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ABSTRACT 

This paper investigates the influence of cycles in a logical net upon the complexity 
of its behavior. The investigation is mainly concerned with two questions: 

1. A logical net with a periodic input  sequence produces a periodic output  
sequence; how is the spectrum of periodic outputs  related to the level of cycle 
complexity ? 

2. Is there a level of complexity c (suitably defined) such tha t  any  behavior 
possible for a fixed logical net can be realized by a logical net constructed only of 
cycles of complexity c' x< c? The first and more difficult question is fully answered 
only in the case of nets constructed of cycles having a feedback coefficient r = 1 
(suitably defined). The second question is answered in the negative for individual 
cycles and it is conjectured tha t  a similar answer holds for nets in general. 

1. INTRODUCTION 

Cycles in a logical net  in general have a profound effect upon the 
net 's  behavior. This paper investigates the relation between the com- 
plexity of such cycles and the complexity of the behavior that  results. 
Much of the investigation is concerned with two questions:  

1. A logical net  with a periodic input  sequence produces a periodic 
ou tpu t  sequence ; how is the spectrum of periodic ou tputs  related to the 
level of cycle complexity ? 

2. Is there a level of complexity c (suitably defined) such that  any 
behavior possible for a fixed logical net  can be realized by a logical 
net  constructed only of cycles of complexity c' <_ c? 

The first and more difficult question is fully answered only in the 
case of nets  constructed of cycles having a feedback coefficient r = 1 
(suitably defined) ; Theorem 3 provides the answer for this case. The 
final theorem of the paper leaves the second question still unanswered 
for nets in general, but  provides the following answer for individual 
cycles: If we consider the set C of all cycles having n'  _< n delays and 
a feedback coefficient r '  < r, then there is a cycle having n delays, a 
feedback coefficient r, and a state transit ion diagram which cannot be 
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realized by any cycle in C. Equat ing  cycle complexity to the number  
pair (n', r'), and defining an ordering (a lattice) such tha t  (n', r') < (n, r) 
just  in case (n' < n, r' <_ r) or (n' <_ n, r' < r), we can answer the 
second question in the negative for individual cycles. 

The theorem last ment ioned rests upon an interlocked sequence of 
definitions, operations, and theorems leading from the simplest input-  
free cycles to arbitrary cycles with input.  The operations in particular 
play a key part  in the development  ; they provide a means of obtaining 
information about  state cycles in the state transition diagram of an 
arbitrary net cycle in terms of the transition diagrams of simple input- 
free cycles. Aside from this role, these operations have application 
in a wide range of problems and questions concerning the relation of 
cycle complexity to complexity of behavior. Two simple examples of 
such applications are given at convenient  places in the development :  
one application is to a conjecture of Burks and Wang (I) ~ and the other 
is to a problem investigated by de Bruijn (3). 

The development  proceeds in the following stages: 
Section 2 defines the term "cycle" as used in this paper and shows 

the existence of a normal form for cycles. Intuit ively,  a cycle with n 
delays has a normal form in which there are also exactly n switches, with 
the ou tpu t  of the jth delay going to the j t h  switch (and perhaps others 
if the cycle is complex) which in turn acts as input  to the ( j  + 1) th de- 
lay (modulo n). This normal form later makes possible a relatively 
simple definition of the order of a net cycle (the feedback coefficient 
mentioned earlier) and considerably simplifies the proofs by drastically 
reducing the number  of cases and variations to be considered. 

Section 3 considers the effect of periodic input  upon the behavior of 
nets in which all cycles are of order 1 (each delay in the normal form 
of each cycle acts as input  to exactly one switch in that  cycle). This 
part  of the investigation was mot ivated by the following consideration : 
If it could be shown tha t  cycles only serve to provide logical nets with 
memories of various recycling times, then it would be possible to ac- 
complish this function by means of cycles of order 1 ("simple cycles"). 
Under  such conditions there would be little need to consider cycle com- 
plexity further  except insofar as to show how to reduce the complex 
cycle to an equivalent simple cycle. In fact this conjecture proves to be 
untrue  as is shown in a Corollary to Theorem 3. Theorem 3, besides 
giving a complete description of the ou tpu t  spectra for nets composed 
of simple cycles, shows tha t  no such net can realize the behavior of a 
2-delay cycle of order 2. Section 3 concludes by showing that  a par- 
ticular case of a conjecture of Burks and Wang (I) is true. 

The sequence of theorems in Section 4 prepares the way for the 
results given in the last section. Section 4 begins by considering input-  

2 The boldface numbers in parentheses refer to the references appended to this paper. 
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free simple cycles with one switch and proceeds step-by-step to the 
general input-free cycle. At each level an operation is developed which 
yields information about  the state transition diagrams of cycles at the 
next level in terms of properties established for the given level. Tha t  is, 
each theorem (with the exception of Theorem 8) provides information 
which when combined with the appropriate operation yields informa- 
tion appropriate  to the next step. In Section 5 the results for input-  
free cycles are extended to the case of the general cycle with input,  
yielding the result (Theorem 12) mentioned earlier. This interlocking 
sequence of definitions and operations leading from input-free simple 
cycles to the general cycle with input  can be summarized as shown in 
Table I (the reader is referred to context for exact definitions). 

Type of Net Cycle 

(1) simple cycle 
without input 

(2) locally bal- 
anced cycle 

(3) input-free net 
cycle with one 
switch 

(4) general input- 
free net cycle 

(5) general net 
cycle with 
input 

(6) logical nets in 
general 

TABLE 1. 

Delinitions Providing for 
Extension to 
Next Level 

locally balanced switch; 
derived transition table; 
normal state cycle 
order of switch 

normal form of net cycle; 
derived transition table for 
normal form 

constant input subgraphs, 
GI~, of transition graph G 

rank of net-cycle 

Operations Generating 
Extension to 
Next Level 

inversion 

unbalancing 

finite induction on number 
of switches in normal form 
of net cycle (listing possible 
effects of added switches 
oil derived transition table) 
selection operation of in- 
put-state I(t) (selects Gz~t> 
from G). 
cascading of net cycles and 
net-cycle nets 

Because of the way in which a net  cycle is defined, each element in a 
net  can belong to at  most one net  cycle. It  follows from this tha t  the 
cycles in a logical net can be ranked and therefore that  the cascading 
operation is sufficient to generate any logical net  (cf. Burks-Wang (1) 
and Section 2 of the present paper). Hence, row (6) was added to the 
table al though the present paper does not specifically consider the case 
(except for simple cycles in Section 3). 

In Table I, the class of all net  cycles of a given type properly in- 
cludes preceding types of net cycle. Generally, the operations pre- 
sented in the table and discussed throughout  the paper are useful 
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in comput ing  the behavior of part icular  net cycles as well as in proving 
theorems about  the various types of net  cycle. 

In Section 4, Theorem 8 provides a constructive solution in terms of 
input-free locally balanced cycles of a problem investigated by de 
Bruijn (3). The proof illustrates the use of the operations just  sum- 
marized in exploring questions other  than the two posed at the outset.  
In Section 5, preceding Theorem 12, a method is given for comput ing  the 
periodic input /per iodic  ou tpu t  relation of any given backwards de- 
terministic cycle. The computa t ion  makes use of tile properties of a 
related set of input-free locally balanced cycles. The paper concludes 
with a conjecture that  the result of the final theorem holds for nets in 
general; tha t  is, it is conjectured that  the answer to the second question 
asked earlier is negative. 

2. U N I ~ E ~ n N 6  C O N C E ~ r s  

The logical nets considered in this paper will be well-formed logical 
nets, essentially as defined by Burks and \Vang in Part  2.3 of their 
paper (1). The nets are based upon a set of primitives consisting of a 
delay element and an infinite class of switching elements. Terminology, 
except where explicit definitions are given, will be that  of Burks and 
Wang. The state transit ion graph will be used as a means of com- 
pactly picturing the behavior of a logical net. E . F .  Moore's conven- 
tions (6) will be used except that  the ou tpu t  associated with each net 
state will not  in general be indicated. 

