CYCLES IN LOGICAL NETS*

BY
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ABSTRACT

This paper investigates the influence of cycles in a logical net upon the complexity
of its behavior. The investigation is mainly concerned with two questions:

1. A logical net with a periodic input sequence produces a periodic output
sequence; how is the spectrum of periodic outputs related to the level of cycle
complexity?

2. Is there a level of complexity ¢ (suitably defined) such that any behavior
possible for a fixed logical net can be realized by a logical net constructed only of
cycles of complexity ¢’ € ¢? The first and more difficult question is fully answered
only in the case of nets constructed of cycles having a feedback coefficient r = 1
(suitably defined). The second question is answered in the negative for individual
cycles and it is conjectured that a similar answer holds for nets in general.

1. INTRODUCTION

Cycles in a logical net in general have a profound effect upon the
net’s behavior. This paper investigates the relation between the com-
plexity of such cycles and the complexity of the behavior that results.
Much of the investigation is concerned with two questions:

1. A logical net with a periodic input sequence produces a periodic
output sequence ; how is the spectrum of periodic outputs related to the
level of cycle complexity ?

2. Is there a level of complexity ¢ (suitably defined) such that any
behavior possible for a fixed logical net can be realized by a logical
net constructed only of cycles of complexity ¢’ < ¢?

The first and more difficult question is fully answered only in the

case of nets constructed of cycles having a feedback coefficient 7 = 1
" (suitably defined); Theorem 3 provides the answer for this case. The
final theorem of the paper leaves the second question still unanswered
for nets in general, but provides the following answer for individual
cycles: If we consider the set C of all cycles having »’ < » delays and
a feedback coefficient #’ < 7, then there is a cycle having # delays, a
feedback coefficient 7, and a state transition diagram which cannot be
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realized by any cycle in C. Equating cycle complexity to the number
pair (', 7’), and defining an ordering (a lattice) such that (', #") < (n, )
just in case (0’ < mn, ' <r) or (w <mn, ¥ <r), we can answer the
second question in the negative for individual cycles.

The theorem last mentioned rests upon an interlocked sequence of
definitions, operations, and theorems leading from the simplest input-
free cycles to arbitrary cycles with input. The operations in particular
play a key part in the development; they provide a means of obtaining
information about state cycles in the state transition diagram of an
arbitrary net cycle in terms of the transition diagrams of simple input-
free cycles. Aside from this role, these operations have application
in a wide range of problems and questions concerning the relation of
cycle complexity to complexity of behavior. Two simple examples of
such applications are given at convenient places in the development ;
one application is to a conjecture of Burks and Wang (1)t and the other
is to a problem investigated by de Bruijn (3).

The development proceeds in the following stages:

Section 2 defines the term “‘cycle’” as used in this paper and shows
the existence of a normal form for cycles. Intuitively, a cycle with =
delays has a normal form in which there are also exactly # switches, with
the output of the j* delay going to the jth switch (and perhaps others
if the cycle is complex) which in turn acts as input to the (7 + 1)t de-
lay (modulo n). This normal form later makes possible a relatively
simple definition of the order of a net cycle (the feedback coefficient
mentioned earlier) and considerably simplifies the proofs by drastically
reducing the number of cases and variations to be considered.

Section 3 considers the effect of periodic input upon the behavior of
nets in which all cycles are of order 1 (each delay in the normal form
of each cycle acts as input to exactly one switch in that cycle). This
part of the investigation was motivated by the following consideration :
If it could be shown that cycles only serve to provide logical nets with
memories of various recycling times, then it would be possible to ac-
complish this function by means of cycles of order 1 (“simple cycles”).
Under such conditions there would be little need to consider cycle com-
plexity further except insofar as to show how to reduce the complex
cycle to an equivalent simple cycle. In fact this conjecture proves to be
untrue as is shown in a Corollary to Theorem 3. Theorem 3, besides
giving a complete description of the output spectra for nets composed
of simple cycles, shows that no such net can realize the behavior of a
2-delay cycle of order 2. Section 3 concludes by showing that a par-
ticular case of a conjecture of Burks and Wang (1) is true.

