network can be inde-
pendent. As a preliminary to the development of the node equations,
it is useful to augment the network by adding what will be called virtual
elements located and oriented such that the voltages across these virtual
elements correspond to the independent node voltages. These virtual
elements are treated as zero admittance passive elements and desig-
nated by the symbol O with identifying subscripts. These are not
counted in the number (e) of original elements. )

DERIVATION OF THE NODE SYSTEM

The Kirchhoff current law and voltage law relations for a network
may be respectively expressed in the form of matrix equations as
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Al, =0 (4)
and
BV, = 0. (5)

These equations may be called the node current matrix equation
and loop voltage matrix equation, respectively. A4 is a node current
matrix of (# — 1) rows, (e) columns, and rank (n — 1). B is a loop
voltage matrix of (¢ — # 4 1) rows, (e) columns, and rank (e — n + 1).
I, is a column matrix of the element currents, (¢) in number, and 1,
is a column matrix of element voltages, also (¢) in number.

[t is useful to define a tree of the network, and to specify that all
ideal voltage source elements are included in the trece. There may then
be a number of I element subtrees within the complete tree and within
the network. The network is augmented by adding one type O or
virtual element between one arbitrarily selected node in each such sub-
tree and the reference node, and between each of the remaining (n — 1)
nodes and the reference. The number of virtual elements added is
evidently np = n — 1 — n..

The equation corresponding to (4) for the augmented network is

Anlen =0 (6)
where the added subscript # identifies a modificd matrix in each case.
The modified node matrix 4,, has (z — 1) rows, (e 4 #0) columns and a
rank the same as for the A matrix, or (n — 1).

The union of Iz elements and O elements forms the complete net-
work tree, and the remaining elements are called the chords. A4, is
partitioned into tree and chord submatrices, requiring a corresponding
choice of element order in I.,, and column order in A,. Thereforce
Eq. 6 may be written as

[AridelIom =0 (7)
where
I, = |1, 1)1y I, H| (8)

using the double transpose to save space.

The submatrix Ar has been shown to have an inverse (10), there-
fore a new matrix may be formed by multiplying 4, by this inverse.
This matrix, called the node segregate matrix becomes

P=A4,"ArAc|

9
U144, )

The element order indicated by the first two current matrix entries
in the right hand side of (8) suggests partitioning (9) so that

UE 0 : PIS PlM Pll[

P=‘ O Uo ! Pis Piy Puu

. (10)
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In the subscript notation of (8) and (10), E refers to ideal voltage
sources, O to virtual elements, S to self-admittance elements, M to
elements with both mutual and self admittance, and H to ideal current
sources. The numbers 1 and 2 refer to submatrix rows in P.

The product of (8) and (10) is the segregate current equation

Ig
I
Ug O | Pis Py Pin - _
’ 0 Uo:st P2M P2H IS =0 (11)
Y
H

Since the current matrix I, is a null matrix, the following matrix
equation is obtained from (11).

Poslg + Poulyy + PoH = 0

or

|Pes  Panl] H ﬁ[ i + P,yH = 0. (12)

An admittance equation for the self and mutual elements may be
written as
k
M

where Y is a diagonal matrix of self admittances and Yy is a non-
diagonal matrix of self and mutual admittances for the mutual elements.

A relation for the voltages across admittance elements in terms of
node voltages is now needed. To obtain this relation, consider the
equation

lys 0O
- O YM

%

i (13)

Vem = PV, (14)

where V, is a column matrix of (# — 1) entries representing an unde-
fined set of voltage variables. Or in more detail,

E Ug O
Vo 0 Uo
Vs B Py’ P’ Ve (15)
VM PlM, P?M’
VH PlIII P2H’
One of the relations obtainable from (15) is
E | Ug O
vl-1o" ol
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which indicates that

t

_ " r (10)

‘n ‘

In the last expression, Vo, has been replaced by the symbol 1,
denoting the matrix of unknown node voltages. It should be noted
that there are (n — 1 — n,) entries in V,.

Using (16) in (15) yields the desired relation

Pls P,y
{Pm Pov’

no

v

| Z . (17)

When matrix equations (12), (13) and (17) are combined, the result is

.

Finally, performing the matrix operations indicated in (18) yields

[P2s  Poull

“ J Pis' P + Pyl = 0. (18)

I
1P1JI/ P?ﬂl

E

| PosYsP1s' + PosYuPor'||E
4 |1PysVsPos' + PonYurPow'||V, 4+ PonH = 0. (19)

The only unknown in Eq. 19 is the node voltage matrix V., con-
taining (# — 1 — #.) unknown node voltage entries. The system of
equations can be solved for the unknown node voltages provided that
the inverse of the matrix multiplying V, in Eq. 19 exists. Thus the
entries in V, represent a suitable set of independent node voltages. A
non-trivial steady state solution of course requires that at least one of
the entries in E or H be non-zero.