As indicated in the introduction,  the purpose of this paper will be to 
investigate the role of cycles in logical nets. The exact definition of 
cycle proceeds from the concept of one element of a net  driving another.  
An element E1 directly drives an element E2, E~ d E2, if and only if the 
ou tpu t  of E~ is connected to one of the inputs  of E~. A sequence of 
elements F~, . . . ,  F,~ is a drive sequence from Ft to F~ if and only if 
F j d  Fj+~ for j = 1 , . . . ,  n - 1. An element E~ drives an element 
E.,, E~ I~ E.2, if and only if there is a drive sequence from E1 to E..,. 
Now, an element E1 belongs to a cycle if and only if E~ D E~. This 
cycle consists of the set of all elements, E j, such that  both E~ __D Ej  and 
E~ D E~. Or, more formally, a set of elements, C, is a cycle if and only 
if, for all E,, Ei  in C, (1) E~ I_)) E j  and Ej D E.; and (2) no element of the 
net  not in (" satisfies condition (1). A set of elements, C', is a subcycle 
if and only if, for all E~, Ei in C', (1) E,  I) Ei and Ej D__ El and (2) for 
each relation E~ __D Ej  of (1) all elements of the defining drive sequence 
are elements of C'. It  is an immediate  consequence of these definitions 
that  each element of a net  belongs to at most one cycle, al though it 
may belong to several subcyeles. 

Note tha t  the cycles in a well-formed net can be ranked as follows: 
A cycle is of rank 0 if none of its inputs  is driven by an element of an- 
other cycle. A cycle is of rank r if at least one of its inputs  is driven 
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by an element of another cycle of rank r - 1 and none of its inputs is 
driven by elements of other cycles of rank greater than r - 1. 

Any cycle can be reduced to a much simpler normal form: if the 
cycle has n delays then there is an equivalent normal form which has 
at most n switches, so arranged that  the output of de lay j  goes to switch 

NET INPUTS,  

h 0 h I h 2 h 5 

.r--- - / 

1 
I j ,,q 

[ CYCLE I 
L RANK O -J 

FIG. 1. A logical net with cycles marked. 

i . . . .  1 

/ CYCLE l 
L_ RANK I __l 

DELAY 

SWITCH 

- -  l ENCLOSES 
I L _ _  ~ CYCLE 

F ' - - ' ]  ENCLOSES 
L - . - J  SUBCYCLE 

j (and perhaps others) and the output of switch j acts as input to delay 
j q- 1 (modulo n). To establish this normal form the following defini- 
tions are required: A drive sequence in which all elements, other than 
the first and last, are switches will be called a drive sequence of switches. 
If there is at least one drive sequence of switches from an element E1 
to an element E2 it will be said that  E, drives E~ via switches, E1 s E~. 
The set of all switches belonging tO drive sequences of switches from 
El to E2 will be called the set of switches from E~ to E2. 

Let the set of delays belonging to a given cycle be ordered and 
labelled Do, D~, • . . ,  D,_~. Since we are dealing with well-formed nets 
and since each delay has but one input, there must be at most one 
switch Sj which directly drives delay Dj. If Dj-l(,nod n) _~ Dj simply add 
a new input to Sj with the proviso that  the output of the switch is to 
be independent of this new input (that is, the output of the switch is 
still uniquely determined by the inputs initially given). By connecting 
the output  of Dj- l (mod  n) to this new input we have formally the result 
Di-~(moa,)sDj.  Let this be done for a l l j ,  j = 0, 1, - . . , n -  1. 

For each j ,  consider all D~ in the cycle such that  D~ s Dj (one such 
D~ will now be Dj-x(mod . ) ) .  Among all the switches belonging to one 
or more of the sets of switches from the {D~} to Di there will be a total 
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of k switch inputs not identified with the output of any other switch in 
these sets or with the outputs of the {D~]. It can easily be seen that  
each assignment of states to these k switch inputs uniquely determines 
the input state of Dj when the output  state of each D~ driving Dj via 
switches is given. Thus, assuming that  there are m such D i, we can 
replace all of the aforementioned switches by a single (k + m) input 
switch. Of the inputs to this new switch, k will be identified as inputs 
to the cycle corresponding to the k selected inputs of the given switches. 
The other m inputs will be connected to the outputs of the m delays D,. 
The output of the new switch will be connected to the input of Dj. 
Once this is done for each Di, the normal form of the cycle results. 

It is an immediate consequence of the construction method that  the 
normal form of any cycle with n delays will have no more than nswitches. 
Furthermore, each cycle input (the net inputs of a cycle when it is taken 
as the whole net) of the original cycle will drive via a switch exactly 
the same delays in the normal form as in the original form. Finally, 
at any time t, the input and output  state of each delay in the nornIal 
form will be that  of the same delay in the original form. 

h ~ _.~_~..~-.~WITCHES ht 
do !,.4~ FROM Dr TO D2 J, 

dz qo 
o 8o 
I 8t 

qo(t) i fo (d z ( t ) )  

Fro. 2. 

do d2 qo 
o 0 8 0  
o t B~ 
I 0 80 
I t 81 

qo(t) - f o ( d 2 ( t ) )  

A cycle and its normal form. 

3. SIMPLE CYCLES 

A hint of the role of cycles in logical nets comes from the following 
observation : For a net with n delays and no cycles, the net state at time 
t is totally determined by the sequence of input states from t - n to 
t - 1-- the net state at time t is completely independent of any net 
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state preceding t ime t - n + 1. Thus  a net  wi thout  cycles can only 
record the detection of an input  event  for at most n time-steps. In 
other  words, if a logical net  is to have "memory"  or storage it lnust 
include cycles. 

Upon noting the function of cycles as memory  elements, one of the 
first questions which presents itself is: Can the full range of logical net  
behavior be obtained from nets using cycles of limited complexity? 
More precisely, in the class of well formed nets, is there a proper subset, 
defined in terms of some limitation on the cycles allowed, which can 
exhibit the full range of logical net  behavior ? It is fairly obvious that  
the number  of cycles cannot  be l imited; this would contradict  the 
existence of nets with arbitrarily large numbers  of memory  units. A 
possible first step would be to consider nets using only cycles with 
minimal feedback, tha t  is, cycles with no proper subcycles. A cycle 
of this type, which I will call a simple cycle, can be more directly defined 
as a cycle in which each delay drives via switches exactly one other  de- 
lay in the cycle. The normal form of such cycles is particularly simple 
(see Fig. 3). 

I D • n-I ) q  n-i 

FIG. 3. Normal form of simple cycle. 

The conjecture, then,  with respect tos imple  cycles would be tha t  for 
each logical net  there is a net  with, at most, simple cycles which has 
the same behavior. The  conjecture is plausible on the view tha t  the  
simple cycles provide]"delay line" or "reverberatory"  storage of various 
periods while the rest of the net  provides encoding, switching, decoding, 
and other  logical operations. The following three theorems show tha t  
this conjecture is in fact false. The last theorem of the section, Theorem 
3, shows a good deal more than th i s - -  for any net composed of simple 
cycles, it characterizes the spectrum of net  state periods resulting from 
periodic input  sequences. 

Theorem 1. If the sequence of input  states of a simple cycle has a 
proper period m and the simple cycle has n delay elements, then the 
sequence of net  states of the cycle has a proper period 2 l.c.m. (m, n) 
or a divisor thereof. 
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Proof  outline 3 

1. Consider a par t icular  delay,  i. Let  d~(t) be the s tate  of this delay 
at t ime t. If d~(tl) = d~(t2) and if the  input  sequence I(t~ + l), 
I(t~ -4- 2), . . . ,  I ( t ,  + k) is identical to the input  sequence I(t.. + 1), 
• . . ,  I(t.~ + k) for some k = j n ,  then  d~(tl + k) = d~(t.2 + k). (Con- 
sideration shows tha t  this s t a t emen t  is not  t rue in general for k ~ jn . )  
Under  the same condit ions if d ~ ( h ) =  1 -  d~(t,2) then d~(tl + k) 
= 1 -- d i(t2 -4- k). 