The sequence of theorems in Section 4 prepares the way for the
results given in the last section. Section 4 begins by considering input-

2 The boldface numbers in parentheses refer to the references appended to this paper.
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free simple cycles with one switch and proceeds step-by-step to the
general input-free cycle. At each level an operation is developed which
yields information about the state transition diagrams of cycles at the
next level in terms of properties established for the given level. That is,
each theorem (with the exception of Theorem 8) provides information
which when combined with the appropriate operation yields informa-
tion appropriate to the next step. In Section 5 the results for input-
free cycles are extended to the case of the general cycle with input,
yielding the result (Theorem 12) mentioned earlier. This interlocking
sequence of definitions and operations leading from input-free simple
cycles to the general cycle with input can be summarized as shown in

Table I (the reader is referred to context for exact definitions).

Type of Net Cycle

(1) simple cycle
without input

(2) locally bal-
anced cycle

(3) input-free net
cycle with one
switch

(4) general input-
free net cycle

(5) general net
cycle with
input

(6) logical nets in
general

TABLE .

Delinitions Providing for
Extension to
Next Level

locally balanced switch;
derived transition table;
normal state cycle
order of switch

normal form of net cycle;

derived transition table for
normal form

constant input subgraphs,
G1,, of transition graph G

rank of net-cycle

Operations Generating
Extension to
Next Level

inversion

unbalancing

finite induction on number
of switches in normal form
of net cycle (listing possible
effects of added switches
on derived transition table)
selection operation of in-
put-state I(¢) (selects Gy,
from G).

cascading of net cycles and
net-cycle nets

Because of the way in which a net cycle is defined, cach element in a

net can belong to at most one net cycle.

It follows from this that the

cycles in a logical net can be ranked and therefore that the cascading
operation is sufficient to generate any logical net (cf. Burks-Wang (1)

and Section 2 of the present paper).

Hence, row (6) was added to the

table although the present paper does not specifically consider the case
(except for simple cycles in Section 3).
In Table I, the class of all net cycles of a given type properly in-

cludes preceding types of net cycle.

Generally, the operations pre-

sented in the table and discussed throughout the paper arce useful
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in computing the behavior of particular net cycles as well as in proving
theorems about the various types of net cycle.

In Section 4, Theorem 8 provides a constructive solution in terms of
input-free locally balanced cycles of a problem investigated by de
Bruijn (3). The proof illustrates the use of the operations just sum-
marized in exploring questions other than the two posed at the outset.
In Section 5, preceding Theorem 12, a method is given for computing the
periodic input/periodic output relation of any given backwards de-
terministic cycle. The computation makes use of the properties of a
related set of input-free locally balanced cycles. The paper concludes
with a conjecture that the result of the final theorem holds for nets in
general ; that is, it is conjectured that the answer to the second question
asked earlier is negative.

2, UNDERLYING CONCEPTS

The logical nets considered in this paper will be well-formed logical
nets, essentially as defined by Burks and Wang in Part 2.3 of their
paper (1). The nets are based upon a sct of primitives consisting of a
delay element and an infinite class of switching elements. Terminology,
except where explicit definitions are given, will be that of Burks and
Wang. The state transition graph will be used as a means of com-
pactly picturing the behavior of a logical net. E. F. Moore's conven-
tions (6) will be used except that the output associated with each net
state will not in general be indicated.

As indicated in the introduction, the purpose of this paper will be to
investigate the role of cycles in logical nets. The exact definition of
cycle proceeds from the concept of one element of a net driving another.
An element E, directly drives an element E,, £, d E,, if and only if the
output of F; is connected to one of the inputs of Es. A sequence of
elements Fy, ---, F, is a drive sequence from F, to F, if and only if
F,dF;, for j=1,---,n — 1. An element E, drives an element
E,, E.D E,, if and only if there is a drive sequence from E; to E..
Now, an element E; belongs to a cycle if and only if £, D E,. This
cycle consists of the set of all elements, E;, such that both E; D E; and
E; D E,. Or, more formally, a set of elements, C, is a ¢ycle if and only
if, forall E;, E;in C, (1) E; D E;and E; D E, and (2) no element of the
net not in € satisties condition (1). A set of elements, (', is a subcycle
if and only if, for all E,, E;in C’, (1) E; D E; and E; D E; and (2) for
each relation E£; D E; of (1) all elements of the defining drive sequence
are elements of C’. It is an immediate consequence of these definitions
that each element of a net belongs to at most one cycle, although it
may belong to several subcycles.