From the method of derivation, the node voltages are always such
that the segregate current equations are satisfied ; therefore Kirchhoff's
current law is satisfied. However it is necessary to show that Kirch-
hoff’s voltage law is also satisfied. That it is may be shown as follows.

An equation similar to (5) written for the augmented network is

BV =0
or using Eq. 14,
-BmP, Va = ()- (2())

But the node segregate matrix P is

P = 4,714,
so that Eq. 20 becomes

BuA | Ar|' V. = 0. (21)
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It can be shown that the product B,d4.,’ is a null matrix (12).
Thus Eq. 20 is identically satisfied. But Eq. 20 contains loop voltage
equation (5) for the original network, thus the loop voltage equation
and Kirchhoff’s voltage law are both satisfied.

The satisfaction of both of the laws of Kirchhoff assures the validity
of Eq. 19. Evidently this matrix equation represents the desired node
system of equations.

FORMULATING THE NODE SEGREGATE MATRIX BY INSPECTION

It was previously indicated that segregate sets of elements could
be formed on the basis of cuts through the elements of a network tree.
This provides a convenient method for writing the node segregate
matrix P so that it contains the unit submatrices indicated in Eq. 10.
The method of forming the tree of ideal voltage source elements and
virtual elements has been explained.

The procedure for formulating the P matrix is as follows.

1. Identify the (e + 7o) columns in matrix P according to the
element order in the current matrix of Eq. 11.

2. Identify the rows in matrix P according to the Iy and O elements
using the same order as in the first (# — 1) columns.

3. Let a cut through each of the tree elements in turn define a
segregate set of elements and let the orientation of the cut element de-
termine the orientation of the segregate set. There are (n — 1) such
segregate sets.

4. Let each segregate set determine the entries in one row of matrix
P. Entera (41) in a particular column if the element identifying that
column is an element of the segregate, with relative orientation the
same as that of the defining element, (—1) for the same case except
opposite orientation, and zero if the column element is not an element
of the segregate.

The submatrices in matrix P are evidently defined according to the
element grouping in the rows and columns as indicated above and in
Eq. 10. When one type of element is not present in a network, the
corresponding submatrix entries in P and I, may be omitted.

EXAMPLES USING MATRIX OPERATIONS

As a first example to demonstrate the methods thus far set forth, the
node system of equations will be developed for a network based on
Fig. 1. Let elements one, two and three be Iy elements; four, five, six,
seven and eight be self-admittance elements; and let element nine be
an Iy element. Node & is chosen as the reference node, and D and F
as independent nodes.
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In view of the choice of independent nodes, the tree of I and O
elements will take the form indicated in Fig. 2.

A B
I Te3
C Ie2z D =
// /’/
ODY /j’/OF

\ 7

v L7

v
G

I'16. 2. A tree for the network of P'ig. 1 with specified types of elements.

The segregate sets defined by this tree determine the following form
for the P matrix. The submatrices P,y and P., are omitted since the
network involves no mutual admittances.

123 DF 4 35 6 7 8 9

11 060,00 ;-1 0 0 0 0. 0]
20010001 0 ~1 0 0 0

p3ff00 1001 1 0 0 o:oi_HUE 0 Pis Purtl
= e m et o — — =1 T 0 Us P Pur i
Do o 0r1 01 1 -1 -1 0 ' 1
Flooo0o,01 ' '-1 -1 0 0 —1 ,—1]

The element defining each segregate is listed at the left-hand end of
the appropriate segregate row of P.

The node system of equations may now be obtained by performing
the matrix operations indicated in Eq. 19. The submatrices Pis, Ps
and P,y in the node segregate matrix may be casily identified, and in this
example, submatrices Py and Psy are null matrices. The row order
in P, and the order of columns corresponding to self-admittance ele-
ments indicate that the voltage and seif-admittance matrices are

et
-

¢ 0 0 0 0

| 81[ v L 0 Y; O 0 0

E = “ el Ve = v” , and Ys={0 0 ¥ 0 0
il est F o 0 0 Y, 0
fo o o0 o Ve

The partitioning in P indicates that the current matrix H is a single
row matrix, with the single entry A,.

The indicated matrix operations yield the following node system of
equations.

_ ' i Y4,+ Y,r, - (}4+ Y:,) 1 ! ]
|} Y:q Y4+)(~', Y4+Yd I i: + +Y5+Y7 Up +H (2 | -0
Yo =Y. —(YVi+7V5) €3 —(Vih V) Vb Vit Vil Hivr —ha ||
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This node system of equations may be solved by any standard
method. The independent node voltages v and v are thus determined
in terms of the network parameters and the specified values associated
with the ideal sources. The remaining node voltages can be easily
determined.