2. The  input  sequence repeats  every  m steps by hypothesis.  Thus,  
for k = jn ,  the input  sequence I(t~ -4- 1), . . . ,  [(t l  -[- k) is identical to 
the sequence I(t~ + k + 1), . . . , I ( t ~ +  2k) for j such tha t  k = j t l  
= 1.c.m. (m, n). 

3. Since &(t)  can take on only two values, we must  have by (1) 
and (2) ei ther 

d~(t~) = d¢(h + 1.c.m. (m, n)) 
OF 

d,(t l)  = I - d~(t + l.c.m. (m, n)) = d,( t  + 2 l.c.m. (m, n)). 

Thus, f o r  p = 2 l . c . l n .  (m, tt), w e  m u s t  h a v e  

d~(t~) = d~(h -F jP)  for j = 0, 1, 2, . . . .  

4. Step (3) holds for each delay, hence the net  s tate  sequence must  
repeat  with period p. 

[ I' I 
E . . . . . . .  I 

[ II F R O M  I 
L -J ATO B _I 

A B 
1:1(;. 4. .\n n.c.-ncl. 

In nets cons t ructed  with more than one simple cycle, the sinqfle 
cycles can be separated by subnets  having no cycles. The following 
definitions are in tended to give a precise in terpre ta t ion  to this state- 
m e n t :  A drive sequence from an element  F~ to an e lement  F2 will be 

At the suggestion of the JOURNAL reviewers, the proofs of this theorem and of Theorems 
5, 7, 8, 9, 10 and 11 have been omitted. They may be found in the microfihn edition of the 
atllhor's the~is, "Cycles in Logical Nets," Ph. I). dissertation, 10,59, The University of Michigan, 
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called an n.c.-drive sequence if none of the elements  in the sequence 
o ther  than the first and last, belongs to a cycle. A set of elements,  A, 
n.c.-drives a set of elements,  B, if there  is at  least one n.c.-drive se- 
quence from some element  of A to some element  of B. The  net con- 
sisting of all elements,  o ther  than elements  of A and B, belonging to 
n.c.-drive sequences from A to B is the n.c.-net from A to B. 

Theorem 2. If the sequence of input  s ta tes  to a net  wi thout  cycles 
(for example,  an n.c.-net) has a proper  period m, then the net  s ta te  
sequence of the net  has a proper  period m or a divisor thereof. 

Proof" 
1. In order to simplify the proof let each element  in the net  wi thout  

cycles be given a rank as follows: (1.1) if all the inputs  of the element  
are net  inputs  of the given net, its rank is zero ; (1.2) if an input  of the 
e lement  is identified with the o u t p u t  of an e lement  of rank r - 1, and 
no input  is identified with the o u t p u t  of an element  of rank higher than 
r - 1, then the element  is of rank r. Since an n.e.-net contains  no 
cycles each element  has a unique rank. 

2. Now, the  s ta tes  of the inputs  of each element of rank zero mus t  
repeat  with period m since these s ta tes  are merely components  of the 
net  input  s tate.  Therefore,  since the  o u t p u t  s ta te  of a switch is uniquely 
de termined by  the set of input  states,  the o u t p u t  s ta te  of each switch 
of rank zero repeats  every  m units  of t ime. The switch may,  of course, 
repeat  its o u t p u t  s ta te  more f requent ly  ; for example,  the switch o u t p u t  
s ta te  m a y  be 1 for any  input  a rgument ,  in which case its o u t p u t  s ta te  
would repeat  with period p = 1. Thus  the o u t p u t  s ta te  sequence of a 
switch of rank zero has a period m or a divisor thereof. I t  follows 
direct ly  from the delay equat ion  tha t  the o u t p u t  s ta te  of a delay of 
rank zero repeats  every  m units  of time. 

3. If the o u t p u t  s ta te  of each element  of rank r' < r repeats  with 
period m, then, by  the same observat ions  as in the case of rank zero, 
the  o u t p u t  s ta te  of an element  of rank r repeats  with period m. Thus,  
b y  induction,  the o u t p u t  s ta te  of any  element  of a net  wi thout  cycles 
repeats  every  m uni ts  of t ime. Hence,  the  net  s ta te  sequence of a 
net  wi thout  cycles has a proper  period m or a divisor thereof. 

We can now proceed to the general case with respect  to the conjec- 
ture ment ioned at  the outse t  of this section : the case of nets  in which all 
the  cycles are simple cycles. 

Theorem 3. A net  in which all of the cycles are simple, having nl, • • . ,  nk 
delay elements,  respectively,  with a sequence of input  s ta tes  of proper  pe- 
riod m, will have a net  s ta te  sequence of period 2 r0+~ l.c.m. (m, nl, • • . ,  nk), 
where r0 is the maximum of the  cycle ranks. 
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Pl'oof : 

1. To begin with, note tha t  every  e lement  of a net, N, is driven by  
one or more of the  net  inputs  of N, except  those elements  belonging to a 
cycle having no cycle inputs  ( that  is, the  cycle, considered as a net, 
has no net  inputs).  

2. Let  A 0 be the set of e lements  sat isfying the following two condi- 
t ions:  (2.1) at  least one input  of the elenmnt is a net input  of N, (2.2) 
the element  does not  belong to a cycle. Let  C be the set of e lements  
belonging to a given cycle of rank 0 (see Section 2). Any element 
driving C bu t  not  in C must  be driven by  an element  of A0 because (' 
is of rank 0 and hence no element belonging to a cycle can drive an 
element of C. Let  P be the net  consisting of the n.c.-net from A 0 to (7 
together  with the elements  of A0. The net  includes all e lements  of N 
driving cycle inputs  of C. Since the net  inputs  of P are just  the net 
inputs  of N, the net s ta te  sequence of P must  be of period m by  Theorem 
2. Thus  t h e  input  s ta te  sequence of the cycle inputs  to C must  be of 
period m. Since C is a simple cycle the results of Theorem 1 a p p l y -  
the net  s ta te  sequence of C has a proper  period 2 l.c.m. (m, n), or a 
divisor thereof, where n is the number  of delays belonging to C. 

3. Now, define induct ively  a set of nets  N~, for.] = - 1, 0, 1, - • . ,  r,,, 
where r, is the maximal rank of the cycles in the net N. The net eYj 
consists of the following elements  with their inputs  identified as in N :  
(3.1) all e lements  of Ni-~ (where N_,  is the set A0); (3.2) all e lements  
belonging to n.c.-nets from Nj_i  to cycles of rank j ;  and (3.3) all ele- 
ments  belonging to cycles of rank j .  

4. Consider the net  No. If the k0 simple cycles in N0 have n0, • • -, 
n,.o-~ delays, respectively,  then as shown above,  the i th cycle will have a 
net  s ta te  sequence of period 2 1.c.m. (m, n~), i = 0, • •.,/e0 - 1. Each 
associated P net  will have a net  s ta te  period m. It  follows directly 
tha t  the proper  net s ta te  period of No will be a divisor of 

l.c.m. (m, 2 1.c.m. (m, no), - . . ,  2 l.c.m. (m, n~o_l) ) 

= 2 1.c.m. (m, no, . . . ,  nko-1). 

5. Let  no, . . . ,  m-0-1, nko, " ", nk1--1, " ' ' ,  nky--1 be the number  of de- 
lays belonging, in order, to each of the simple cycles from rank 0 through 
rank j .  

6. Assume the net  Nj_I  has a net s ta te  sequence of period p = 2, 
1.c.m. (m, n0, . - . ,  nk;_l-1). By  subs t i tu t ing  Nj_~ for A0 and p for m 
in s tep (2) we see tha t  a cycle C~ of rank j must  have a net  s ta te  se- 
quence of period 

2 1.c.m. (p, n~) = 2 l.c.m. (2i l .c .m.  (m, no, - - . ,  nki_l-1), n,) 
= 2i+1 1.c.m. (m, no, . . . ,  nkj_,_l, hi). 
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Applying the reasoning of step (4) we see then tha t  the proper net  s ta te  
period of Nj  will be a divisor of l.c.m. (m, 2i+, 1.c.m. (m, no, - - . ,  n,.j-i). 