Note that the cycles in a well-formed net can be ranked as follows:
A cycle is of rank O if none of its inputs is driven by an element of an-
other cycle. A cycle is of rank 7 if at least one of its inputs is driven
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by an element of another cycle of rank » — 1 and none of its inputs is
driven by elements of other cycles of rank greater than » — 1.

Any cycle can be reduced to a much simpler normal form: if the
cycle has n delays then there is an equivalent normal form which has
at most n switches, so arranged that the output of delay j goes to switch

NET INPUTS:
ho hy hy hy
| L - PN
AT |
_________ —f —— | |
) CYCLE
¥ | L rank 1 -
| |
I A
I L. sUscveLE || = pELAY
:_ _J >—O>— SWITCH
— — CYCLE, RANK 0 —— ——
r - F~~7] ENCLOSES
: | ! __ | CYCLE
l —.
IL CYCLE | "1 ENCLOSES
RANK O L_._J SUBCYCLE

F1G. 1. A logical net with cycles marked.

7 (and perhaps others) and the output of switch j acts as input to delay
7 + 1 (modulo #). To establish this normal form the following defini-
tions are required : A drive sequence in which all elements, other than
the first and last, are switches will be called a drive sequence of switches.
If there is at least one drive sequence of switches from an element E,
to an element E, it will be said that E, drives E, via switches, E, s E,.
The set of all switches belonging to drive sequences of switches from
E, to E, will be called the set of switches from E, to E,.

Let the set of delays belonging to a given cycle be ordered and
labelled Dy, D4, - -+, D._1. Since we are dealing with well-formed nets
and since each delay has but one input, there must be at most one
switch .S; which directly drives delay D;.  If Dj_i(moa ») 8 D;simply add
a new input to S; with the proviso that the output of the switch is to
be independent of this new input (that is, the output of the switch is
still uniquely determined by the inputs initially given). By connecting
the output of D;_1(moa ») to this new input we have formally the result
D;_i(mea nys D;. Let this be done for allj,j =0,1, - -+, n — 1.

For each j, consider all D; in the cycle such that D;s D; (one such
D; will now be D;_i(mod »)). Among all the switches belonging to one
or more of the sets of switches from the {D;} to D; there will be a total



Sept., 1060.] CycLes IN LocicalL NETS 207

of k switch inputs not identified with the output of any other switch in
these sets or with the outputs of the {D.}. It can easily be seen that
each assignment of states to these & switch inputs uniquely determines
the input state of D; when the output state of each D; driving D; via
switches is given. Thus, assuming that there are m such D, we can
replace all of the aforementioned switches by a single (k£ + m) input
switch. Of the inputs to this new switch, £ will be identified as inputs
to the cycle corresponding to the k selected inputs of the given switches.
The other m inputs will be connected to the outputs of the m delays D..
The output of the new switch will be connected to the input of D,.
Once this is done for each D;, the normal form of the cycle results.

It is an immediate consequence of the construction method that the
normal form of any cycle with z delays will have no more than zswitches.
Furthermore, each cycle input (the net inputs of a cycle when it is taken
as the whole net) of the original cycle will drive via a switch exactly
the same delays in the normal form as in the original form. Finally,
at any time {, the input and output state of each delay in the normal
form will be that of the same delay in the original form.

gp{t) 2fold, (1)) golt) = fo(d,(1))

F1G. 2. A cycle and its normal form.

3. SIMPLE CYCLES

A hint of the role of cycles in logical nets comes from the following
observation : For a net with # delays and no cycles, the net state at time
¢t is totally determined by the sequence of input states from ¢ — n to
t — 1—the net state at time { is completely independent of any net
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state preceding time { — # 4+ 1. Thus a net without cycles can only
record the detection of an input event for at most # time-steps. In
other words, if a logical net is to have ‘“‘memory’ or storage it must
include cycles. ,

Upon noting the function of cycles as memory elements, one of the
first questions which presents itself is: Can the full range of logical net
behavior be obtained from nets using cycles of limited complexity?
More precisely, in the class of well formed nets, is there a proper subset,
defined in terms of some limitation on the cycles allowed, which can
exhibit the full range of logical net behavior? It is fairly obvious that
the number of cycles cannot be limited; this would contradict the
existence of nets with arbitrarily large numbers of memory units. A
possible first step would be to consider nets using only cycles with
minimal feedback, that is, cycles with no proper subcycles. A cycle
of this type, which I will call a simple cycle, can be more directly defined
as a cycle in which each delay drives via switches exactly one other de-
lay in the cycle. The normal form of such cycles is particularly simple
(see Fig. 3).