As a second example consider the network of Fig. 3, containing
mutual magnetic coupling between elements five and six. The mutual
admittances between five and six are Y55 = Y45, and the self admittances
are Vs and V. In view of the six nodes and four ideal voltage sources,
only one node voltage is independent.

The admittance equation for the mutual elements is

Iy = YuVuy
or
T _ Vis Vs U5
T - H Yes Vs l ’716 ’ <22)

Taking node G as the reference and v as the independent node vol-
tage determines the tree made up of I elements one, two, three and four
and the virtual element O¢. The P matrix takes the following form in
which two of the submatrices are omitted in view of the absence of I
elements.

1234 C 7 8 95 6
1110000 1 0 010 0
2001000 1 0 01 -1
pod o0 1010 0 —t 010 0l _Us O P Pu|
T4000 1100 0 0 =110 0T 0 U Pus P |
cllooooity—1 =t 110 1

The matrix operations of Eq. 19 now yield the single node equation

— Yies 4+ Vises — Yoo — (Y7 4 Voo — Y65)62
+ (Yo + Vs + Yo+ Yeg)ve = 0. (23)

This equation can easily be solved for the node voltage v¢ after
which this value together with the specified voltage values may be used
to determine the remaining node voltages.

WRITING THE NODE SYSTEM BY INSPECTION

The node system of equations may in a sense be regarded as a re-
statement in different form, of information contained in the network
diagram. It should therefore be possible to write the node system
directly by inspection of the network diagram. Methods for doing
this have in fact been commonly applied to the simpler types of
networks (4).

In the case of more complex networks, particularly those in which
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ideal voltage sources are not directly connected to the reference node,
it is the opinion of the authors that the node system can be more accu-
rately and easily written by inspection of the node segregate matrix P.
(iiven the network diagram, the method then involves two straight-
forward steps: (1) writing the P matrix by inspection of the diagrani,
and (2) writing the node system by inspection of the P matrix. The
first of these steps was described in a previous section.

A procedure for step (2) will now be given.

The node system of Eq. 19 may be written in the form

E

Y,

where Y, denotes the node system admittance matrix. From Eq. 19,
this is evidently the (# — 1 — #n.) X (n — 1) matrix

Yn =||P2SYSP1S/ + P?J[YMP1M’EP2SYSPL'S/ + P?:\IYMPZJ\IIN-

The entries in ¥, can be determined in an orderly manner if the
(n — 1) columns of Y, are first identified in the same manner as the
rows of the node segregate matrix P, and the (. — 1 — n.) rows of ¥,
in the same manner as the last (n — 1 — #,) rows of P, which correspond
to the independent node voltages. The rules for writing the node
system of equations are as follows.

1. Denote the ¢t row jt* column entry in ¥, by S;;. Two cases
should be considered.

(a)y 1f j =4, S;; = S, is positive and is the sum of all self admit-
tances with non-zero entries in row ¢ of the node segregate matrix P.

(b) If j # i, Sy is the algebraic sum of all self admittances with
non-zero entries common to rows 7 and j in matrix P and the mutual
admittances which couple elements in row j of P into elements in row ¢
of P. The sign of an admittance term in S;; is positive if the two
entries in P corresponding to this term have the same sign and negative
if they have opposite signs.

2. The entries in the column voltage matrix ||E’'V,’||" are identified
in accordance with the rows of the node segregate matrix, and in the
same order. This identification corresponds with that of the columns
of V,, and also the first (# — 1) columns of the node segregate matrix P.

3. The entry in row 7 of the term P,,H in Eq. 24 is the sum of the
I, element entries in the 7" row of P, each multiplied by its specified
current /.

THE NODE SYSTEM OF EQUATIONS FOR A NETWORK CONTAINING VACUUM TUBES

As indicated previously, the small signal behavior of a vacuum tube
may be specified by a matrix admittance equation (5). The self and
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mutual admittances are dependent on the type of connection, that is
whether the common cathode, common plate or common grid circuit is
used. Given the admittances, these can be incorporated into the node
system of equations in a straightforward manner.

. IEZ
A N B Zss C -
Yz (Yse) Yo
Ns
IayY YooY (Yes) D
MNles Fic. 4. Diagram
representation of a
G vacuum tube for a

case in which mutual
Fi16. 3. Diagram of a network containing mutual magnetic coupling. admittance Yi; is zero.