7. Thus  by induct ion on j ,  the net  N, when the input  s tates  repeat  
with period m, will have a proper net  s tate  period which is a divisor of 
p = 2 r0+l l.c.m. (m, n o , - . . ,  nk). Again, for reasons similar to those 
noted at  the end of Theorem 1, there exist combinat ions of switching 
elements  and cycles giving N a net  s tate  sequence of proper period p. 

Corollary. Let  it be required tha t  a net  be in a chosen net  s ta te  So 
if and only if the number  of occurrences, p, of a dist inguished input  
s ta te  I0 satisfies the equat ion p --- 0 m o d j .  (Simply, the net  is required 
to "coun t , "  modulo j ,  the occurrences of input  state I0.) For nets in 
which all cycles are simple, j must  equal 2 b for some positive integer b. 
(Such nets  can only "coun t "  modulo a power of 2.) 

Proof: 
Let  the dist inguished input  s tate  repeat  with a proper period m. 

Then,  since the  net  is to be in a unique net  s tate  So for e a c h j  occurrences 
of the dist inguished input  state,  it nmst  have a net  s tate  which repeats  
with proper period p = j m  for all m. Or, by Theorem 3, 

p = j m  = 2 r °+ l  l.c.m. (m, no, - . . ,  n~). 

This equat ion can only hold for all m if j = 2 r°+l, since if m is chosen 
equal to k (1.c.m. (no, • • . ,  nk)) the  above equat ion reduces t o j m  = 2r0+'m. 

The  corollary shows tha t  no net  composed of simple cycles can, for 
example, act  as a t e rna ry  (base 3) counter .  To do so it would have to 
be in some dist inguished state  So for every  third occurrence of the dis- 
t inguished input  s tate  I0. This  condition holds afort ior i  for a periodic 
input  sequence, whence we would require p =-- 0 mod 3, contradic t ing 
the corollary. Since there exists a 2-delay logical net  which can count  
base 3, the corollary at  once establishes the falsity of the  conjecture 
s ta ted at  the beginning of this section. 

If this result is not  surprising, it at  least shows the oversimplification 
present  in the idea tha t  the main function of cycles in a system is to 
provide " m e m o r y "  or storage of information.  Here we have systems 
with any  number  of cycles of a rb i t ra ry  lengths (arbi t rary  recycling 
times) which have a very  limited range of behavior,  not  because we 
restr ict  the complexi ty  of the switching elements  used, but  because the 
cycles are limited in the complexi ty  of their  feedback patterns.  

The  results here also show tha t  a part icular  case of a conjecture  of 
Burks and Wang  (1, p. 292) is true. The conjecture  is : For any  degree 
d, there is some t ransformat ion  not  realized by any  net  of degree d - -  
a net  is of degree d if it contains at least one cycle of degree d and none 
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of higher degree; a cycle is of degree d if it contains d delays. Since 
nets of degree 1 lnUSt be composed of silnple cycles, we see that there are 
transformations on periodic input-state sequences not accomplished by 
any net of degree 1. By using periodic input as a tool one can often 
prove theorems concerning a given class of nets which would be difficult 
to prove in any other way. 

4. I N P U T - F R E E  CYCLES 

The results of Section 3 show the behavior of a logical net to 1)e 
severely restricted if the complexity of the net cycles is sufficiently 
limited. Moreover, the limitation on complexity need not concern the 
number of cycles or the number of delays in a cycle, but only the number 
of feedback loops (subcycles) per cycle. The effect of increasing the 
number of feedback loops in a cycle thus becomes a salient point of the 
study of cycles in logical nets. 

The present section will start out by relating properties of the state- 
transition graph to changes in feedback in a class of input-free cycles 
called locally balanced cycles. Just  as cycles are important features of 
net structure, so cycles in the transition graph are important to net 
behavior. The two kinds of cycles will be termed net cycles and state 
cycles, respectively. The relation between locally balanced cycles and 
the resulting state cycles will be a key to the behavior of more general 
net cycles. 

qO 

FIG. 5. A locally balanced cycle and the 

do d~ . . .  d , ,_~ d , , - i  q,, 

0 0 • . .  0 0 ~o 
0 0 • • • 0 1 ~1 

0 0 • • • 1 0 ee 
0 0 • .  • 1 1 ~a 

1 1 . . .  1 0 ee,~ ., 

1 1 . . .  1 1 ~e,, T 

t~2j ~ ~ 2 j ~ l  

t ru th  table of its switch. 

Locally balanced cycles can be defined in the following way: In 
the t ruth table corresponding to a switching element let rows 2j and 
2j -4- 1, for j = 0, 1, . . . ,  2 "-~ - 2, be called simply the jth pair. Let 
the function values determined by the two arguments of the jth pair be 
e,_,j and e2i+l, respectively. A switching element will be called locally 
balanced if ~2j = ~2j+1 for all pairs, j = 0, 1, . . . ,  2 ',-I - -  2. A locally 
balanced cycle satisfies the following conditions : 

1. One switching element occurs in the cycle and that  element is 
locally balanced. 
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2. There  are n > 0 delay e lements  in the cycle• The  o u t p u t  of 
the  switch is identified with the inpu t  of delay do. The  o u t p u t  of delay 
dj  is identified wi th  the inpu t  of delay di+l, j = 0, • • -, n - 2. 

3. The  switch has n inputs .  The  jth i npu t  of the switch (the jth 
co lumn of the  associated t r u th  table) is identified wi th  the o u t p u t  of 
d e l a y d j ,  j = 0, . - - , n -  1. 

Theorem 4. The  s ta te - t rans i t ion  graph of any  locally balanced cycle 
consists only  of dis joint  cycles of states.  

Proof: 

1. Consider ,  a t  any  given t ime t, the ordered n- tuple  (p0(t), " " ,  
p, - l ( t ) )  of the  s ta tes  of the  n inpu t s  to  the  switch in a locally balanced 
cycle. By the  defini t ion of a locally balanced cycle, this  n- tuple  is 
identified wi th  the  ordered n- tuple  of delay o u t p u t  s ta tes  at  t ime t, 
( d 0 ( t ) , - . . , d , _ l ( t ) ) .  T h u s  each of the 2" ne t  s ta tes  of the  cycle is 
represented  by the a r g u m e n t  par t  of a line of the  switching e lement  
t r u th  table• 

2. If the  net  s ta te  of the cycle a t  t is given by t h e j  th line of the  t r u t h  
table,  t hen  the  ne t  s ta te  of the  cycle at  t -t- 1 is s imply  given by the  
ordered n- tuple  wi th  ,j  as its first digi t  and  the  value of pi(t) as its 
( i  -1- 1 )  th digit.  T h a t  is, 

(do(t q- 1), - - . ,  d,_l(t  -Jr- 1)) = (e~, po(t), . . . ,  p,_2(t)) 

where the  a r g u m e n t  of l i n e j  has in effect been "shif ted one to the  r ight ,"  
~j being "shif ted in,"  pn-l(t) being "shif ted ou t . "  The  t r u th  table, thus  
extended,  becomes the  derived transition table for the  locally balanced 
cycle (Table II) .  