An-1

FiG. 3. Normal form of simple cycle.

The conjecture, then, with respect to simple cycles would be that for
each logical net there is a net with, at most, simple cycles which has
the same behavior. The conjecture is plausible on the view that the
simple cycles provide| ‘delay line” or “‘reverberatory” storage of various
periods while the rest of the net provides encoding, switching, decoding,
and other logical operations. The following three theorems show that
this conjecture is in fact false. The last theorem of the section, Theorem
3, shows a good deal more than this— for any net composed of simple
cycles, it characterizes the spectrum of net state periods resulting from
periodic input sequences.

Theorem 1. 1f the sequence of input states of a simple cycle has a
proper period m and the simple cycle has # delay elements, then the
sequence of net states of the cycle has a proper period 2 l.c.m. (m, n)
or a divisor thereof.
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Proof outline?

1. Consider a particular delay, <. Let d.(¢) be the state of this delay
at time ¢ If d.(t,) = d:(tz) and if the input sequence I(¢; + 1),
I(¢, 4+ 2), ---, I(t, + k) is identical to the input sequence I(¢, + 1),
-+, I(ty + k) for some k& = jn, then d;(¢t, + k) = d.:(i, + k). (Con-
sideration shows that this statement is not true in general for £ = jn.)
Under the same conditions if d.(t;)) = 1 — d;(¢:) then d.(t, + k)
= 1 - di(tz + k).

2. The input sequence repeats every m steps by hypothesis. Thus,
for £ = jn, the input sequence I(t; + 1), ---, I(t; + k) is identical to
the sequence I(¢{y + k4 1), ---, I(¢t; + 2k) for j such that &k = jn
= Lc.m. (m, n).

3. Since d;(t) can take on only two values, we must have by (1)
and (2) either

d:(t) = d:{t; + lL.c.m. (m, n))
or

di(t) =1 —d:(t + Lem. (m, n)) = d.(t + 2 Leam. (m, n)).
Thus, for p = 2 L.e.m. (m, #), we must have
db(h) = di(tl +]p) for ] = (), 1, 2, et

4. Step (3) holds for each delay, hence the net state sequence must
repeat with period p.

r - T T
| 1 :
: | N.C.-NET : |

FROM !
P ~ at08 L—m—e——d

I16. 4. An n.eenet,

In nets constructed with more than one simple cycle, the simiple
cycles can be separated by subnets having no cycles. The following
definitions are intended to give a precise interpretation to this state-
ment: A drive sequence from an element F; to an element F, will be

3 At the suggestion of the JOURNAL reviewers, the proofs of this theorem and of Theorems
5,7, 8,9, 10 and 11 have been omitted. They may be found in the microfilm edition of the
author’s thesis, “Cycles in Logical Nets,”” Ph.. dissertation, 1959, The University of Michigan,
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called an #n.c.-drive sequence if none of the elements in the sequence
other than the first and last, belongs to a cycle. A set of elements, 4,
n.c.-drives a set of elements, B, if there is at least one n.c.-drive se-
quence from some element of 4 to some element of B. The net con-
sisting of all elements, other than elements of 4 and B, belonging to
n.c.-drive sequences from 4 to B is the n.c.-net from A to B.

Theorem 2. 1If the sequence of input states to a net without cycles
(for example, an n.c.-net) has a proper period m, then the net state
sequence of the net has a proper period m or a divisor thereof.

Proof:

1. In order to simplify the proof let each element in the net without
cycles be given a rank as follows: (1.1) if all the inputs of the element
are net inputs of the given net, its rank is zero; (1.2) if an input of the
element is identified with the output of an element of rank » — 1, and
no input is identified with the output of an element of rank higher than
r — 1, then the element is of rank 7. Since an n.c.-net contains no
cycles each element has a unique rank.