The subdiagram of Fig. 4 may be used to represent the tube in the
network diagram. The symbols A and B represent input and output
nodes which are connected to the common node C through the input
and output self admittances Y, and Yj;, respectively. The symbol
V;x denotes mutual admittance between the input and output self-
admittance elements. The admittance Y;; is zero for low frequency
operation in both the common cathode and common plate connections,
but in general is not zero in the common grid case.

The matrix admittance equation corresponding to Fig. 4 in which
ij = 0 iS ‘

13

Yiio Yy
For the common cathode case in particular, where 4 becomes the grid,
B the plate and C the cathode, the self and mutual admittances are

T
g

Uk
15}

Y. = ¥, the grid input self admittance,
Y, = g, the plate self conductance, and
Y = gu, the tube transconductance from grid to plate.

The following example shows that the node system of equations
may be readily written for a network containing vacuum tubes. Such
a network is shown in the diagram of Fig. 5, in which Y5 may be recog-
nized as a feedback element.

Choosing node E as the reference, the virtual elements needed in the
tree of this network are Oz, O¢ and Op, assumed to be connected be-
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A B Yr C D

Iy Yoe (Ys2) Y53 Y Ye Yaq (Ys4) Y55 Y Ys

(TUBE 1) E (TUBE 2)

Fi1G. 5. Diagram of a network containing two vacuum tubes and a feedback element.

tween nodes B, C and D, respectively, and the reference. These
virtual elements together with element I, comprise the network tree.
The node segregate matrix becomes

I BCD 6 71 89 2 3 45
11:000.0 0 00;1000“
S e = B
P=Biolt 00t 1 -10010o0n=]|Cr {,’ Dis D
CH0i0 1010 =1 000010/ ! T Pus Pun
plloroo 10 o 1 1.0001]

The node system of equations obtained by inspection of the nodc
segregate matrix and knowledge that the only mutual coupling is from
clement two into element three and from element four into clement
five is

i B c D
Yo+ Vs | 0
Bl Ve +Vi+VYy =71, ~ Vs ol
B i m—
cl o — V. Y.+ T 0 e | =
D o - Y, Yoo Vot Vo Vi | 172

If the common cathode connection is used for each tube, the tube
parameters become Y3 = g1, Yio = gari, Yo = V5o, Vi = g,0, and
Voo = gara.

The node system of equations then takes the form

Y6+Y7+Ys+gp1 -V -V I i
Up — g1
— Y'; Yﬂ?+ Y7 0 Ve Hz}' () -
— Vs g2 Y+ Y9+gp2 o 0 |

It may be noted that the unilinear mutual coupling in tube two re-
sults in this example in a non-symmetrical matrix.
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CONCLUSIONS

The node system of equations has been derived from a segregate
current equation for a general network. Kirchhoff’s laws are both
satisfied since the segregate current equation follows directly from the
current law, and the node voltages satisfy the voltage law identically.

A particular form of network tree containing the ideal voltage
sources and a set of virtual elements forms the basis for a direct formula-
tion of the node segregate matrix. It was shown that the node system
of equations for a complex network can readily be written by inspection
of its node segregate matrix, if the element characteristics are properly
considered.

It is found to be convenient to represent devices containing mutual
coupling by their admittance relations as a preliminary to forming the
node system of equations. This type of representation eliminates the
need for voltage or current generators within the small signal equivalent
circuits of vacuum tubes and transistors.

The following definition is proposed as one result of this study:

The node system of equations is a set of linearly independent
simultaneous equations describing the behavior of a network, in which
the unknown variables are exclusively a set of independent node
voltages of the network, and in which the number of equations and
independent node voltages are each equal to the number of network
nodes less the number of ideal voltage sources less one.

NOMENCLATURE

k = subscript denoting the k! network element, node or variable.
Iz = ideal voltage source element.
7. = number of ideal voltage sources in a network.
er = e;(¢) = specified voltage of element Ig;.
Iy = ideal current source element.
# = number of nodes in a network.
hi = hi(t) = specifled current of element ;.
Vi = Yi(p) = admittance of the kt* element having self admittance only in mhos.
Yir = Vie(p) = self admittance of the k™ element having both self and mutual admittance,
in mhos.
Vi = Vi;(p) = mutual admittance coupling the j* element into the k! element, in mhos.
V1 = Yiu(p) = mutual admittance coupling the kth element into the j*t element, in mhos.

Vi

]

v;(¢) = voltage across the k*" element.
ix(t) = current through the kth element, in amperes.

ik
¢ = number of elements in a network.
O = zero admittance (virtual) element connected between node % and the reference node.
v4 = va(t) = node voltage at node 4 = voltage across virtual element O4.
no = number of type O (virtual) elements in an augmented network.
t = time in seconds.
p = d/dt = derivative operator.
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