TABLE II .--The Derived Transition Table of a Locally Balanced Cycle. 

do (t) 
=po(t) 

• o o 

s(t)* 

d._~(t) 
=p._~(t) 

d._, (t) 
=p,,_, (t) 

d~(t-[-1) 
=q ( t )  

E 0  

E 1  

~ 2  

E 3  

E 2 n - - 2  

E 2 n - - 2  

s(t + 1) 

d l ( / + l )  • '"  
= po (t) 

O • " " 

0 • • " 

0 • " " 

0 " ° • 

1 • ° • 

1 " " • 

d,,_l (t q-l) 
=p,,-2(t) 

* s ( t )  is the  net  s t a t e  of the  cycle a t  t h n e  t. 
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3. Now, the jth pair of the locally balanced switch gives rise to 
a pair of successor n-tuples, s2j(t + 1) = (eel-, p o ( t ) , "  ", p,_.,.(t)) and 
s2j+~(t + 1) = (e2;+1, p 0 ( t ) , . " ,  p,,_2(t)), s2i and s2j+l have identical 
digits in the last n - 1 places by step (2) ; fur thermore  no other  pair of 
successors has the same ordered set of digits in the last n - 1 places. 
The  first digit of s,2j is the binary complement  of the first digit of s..,j+ ~ 
since e2j = ~,,j+~ by definition of a locally balanced switch. Therefore  
the a rgument  states of the  jth pair map into dist inct  n-tuples, s..,j and 
s2i+i, which occur nowhere else on the right of the derived transit ion 
table (Table II).  In o ther  words, the derived transit ion table is a 
1 - 1 mapping of the 2 n net  states onto themselves. Such a mapping 
is a permuta t ion  on the net  states and, by e lementary  group theory,  
permuta t ions  can always be reduced to a product  of disjoint permuta-  
tion cycles. These permuta t ion  cycles correspond direct ly to disjoint 
s tate  cycles of the transit ion graph. 

Note  tha t  the s ta te- t ransi t ion graph of an input-free cycle consists 
only of disjoint s tate  cycles just  in case the cycle is backwards  de- 
terminist ic in the sense of Burks and Wang (1, p. 286). Using this fact, 
and not ing tha t  ~s = ~ 2 j + 1  implies s2s = s,.,s+~, we can restate  Theorem 4 
in a s t ronger  form : 

Theorem 4'. Let C be an n-delay cycle with one (arbitrari ly chosen) 
n- input  switch which is connected just  like the switch in a locally 
balanced cycle. C will be backwards  determinist ic  if and only if the 
switch is locally balanced. 

In what  follows, a pair will be said to be normally oriented if ~ j  = 0, 
~2j+1 = 1. A pair will be said to be inversely oriented if ~2i = 1, e~i+l = 0. 
The  simplest locally balanced cycles result when the pairs associated 
with the switch are ei ther all normal ly  oriented or all inversely oriented. 
When this is the case the ou tpu t  of the switch, q(t), is independent  of all 
a rgument  columns except the last, p,~_~(t). Thus  in effect the cycle is 
an input-free simple cycle. The next theorem gives some properties of 
the  s tate- t ransi t ion graphs of these simplest locally balanced cycles. 

Theorem 5. Let  L be a locally balanced cycle with n delays. If all 
the pairs of the switch are normal ly  oriented, a s tate  cycle with exact ly 
p s tates  occurs if and only if p = 1 or, for p > 1, g.e.d. (p ,n )  = p. 
There  will be two state  cycles with p = 1 and, for p > 1, there will be 

2p -- 2p' 
np - P s tate  cycles, where p'  is the next number  smaller than  p 

which is the length of a s ta te  cycle. If all the pairs of the switch are 
inversely oriented, a s tate  cycle with exact ly p states occurs if and only 
if g.c.d. (p, 2n) = p and p does not  divide n. The number  of s tate  
cycles having p elements  is again given by n~. 
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The state cycles of the locally balanced cycle with a normally 
oriented switch, which I will call normal state cycles, figure basically 
in the present study.  Part  of the reason for this lies in the following 
operat ion:  an inversion consists in changing a given pair of a locally 
balanced switch from normally oriented to inversely oriented or vice 
versa. The result of an inversion is a new locally balanced switch 
produced from the given one. It  follows directly from the definition 
of a locally balanced switch tha t  any locally balanced switch can be 
t ransformed into any other by a succession of inversions. Thus, for 
example, any locally balanced switch can be produced by using a suc- 
cession of inversions on a normally oriented switch. The next five 
theorems will explore the relations between normal state cycles, in- 
versions, and the transit ion graphs of locally balanced cycles. 

In the proofs, and at other points from here on, the state represented 
by a given binary n-tuple will, where convenient,  be labelled by the 
decimal equivalent  of the corresponding binary number.  Thus  
(0,0, - . . , 0 )  becomes O, (0, . - - , 0 ,  1,0) becomes 2, and (1, 1, - . . ,  1) 
becomes 2 n - 1. 

Theorem 6. Let Et  be the switching element of a locally balanced 
cycle; let E2 be the switching element derived from E1 by an inversion 
on t h e f  h pair, tha t  is, on (~2j, ~2j+1) ; and let s2~- and s2j+~ be the argu- 
ments  of the jth pair. If s2i and s2j+l belong to different state cycles, 
C~ and C2, in the transit ion graph with respect to El, then the transit ion 
graph with respect to E2 will be the same as tha t  for E1 except tha t  C1 
and C2 will be uni ted into a single state cycle consisting exactly of all of 
the states belonging to C~ and C2. If s2j and s2j+~ belong to the same 
state cycle, C, in the transit ion graph with respect to Ex, then the 
transit ion graph with respect to E2 will be the same as tha t  for EL except 
tha t  C will be separated into two disjoint state cycles which together  
include all of the states belonging to C. 

Proof: 

The transit ion table for a locally balanced cycle, as derived from the 
switching element 's  t ru th  table, is unchanged by an inversion except 
for the lines corresponding to the inverted pair. Let s2j. and s2~.+1 be 
the left-hand entries of these two lines and s%., s%+1 their respective 
successors (right-hand entries) before the inversion. After the inversion 
the successor of s2j will be s'2j+l and the successor of s2j+l will be s%. 
From Theorem 4 one of two cases must  hold for s2~ and s2j+l, either 
they belong to different state cycles or else they belong to the same 
state cycle. 



Sept. ,  196o.] C Y C L E S  I N  L O G I C A L  N E T S  2 1 7  

Case 1. s2j, s2j+l belong to different state cycles C~, C..,. 

After the inversion the succession from s'2; to s2; within (?~ is un- 
changed, thus each element of C, appears in turn (since there were no 
elements of C1 between s=j and s'2j all are present in this succession). 
However, the successor of s2j is s'.,.i+~ which belongs to C2. The succes- 
sion from s'2j+~ to s~j+i is undisturbed and every element of C2 appears 
in this succession. Finally the successor of s2j+~ is s'~ which completes 
the new cycle (since we began the succession with s'~). All elements 
of C~ and C~ belong to the resulting state cycle. 

h l v e r s i o n s  D e r i v e d  T r a n s i t i o n  T a b l e  

do d~ d2 q~ d~ 
Nol le  . . . . . .  

0 0 0 ~. = 0 0 
P a i r 0  0 0 1 ~ = 1 

0 1 0 ~2 = 0 
P a i r  1 0 1 1 ea = 1 

1 0 0 ~4 = 0 
P a i r 2  1 0 1 ,~ = 1 

1 1 0 ~6 = 0 
P a i r  3 1 1 1 ~7 = 1 

T r a n s i t i o n  G r a p h  

0 4 
0 0 

0 1 0___1 
1 0 

1 1 
1 1 

P a i r  1 A f t e r  i n v e r s i o n  of p a i r  1 

i n v e r t e d  d e r i v e d  t r a n s i t i o n  t a b l e  is 

t h e  s a m e  e x c e p t  .2 = I 

a n d  ~a = 0. 

P a i r s  1 a n d  2 

i n v e r t e d  

l:I(;. 6. 

A f t e r  i n v e r s i o n  of pa i r s  

1 a n d  2 t r a n s i t i o n  t a b l e  is 

t h e  s a m e  e x c e p t  ~.~ = 1, 

~a = 0, e4 = I, a n d  ~ = 0. 

Ef fec t s  of i n v e r s i o n s  on the  t r a n s i t i o n  g r a p h  of a loca l ly  b a l a n c e d  cycle .  

Case 2. s~j, s . ~  ~ belong to tim same state cycle C. 