2. Now, the states of the inputs of each element of rank zero must
repeat with period m since these states are merely components of the
net input state. Therefore, since the output state of a switch is uniquely
determined by the set of input states, the output state of each switch
of rank zero repeats every m units of time. The switch may, of course,
repeat its output state more frequently ; for example, the switch output
state may be 1 for any input argument, in which case its output state
would repeat with period p = 1. Thus the output state sequence of a
switch of rank zero has a period m or a divisor thereof. It follows
directly from the delay equation that the output state of a delay of
rank zero repeats every m units of time.

3. If the output state of each element of rank »’ < r repeats with
period m, then, by the same observations as in the case of rank zero,
the output state of an element of rank 7 repeats with period m. Thus,
by induction, the output state of any element of a net without cycles
repeats every # units of time. Hence, the net state sequence of a
net without cycles has a proper period m or a divisor thereof.

We can now proceed to the general case with respect to the conjec-
ture mentioned at the outset of this section : the case of nets in which all
the cycles are simple cycles.

Theorem 3. A net in which all of the cycles are simple, having n,, - - -, n,
delay elements, respectively, with a sequence of input states of proper pe-
riod m, will have a net state sequence of period 27t l.c.m. (m, n,, - - -, ny),

where 7, is the maximum of the cycle ranks.
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Proof:

1. To begin with, note that every element of a net, NV, is driven by
one or more of the net inputs of N, except those elements belonging to a
cycle having no cycle inputs (that is, the cycle, considered as a net,
has no net inputs).

2. Let A4, be the set of elements satisfying the following two condi-
tions: (2.1) at least one input of the element is a net input of N, (2.2)
the clement does not belong to a cycle. Let C be the set of elements
belonging to a given cycle of rank 0 (see Section 2). Any element
driving € but not in C must be driven by an element of 4, because ¢
is of rank 0 and hence no element belonging to a cycle can drive an
element of C. Let P be the net consisting of the n.c.-net from A4, to ¢
together with the elements of 4,. The net includes all elements of V
driving cycle inputs of C. Since the net inputs of P are just the net
inputs of NV, the net state sequence of P must be of period m by Theorem
2. Thus the input state sequence of the cycle inputs to C must be of
period m. Since C is a simple cycle the results of Theorem 1 apply—
the net state sequence of C has a proper period 2 l.c.m. (m, n), or a
divisor thereof, where # is the number of delays belonging to C.

3. Now, define inductively a set of nets N, forj = — 1,0, 1, -« 7y,
where 7, is the maximal rank of the cycles in the net N. The net N;
consists of the following elements with their inputs identified as in NV
(3.1) all elements of N;_; (where N_, is the set 4,); (3.2) all elements
belonging to n.c.-nets from N;_; to cycles of rank 7; and (3.3) all ele-
ments belonging to cycles of rank ;.

4. Consider the net N,. If the k, simple cycles in N, have n,, - - -,
nio—1 delays, respectively, then as shown above, the 7t cycle will have a
net state sequence of period 2 L.e.m. (m, n,;),7 =0, ---, kg — 1. Each
associated P net will have a net state period m. It follows directly
that the proper net state period of N, will be a divisor of

Le.m. (m, 2 le.m. (m, nq), - -+, 2 Le.m. (m, iy y))
= 2 l.em. (m, ny, - -, Mry_1).
5. Let no, -+ -, #ko—1, Mgy == * Mi—1, -+ *, M ;—1 be the number of de-
lays belonging, in order, to each of the simple cycles from rank 0 through
rank j.
6. Assume the net N;_, has a net state sequence of period p = 27
Lem. (m, no, - -+, #i;_1—1). By substituting N, ; for 4, and p for m

in step (2) we see that a cycle C; of rank j must have a net state sc-
quence of period

2Lean. (pym) = 2 Leam. (29 Leam. (m, oy -~ - s p1), 102)
= 27 Le.m. (m, no, - - -, Hi, o1, M)
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Applying the reasoning of step (4) we see then that the proper net state
period of N, will be a divisor of Le.m. (m, 27 Le.m. (m, ng, - - -, 1n4,1).
7. Thus by induction on j, the net N, when the input states repeat
with period m, will have a proper net state period which is a divisor of
p = 271 Lem. (m, #y, -+ -, me). Again, for reasons similar to those
noted at the end of Theorem 1, there exist combinations of switching
elements and cycles giving NV a net state sequence of proper period p.