Let the segment of C from s2i through s2~+~ be D~ and the other 
segment from s~j+~ through s~i be D2. The first element of D1 is s'~j 
and the last s2i+]. After inversion the succession in D1 is unchanged 
but s'2i becomes the successor of s2i+~. Thus Dt becomes a state cycle. 
Similarly D2 becomes another, disjoint, state cycle. The effect of the 
inversion has been to "pinch" the original cycle in two at s..,.i, s.,j~ ,. 
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Theorem 7. In any  transi t ion graph containing normal  cycles, there 
are at  most  two inversions which can, individually, connect  a given 
pair of normal  cycles (Ca, C2). There  are no inversions which can 
separate  a given normal  cycle into two state  cycles. 

The  next  theorem shows the application of the inversion operat ion 
to the solution of a combinatorial  problem earlier invest igated and 
solved by  N. G. de Bruijn (3). The  problem is to show, for any  n, 
t ha t  there is an ordered cycle of 2 n digits 0 or 1 such tha t  the 2" possible 
ordered sets of n consecutive digits of tha t  cycle are all different. Logi- 
cal nets  which can generate  such sequences are of interest  for error- 
correct ing codes and for pseudo-random number  generation. Theorem 
8 not  only proves the  above s ta tement ,  but  in its proof (not included 
here) also shows how to cons t ruct  input-free locally balanced cycles 
which, for any  n, will generate  such sequences as output .  

Theorem 8. There  is a locally balanced cycle having a transi t ion graph 
in which all 2 n net  s tates  belong to a single s tate  cycle;  tha t  is, the net  
will have a net -s ta te  sequence of period 2". 

The  next  theorem begins a direct  investigation of the effect of 
increasing the number  of feedback loops in a cycle. The theorem 
basically concerns input-free locally balanced cycles in which some of 
the feedback loops to the switch have been omit ted,  tha t  is, cycles in 
which the switch receives k ~< n inputs  from the cycle. 

Jus t  before Theorem 5 it was noted that ,  in a locally balanced cycle, 
use of a switch with all pairs normal ly  oriented or all pairs inversely 
oriented,  in effect, conver ts  the cycle to a simple cycle. This observa- 
tion can now be generalized : A switching element  will be said to be of 
order k if and only if there are k numbers, O ~< i0 < . . .  < i k _ l  ~ n -  1, 
such tha t  all a rguments  with the  same values for P,0, " " ,  Pik_, de- 
termine the same ou tpu t  value, q(t) for the switch. If this is t rue  for k 
and for no k l < k the switch will be said to be properly of order k. 
The ou tpu t  state,  q(t) of a switch properly of order  k depends only on 
the s tate  of inputs  p~0, . . . ,  Pik_l; thus  in a cycle the switch could be 
replaced by a switch with k ~< n inputs  identified with delay outputs  
d io, " • " ,  d ik_l. 

For a locally balanced switch, ik-1 = n - 1 in the above definition. 
This is the case because, in each pair de te rmined  by giving values to 
P0, " " ,  P,,-2, q(t) = ~2i when Pn-i = 0 and q(t) = e2j+, = ~2~. when 
P~-I = 1. T h a t  is, different values of Pn-~ give rise to different values 
of q(t). Using these facts, the definition of order  can be recast  for 
locally balanced switches in terms of orientat ion of pairs:  A locally 
balanced switch is of order  k if and only if there are k - 1 numbers,  
0 ~< i0 < - . .  <ik_2 < n -  1, such tha t  all pairs with the same values 
for p~0, . . . ,  p~,_, have the same orientat ion.  
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TRUTH TABLE OF A 
SWITCH OF PROPER ORDER 2 

Po ;-PT-P;-I 
I 

°I°°o 
O i l  ? 
0 I I  
I I 0  0 
I I 0  I 
I ]1  .0 
I i i  I 

L . . . .  

qo 
F - - 1  

O I I 
I I i 
I L _ _ J  

O ENCLOSES 
O COLUMNS USED 
I IN DEFINITION 
t 
O 

Fro. 7. 

LOGICAL NET WITH GIVEN SWITCH 

EQUIVALENT NET 

A switch properly of order 2. 

Theorem 9 will describe some of the changes occurring in the transi- 
tion graph of a locally balanced cycle as the order of its switch is in- 
creased (that is, as the amount of feedback in the cycle is increased). 
The statement of this theorem as well as that  of some succeeding 
theorems can be considerably shortened by making the following defini- 
tion : The state-cycle partition of a net N with n delays is a partition of 
the set of 2" net states satisfying the following conditions : 

1. One subset of the partition consists just of those states which 
do not belong to a state cycle in the transition graph of N. 

2. The remaining net states are separated into subsets such that  two 
states belong to the same subset if and only if they belong to the same 
state cycle in the transition graph of N. 

Theorem 9. The set of state-cycle partitions associated with the set 
of locally balanced cycles having n delays and a switching element of 
order k properly includes the set of state-cycle partitions associated with 
any collection of locally balanced cycles having n delays and switching 
elements properly of order k' < k. 

Let a pair be called unbalanced if ~2j = E2i+l. Starting from the 
normally oriented n-input switch any n-input switch can be produced 
by unbalancing selected pairs after carrying out a properly chosen set 
of inversions. Using this fact, Theorem 10 and its corollary extend 
the results of Theorem 9 to every input-free cycle with one switch. 

Theorem 10. The set of state cycles for a given input-free cycle with 
one switch, El, of order k is a subset of the set of state cycles of an asso- 
ciated locally balanced cycle with a switch, E2, or order k' /> k. No 
locally balanced cycle with a switch of order less than k' includes, as a 
subset, the set of state cycles of the cycle with switch El. 
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Corollary. The set of state-cycle partitions associated with the set 
of input-free net cycles each having n delays and one switch of order le 
properly includes the set of state-cycle partitions associated with any 
collection of input-free net cycles each having n delays and one switch 
properly of order k' < k. 

Let a net cycle of order k be defined as a net cycle whose normal 
form contains at least one switch of order k and contains no switch 
properly of order k' > k. Using this definition, Theorem 11 extends 
the results of the last two theorems to all input-free cycles. 

Theorem 11. The set of state-cycle partitions of the set of all n-delay 
input-free net cycles of order k properly includes the set of state-cycle 
partitions of any collection of n'-delay, n' ~ n, input-free net cycles 
of order k' < k. 

Intuitively, Theorem 11 says that  for input-free cycles, there is no 
upper limit of complexity c such that  the behavior of any given input- 
free cycle can be realized by some cycle of complexity c' < c. Here 
complexity is defined as a number pair (n, k), where n is the number 
of delays in the cycle, and k is the maximum of the numbers ki, 
j = 0, 1, . . . ,  n - 1, where kj is the number of delays in the cycle 
which feed back their outputs to delay j. 

We can look at this result in another way:  
Consider the case of an experimenter presented with a black box 

(cf. Moore's gedanken experiments (6)) about which he is given the 
following information : 

1. all elements in the box belong to a single input-free net cycle, 
2. the box has one output for each delay element inside, 
3. at any time the box can be set to an arbitrary "initial" net state 

and observed for as long as desired. 

Theorem 11 tells us that  there is a net with at most k feedback loops 
through each switch which will make the black box behave in a fashion 
impossible for any net with n' < n delays and k' < k feedback loops 
through each switch. That  is, for each level of complexity c = (n, k) 
there are input-free cycles of complexity c which can be distinguished 
by the experiment from any of complexity c' < c. Moreover, the set 
of behaviors possible for black boxes of complexity (n, k) properly 
includes the set of behaviors possible for boxes having n' < n delays 
and k' < k feedbacks to each switch. 

Theorem 12 in the next section makes direct use of Theorem 11 to 
prove the same statements for cycles with input. 
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5. CYCLES IN GENERAL 

The ob jec t  of this section will be to relate the behavior  of net .cycles  
in general to the behavior  of input-free net  cycles. The  basis of this 
relation is the na ture  of the  t ru th  table  of a switching element  in an 
arb i t ra ry  net cycle:  

Let  N~ be an n-delay net  cycle in normal f o r n i  having a total  of k 
dist inct  switch inputs  identified with elements  not belonging to N,,,  

tha t  is, net-cycle inputs.  The  t ru th  table of each switching element  in 
N< can be regarded as having a normal form with k a rgument  columns 
h(,, - . . ,  h,.._l corresponding to the k net-cycle inputs  and n a rgument  
cohunns p,, . . . ,  P,-1 corresponding to tile n net-cycle delay ou tputs .  
If a given switch in Nc has j < n inputs  identified with delay ou t pu t s  
d,o, . . . ,  d , . i  , of Nc then the t ru th  table o u t p u t  q( t )  will of course de- 
pend only upon t h e j  columns p~,, • • -, p~j_, of the n columns Po, • • ", P, , -a.  
Tha t  is, with respect  to the  n columns P0, " " ,  P,~_,, the normal  form 
of the t ru th  table  will be of order j .  Similarly, if the given switch has 
b < k net-cycle inputs  then q( t )  will depend only upon b columns 
h ..... . . - ,  h,,~_, of the k columns h 0 , . . . ,  h~.__l. Each switch in the net  
cycle, regardless of the number  of its inputs,  can thus be given a stand- 
ard t ru th  table with k 4- n a rgument  columns and one ou tpu t  column. 

Note  tha t  the k 4- n a rgument  columns of the t ruth  table of each 
switch in N,, are identical when they  are givon the order h0, - . . ,  h~_~, 
P0, " " ,  P,,-~. In the normal form of the net cycle N~, each delay in 
the cycle, d~, has its input  identified with the ou tpu t  of one of the 
switches, q,, in the cycle so that  d , ( t  + 1 ) =  q , ( t ) .  Furthermore ,  
p , ( l )  = d~( t ) .  If the n switch o u t p u t  cohimns are arranged in the (w(ler 
q,, _~, q,,, q,, • • -, q,,_,., at  the right of the k + n a rgument  columns the result 

TAm.E l lI . - - D e r i v e d  T r a n s i t i o n  Table j b r  a General  Cycle w i th  I n p u t .  

I (t) s (t) 

h.(t) ... hh._,(t) &(t) . . .  d,,_,(t) 
= p,, (t) = i ...... (t) 

0 • • • 0 
0 • , • 0 

0 . , .  0 

O ° " " O 

0 . . .  1 

1 - . -  1 

s(t + 1) 

d,,(t+l) . . .  d , , . , ( t+l)  
=q, ,_ j ( t )  = q , ,  ,_,(t) 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

~#~ ] ,11 " " " I~n--2 II 

f n -  1 , 1  ' ' " 6 r ~ - - 2 , 1  

~ n - - l , 2 " - - I  " ' " i ~ n - - 2 , 2 " - - /  

1 " " • 1 

1 . . .  l 

0 " " " 0 

1 . . .  1 

Ell_.|,2k+n-I - • • ~ n _ 2 , 2 X - # , ,  1 

t7 n .  1 , 2 ~ + r ~ _ _ l  . . .  E n _ 2 , 2 k + n  1 

0 " " • 1 0 " ' " 0 ~ n - - 1 , 2  . . . . .  ~ n / 2 , 2  '~ 
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is a t ransi t ion table where the transit ion from (d0(t), . - - ,  d,_i( t))  to 
(do(t -t- 1), . . . ,  dn_l(t -[- 1)) depends upon the value of the net-cycle 
input  s tate  (ho(t), . . . ,  hk_l(t)). 

Now fix a value, I0, for I ( t )  = ( h o ( t ) , . . . ,  hk-l(t)) and consider, 
in the derived transi t ion table for No, the 2 n rows having the given 
values for the a rguments  ho(t), . . . ,  hk_~(t). The 2" rows so selected 
const i tu te  the transi t ion table of an n-delay net  cycle Nr0 which has n 
switches in normal  form, each with n inputs. Of necessity, Nr0 is an 
input-free cycle in which the switch at  position ql has, for a rguments  
p o ( t ) , " . ,  p~-l(t),  an ou tpu t  qi(t) = ~i.~.2~+~, where x = the decimal 
equivalent  of the binary number  h0(t).2 k-~ -1 - - . . - t - h~ - - i ( t ) ' 2  ° and 
y = the decimal equivalent  of p0(t).2 "-~ + . . . - t - p , , - l ( t ) ' 2  °. T h a t  
is, a t  each position in N~0 we have a switch whose ou tpu t  for an argu- 
ment  (po(t), " . ,  p,~_l(t)) is s imply the value q~(t) given for the corre- 
sponding n a rgumen t  values of P0, • • ", P,~ in one of the selected 2 ~ rows. 
We see tha t  the effect on N~ of a given net-cycle input  s ta te  I0 is to 
select an n- input  switch at  each position in Nc, the result  being an 
n-delay input-free cycle N~0. If I ( t )  = Io then the behavior of the 
cycle N~ for tha t  one m o m e n t  of t ime will be exact ly tha t  of N ,  0. 

LOGICAL NET Nc TRANSITION GRAPH Gio 
G OF Nc i o  ----(ho=O) 

ho ho do dt qo 
0 0 0 0 ~ l° 
o o ,  , o D  

I 0 0 I.t 0 I 
0 I I I I 2 1 ~ 2  
I 0 0 I I ~ . , ~  I 
I 0 I 0 
I I 0 , / . o ~ . / / 3  ~ / t 3  
I I I 0 Io_--_(ho=O) 

.[.i ----l(ho= I ) 

FIG. 8. An example of the selection of G~(t) by the input-state [(t). 

The impor tance  of the preceding observation lies in the  relation 
between the  t ransi t ion graphs of the various N~(t) and the transi t ion 
graph of the  cycle Nc. Let  G be the transi t ion graph of Nc and let 
the  2 k possible net-cycle input  s tates  of N~, (h0, . . . ,  h,_~), be labelled 
I0, I1, . . . ,  12,-~. Let  G, i be the subgraph of G obtained by retaining 
all of the vertices of G and only the edges of G labelled I j  (see Section 2). 
Then  G~ is exact ly the transi t ion graph of the net  cycle Nrj, the input-  
free net  cycle selected when I ( t )  = I j .  Conversely,  if the 2 k graphs 
G,j, j = 0, - . . ,  2 k -- 1 are given, then  the graph G can be constructed.  
This is done by simply superposing all the graphs G, i so tha t  vertices 
with the  same label are identified and each edge for each G,~ appears in 
the result, G, connect ing the  same vertices. In the  process of forming 
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G from the G~; many  of the properties common to all the Grj will 
reappear as properties of G. 

In the special case tha t  a subgraph G1~ of the transit ion graph (; 
consists just  of state cycles, it can be conveniently represented by an 
element  of the group of permutat ions  on 2" elements. To do this we 
make use of the fact tha t  any pernmtat ion  can be given by the product  
of a set of disjoint circular permuta t ions :  Let C~ be the i ~ state cycle 
of Grj (under some arbi trary ordering). Let s,.o, s,,1, • • ", s~,,,, be the net 
states belonging to C~ ordered so that  s, , ,+, succeeds s~,~, (and s,:,,, suc- 
ceeds s,.,,) in Gzi. The circular permuta t ion  (s,.o, s,,1, . . . ,  s,.,,,) repre- 
sents the state cycle C~ and, thus, the group element 

g j  = (5"0,0, SO, l ,  " "  " ,  SO,no)(Sl,O~, " ' ' ,  S l , n l )  " ' "  (Sv ,o ,  " "  " ,  S ....... ) 

represents Urn. Note that ,  if the state cycles C~ are normal state cycles, 
the operation of inversion on the pair of states s2h and s2h+l can be 
represented by nmlt iplying g~ on the left by the transposition (s.,~, s2h+l). 
Thus,  if the switch in a locally balanced cycle is obtained by inversions 
on pairs ho, hi, • • -, h~ of a normally oriented switch, the resulting transi- 
tion graph Gzj will be represented by the group element 

where gj represents a transit ion graph consisting j u s t  of normal state 
cycles. 