Corollary. Let it be required that a net be in a chosen net state S,
if and only if the number of occurrences, p, of a distinguished input
state I, satisfies the equation p = O modj. (Simply, the net is required
to ‘“‘count,” modulo j, the occurrences of input state I,.) For nets in
which all cycles are simple, 7 must equal 2? for some positive integer b.
(Such nets can only “count’” modulo a power of 2.)

Proof:

Let the distinguished input state repeat with a proper period m.
Then, since the net is to be in a unique net state .S, for each j occurrences
of the distinguished input state, it must have a net state which repeats
with proper period p = jm for all m. Or, by Theorem 3,

p = jm = 20t Leam. (m, ny, - - -, Hi).

This equation can only hold for all m if j = 271 since if m is chosen
equal to k(l.c.m. (n,, - - -, #;)) the above equation reduces to jm = 2oty

The corollary shows that no net composed of simple cycles can, for
example, act as a ternary (base 3) counter. To do so it would have to
be in some distinguished state S, for every third occurrence of the dis-
tinguished input state I,. This condition holds a fortiori for a periodic
input sequence, whence we would require p = 0 mod 3, contradicting
the corollary. Since there exists a 2-delay logical net which can count
base 3, the corollary at once establishes the falsity of the conjecture
stated at the beginning of this section.

If this result is not surprising, it at least shows the oversimplification
present in the idea that the main function of cycles in a system is to
provide “memory’’ or storage of information. Here we have systems
with any number of cycles of arbitrary lengths (arbitrary recycling
times) which have a very limited range of behavior, not becausc we
restrict the complexity of the switching elements used, but because the
cycles are limited in the complexity of their feedback patterns.

The results here also show that a particular case of a conjecture of
Burks and Wang (1, p. 292) is true. The conjecture is: For any degree
d, there is some transformation not realized by any nect of degree d—
a net is of degree d if it contains at least once cycle of degree d and none



Sept., 1960.] CycLes 18 Locicar Ners 213

of higher degree; a cycle is of degree d if it contains d delays. Since
nets of degree 1 must be composed of simple cycles, we see that there are
transformations on periodic input-state sequences not accomplished by
any net of degree 1. By using periodic input as a tool one can often
prove theorems concerning a given class of nets which would be difficult
to prove in any other way.

4. INPUT-FREE CYCLES

The results of Section 3 show the behavior of a logical net to be
severely restricted if the complexity of the net cycles is sufficiently
limited. Moreover, the limitation on complexity need not concern the
number of cycles or the number of delays in a cycle, but only the number
of feedback loops (subcycles) per cycle. The effect of increasing the
number of feedback loops in a cycle thus becomes a salient point of the
study of cycles in logical nets.

The present section will start out by relating properties of the state-
transition graph to changes in fecdback in a class of input-free cycles
called locally balanced cycles. Just as cycles are important features of
net structure, so cycles in the transition graph are important to net
behavior. The two kinds of cycles will be termed net cycles and state
cycles, respectively. The relation between locally balanced cycles and
the resulting state cycles will be a key to the behavior of more general
net cycles.

d[) dl ce dn—z dnAI Ga
0 0 ce. 0 0 €)
9o ... 0 0 - 0 1 a
do d, dp- 0 0 - 1 0 .
0 0 M 1 1 €2
1 1 - 1 0 €on s
1 1 1 e
€2 = €)1

F16. 5. A locally balanced cycle and the truth table of its switch.

Locally balanced cycles can be defined in the following way: In
the truth table corresponding to a switching element let rows 25 and
2j4+1,forj=0,1, ---, 2«7t — 2, be called simply the j*t pasr. Let
the function values determined by the two arguments of the jt pair be
€:; and €544, respectively. A switching element will be called locally
balanced if e;; = ;4 for all pairs, j =0, 1, --. 2+ — 2 A locally
balanced cycle satisfies the following conditions:

1. One switching element occurs in the cycle and that clement is
locally balanced.
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2. There are # > 0 delay elements in the cycle. The output of
the switch is identified with the input of delay do. The output of delay
d; is identified with the input of delay ;1,7 = 0, ---, n — 2.