If G is the transit ion graph of a net  cycle N~ with input  and if each 
subgraph Grj of G consists just  of state cycles, then given an input- 
state sequence of period m the resulting net-state period of N¢ can be 
deternfined by means of the group representation. This is accom- 
plished by using the graphs Gr(o,, G I ( , ,  . . ' ,  G 1 o . - ,  specified by input  
states I(0),  I ( 1 ) , . . . , I ( m - 1 ) ,  where I ( t ) =  I ( j )  if and only if 
t = j mod m, j = 0, . . - , m -  1. If g~(, is the group element  corre- 
sponding to Gz(t), then the net-state period will be a divisor of the 
product  m . r o ,  where ra is the order of the group element 

g = gr(o)'gr(x) " "  g 1 ( m - - 1 ) .  

As a more general example of the way properties of the G~j reappear 
in G, Theorem 11 will be applied to net  cycles in general. First, the 
definition of a cycle of order r (given in Section 4) must  be extended 
appropria te ly:  Let E1 be an arbi trary switching element with b = n + k  
inputs.  Let n of these inputs,  Po, " " ,  P,,-1 be identified with the out- 
puts  of elements belonging to a cycle N ,  Let k of the inputs  h0, • • . ,  hk_l 
be identified with the ou tpu ts  of elements not  belonging to N~. El  will 
be said to be of order r w.r . t ,  a cycle N~ if, ignoring the a rgument  columns 
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h0, - " ,  hk-1, it is of order  r when just  columns P0, " " ,  P,,-i are con- 
sidered. A net  cycle No, with or wi thout  net-cycle inputs,  will be an 
(n, r)-cycle just  in case the normal  form of the cycle contains exact ly 
n delays, at  least one switch of order  r w.r.t, the cycle N,, and no 
switches of proper order  r '  > r w.r.t, the cycle. An (n, r)-cycle will, 
in effect, have no switch which receives more than  r dist inct  feedbacks 
from delays in the  cycle. 

Theorem 12. The set of s tate-cycle part i t ions of the set of all (n, r)- 
cycles properly  includes the set of s tate-cycle part i t ions of any  collection 
of (n', r ' )-cycles with n' ~< n, r '  < r. 

Proof: 
1. In order  to apply  Theorem 11 to an a rb i t ra ry  net  cycle, No, of 

order  r, consider first the  t ransi t ion graph Grj of No. Each Grj will be 
the  t ransi t ion graph of an input-free cycle N~ i of order  r (since the 
switches of N~j cannot  have any  cycle feedbacks not  present  in No). 
T h u s  each G, i will be subject  to Theorem 11 as applied to input-free 
net  cycles of order  r. The  result  will be tha t  each Grj can satisfy the 
following three conditions : (1.1) G,j  consists just  of disjoint s tate  cycles; 
(1.2) All normal  s ta te  cycles with more than  n - r + 1 ones are present  
in Grs (all s tates  of a given normal  cycle have the same number  of ones 
in their  coded form;  when this number  is i the normal  s tate  cycle will 
be said to contain  i ones - - see  proof of Theorem 9 for exact  discussion ) ; 
and (1.3) One normal s tate  cycle with n - r + 1 ones is not  present  
in Gri. 

2. I t  follows from step (1) and the discussion preceding this theorem 
tha t  there is a cycle Nc of order  r with the following propert ies for its 
t ransi t ion graph G: (2.1) All subgraphs G~ i of G consist only of disjoint 
s ta te  cycles ; (2.2) For each s ta te  s with i > n -- r + 1 digits equal to 1 
there is a unique s ta te  s' with i digits equal to 1 which succeeds s no 
m a t t e r  what  the  input  s tate  I ( t )  is. The  cycle of states so de termined 
has n states, or a divisor thereof, as e lements ;  (2.3) There  is a s tate  
So with i0 = n - r + 1 digits equal to 1 which, for some input  s tate  I0, 
has a successor s tate  s'0 with i ,  -- 1 digits equal to 1. The  state  cycle 
to which so belongs has no > n elements.  

3. Using the state-cycle part i t ion (see the definition preceding 
Theorem 9 - -no t ing  tha t  a s ta te  cycle in the transi t ion graph is defined 
analogously to a net  cycle in a logical net) properties (2.1)-(2.3) can 
be res ta ted :  (3.1) The  state-cycle part i t ion of G contains no subset of 
e lements  not  belonging to a s tate  cycle ; (3.2) Each net  s ta te  with more 
than  n - r + 1 digits equal to 1 belongs to a subset of the  part i t ion 
which contains exact ly n states or a divisor thereof;  (3.3) Some net  
s ta te  with n - r + 1 digits equal to 1 belongs to a subset  with more 
than  n states. 
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4. For an n-delay cycle N',. of order  r' < r no derived transit ion 
graph G'rj can satisfy all three condit ions (1.1)--(1.3) tha t  each (; i ,  
satisfies (1)y Theorem 11). Hence no n-delay net  cycle of order  r' -~ r 
can have a transi t ion graph satisfying the condit ions (2.1)-(2.,I). Thus,  
in turn,  no n-delay net-cycle of order  r' < r can exhibit  the s tate-cycle 
part i t ion of step (3). 

5. The remainder  of the proof follows the a rgument  of step (12) of 
Theorem 11. 

Theorem 12 is the counte rpar t  of Theorem 11 for a rb i t ra ry  cycles 
with input.  In tui t ively  it says tha t  there is no level of complexi ty  c 
such tha t  any  behavior  possible for a cycle can be realized by a cycle of 
complexi ty  c' < c (of. the second question asked at  the beginning of 
Section 1). 

Theorem 12 can be in terpreted in Moore 's  f ramework in much the 
same way  Theorem 11 was. Let  Bj(n ,  k) be a black box having the 
following propert ies:  (1) n observable ou tpu ts  each of which is a delay 
e lement  ou tpu t  ; (2) k inputs  (net inputs) whose states at t = 0, 1, 2, • - • 
are specified by the observer;  (3) an a rb i t ra ry  number  of elements in 
the box all belonging to one and the same (n, r)-cycle. 

The  set of behaviors possible for the set of all B, (n ,  k) which contain 
an (*~0, ro)-cycle properly includes the set of behaviors possible for any  
collection of Bj (n ,  k) which contain an (n~, r~)-cycle such tha t  n~ ~< no 
and r, < r0. In o ther  words, no cycle with at  most  n delays or ]e 
inputs  and less than  r feedbacks to each switch can imitate  the behavior 
of par t icular  cycles with n delays, k inputs  and r feedbacks to one or 
more switches. 

The results of Sections 4 and 5 lend strong support  to the following 
stronger  conjecture  : 

For any  (n, r) there is some t ransformat ion  not realized by any net  
containing only (n, r)-cycles. 

In fact it should be possible to const ruct  a latt ice of behaviorial trans- 
formations defined as follows: Let  N(,,.~) be the set of all logical nets  
containing only (n, r) cycles. With  each logical net  in N(,~.~) will be 
associated a t ransformat ion which gives the net-s ta te  sequence pro- 
duced by each input-s ta te  sequence. Let  B(,,.,.) be the set of t ransforma-  
tions associated with the set N(,,.,). The lattice should satisfy the 
following condit ions:  (1) B ~ . ,  properly includes B(,,.,,) if n' .< n and 
r' ~< r or if n'  ~< n and r'  < r;  (2) g.l.b. ~B(~,.~,~, B(~.~.~)-] = B( ........ , 
where *z0 = rain (n~, n2) and r, = min (rl, r=); (3) l.u.b. [-B(,,,.~,, 
Bu,.,~)~ = B(,,,,r~) where na = max (n~, n.~) and ra = m a x  ( r l ,  r~). 

I t  seems tha t  the interrelat ions between periodic input  and net-s ta te  
sequences, net  cycles, s tate  cycles, and permuta t ion  cycles, as sketched 
in this paper, could provide a basis for the proof of this conjecture.  
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