3. The switch has » inputs. The j* input of the switch (the jt»
column of the associated truth table) is identified with the output of
delay d;, 7 =0, ---, n — 1.

Theorem 4. The state-transition graph of any locally balanced cycle
consists only of disjoint cycles of states.

Proof:

1. Consider, at any given time {, the ordered n-tuple (po(t), ---,
pn—1(t)) of the states of the 7 inputs to the switch in a locally balanced
cycle. By the definition of a locally balanced cycle, this n-tuple is
identified with the ordered #n-tuple of delay output states at time ¢,
(do(t), -+, dor(t)). Thus each of the 2" net states of the cycle is
represented by the argument part of a line of the switching element
truth table.

2. If the net state of the cycle at ¢ is given by the jt* line of the truth
table, then the net state of the cycle at ¢t 4+ 1 is simply given by the
ordered n-tuple with e; as its first digit and the value of p.(t) as its
(¢ 4+ 1)t digit. That is,

(do(t + 1)! ) dn—l(t + 1)) = (Eﬁ pO(t)v T pn—2(t))

where the argument of line j has in effect been “‘shifted one to the right,”
¢; being “shifted in,” p,_.(¢) being “‘shifted out.” The truth table, thus
extended, becomes the derived transition table for the locally balanced
cycle (Table II).

TABLE 11.—The Derived Transition Table of a Locally Balanced Cycle.

s(* s+ 1)
dy(2) cer dn_s(t) oy (8) dy(t+1) di(¢+1) v dn(t+1)
=P0(t) I#"—2(t) =Pn—1 (t) =q(t) =P0(5) =pn-2(t)
0 P 1 0 €2 . 0 - 1
0 . 1 1 €3 0 N 1
1 . 1 0 €2n2 1 . 1
1 e 1 1 €22 1 A 1

* 5(2) is the net state of the cycle at time ¢£.
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3. Now, the jtr pair of the locally balanced switch gives risc to
a pair of successor n-tuples, s.;(t + 1) = (e;, po(t), -+ -, pa_2(t)) and
Seim1(t + 1) = (eajpr, po?), - -+, pu_e(t)). s2; and s.;, have identical
digits in the last # — 1 places by step (2); furthermore no other pair of
successors has the same ordered set of digits in the last » — 1 places.
The first digit of s,; is the binary complement of the first digit of s.;,,
since e;; = &1 by definition of a locally balanced switch. Therefore
the argument states of the j*" pair map into distinct n-tuples, s.; and
S2j+1, which occur nowhere else on the right of the derived transition
table (Table II). In other words, the derived transition table is a
1 — 1 mapping of the 2” net states onto themselves. Such a mapping
is a permutation on the net states and, by elementary group theory,
permutations can always be reduced to a product of disjoint permuta-
tion cycles. These permutation cycles correspond directly to disjoint
state cycles of the transition graph.

Note that the state-transition graph of an input-free cycle consists
only of disjoint state cycles just in case the cycle is backwards de-
terministic in the sense of Burks and Wang (1, p. 286). Using this fact,
and noting that e;; = €.;,; implies s,; = $.,,.1, we can restate Theorem 4
in a stronger form:

Theorem 4'. Let C be an n-delay cycle with one (arbitrarily chosen)
n-input switch which is connected just like the switch in a locally
balanced cycle. C will be backwards deterministic if and only if the
switch is locally balanced.

In what follows, a pair will be said to be normally oriented if €»; = (),
€201 = 1. A pair will be said to be tnversely oriented if es; = 1, €2,,1 = 0.
The simplest locally balanced cycles result when the pairs associated
with the switch are either all normally oriented or all inversely oriented.
When this is the case the output of the switch, ¢(¢), is independent of all
argument columns except the last, p,_;(¢). Thus in effect the cycle is
an input-free simple cycle. The next theorem gives some properties of
the state-transition graphs of these simplest locally balanced cycles.

Theorem 5. Let L be a locally balanced cycle with # delays. If all
the pairs of the switch are normally oriented, a state cycle with exactly
p states occurs if and only if p = 1 or, for p > 1, g.c.d. (p, n) = p.
There will be two state cycles with p = 1 and, for p > 1, there will be

2p — v’

My - state cycles, where p’ is the next number smaller than p

which is the length of a state cycle. If all the pairs of the switch are
inversely oriented, a state cycle with exactly p states occurs if and only
if g.cd. (p, 2n) = p and p does not divide n. The number of state
cycles having p elements is again given by #,,.
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The state cycles of the locally balanced cycle with a normally
oriented switch, which I will call normal state cycles, figure basically
in the present study. Part of the reason for this lies in the following
operation : an <nversion consists in changing a given pair of a locally
balanced switch from normally oriented to inversely oriented or vice
versa. The result of an inversion is a new locally balanced switch
produced from the given one. It follows directly from the definition
of a locally balanced switch that any locally balanced switch can be
transformed into any other by a succession of inversions. Thus, for
example, any locally balanced switch can be produced by using a suc-
cession of inversions on a normally oriented switch. The next five
theorems will explore the relations between normal state cycles, in-
versions, and the transition graphs of locally balanced cycles.

In the proofs, and at other points from here on, the state represented
by a given binary n-tuple will, where convenient, be labelled by the
decimal equivalent of the corresponding binary number. Thus
0,0, ---,0) becomes 0, (0, ---,0,1,0) becomes 2, and (1,1, ---, 1)
becomes 2» — 1.

Theorem 6. Let E, be the switching element of a locally balanced
cycle; let E, be the switching element derived from £, by an inversion
on the jt* pair, that is, on (es;, €2;11); and let s»; and s.;4, be the argu-
ments of the j*h pair. If s,; and s:;;+1 belong to different state cycles,
C1and Cy, in the transition graph with respect to E,, then the transition
graph with respect to E, will be the same as that for E, except that
and C, will be united into a single state cycle consisting exactly of all of
the states belonging to C; and C,. If s3; and ss;4+1 belong to the same
state cycle, C, in the transition graph with respect to Ei, then the
transition graph with respect to E, will be the same as that for £, except
that C will be separated into two disjoint state cycles which together
include all of the states belonging to C.

Proof:

The transition table for a locally balanced cycle, as derived from the
switching element’s truth table, is unchanged by an inversion except
for the lines corresponding to the inverted pair. Let s»; and ss;41 be
the left-hand entries of these two lines and s’y;, s's;41 their respective
successors (right-hand entries) before the inversion.  After the inversion
the successor of s,; will be s'5;,1 and the successor of ss;1 will be ss;.
From Theorem 4 one of two cases must hold for s,; and ss;41, either
they belong to different state cycles or else they belong to the same
state cycle.
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Case 1. ss;, S2541 belong to different state cycles Cy, C.

After the inversion the succession from s's; to sq; within (' is un-
changed, thus each element of C; appears in turn (since there were no
elements of C, between s;; and s'5; all are present in this succession).
However, the successor of s, is §2;1 which belongs to (. The succes-
sion from §'s;11 to S2;41 is undisturbed and every element of (' appears
in this succession. Finally the successor of 5.1 is s's; which completes
the new cycle (since we began the succession with s's;).  All elements
of C, and C, belong to the resulting state cycle.

Inversions Derived Transition Table Transition Graph
do di d g di d»
None - e —_— 0 )
. 0 0 0|e = 0|0 0
Pair 0 0 0 1lle=1/0 0 4 /\ /\. 6
parg 0 1 0 e=010 1 2 3
arl g 1 1lg=1/0 1 )
. 0 0le=0]1 0
Pair 2 1 0 1lle=1/1 0 | 7 Q 5
T 1 0 €5 = 0 1 1
Pair 3 11 tle=1]1 1

4 0e D 6
Pair 1 After inversion of pair 1 \ /
inverted derived transition table is 2 3
the same except e =1
and e = 0.
|

4o 0D 6
Pairs 1 and 2 After inversion of pairs \\__‘7

inverted 1 and 2 transition table is 3
the same except e = 1, /———.
e =0 e =1, and e = 0. | ZQ

FiG. 6. Effects of inversions on the transition graph of a locally balanced cycle.

Case 2. sij, S2541 belong to the same state cycle .

Let the segment of C from s.; through s,;,; be D, and the other
segment from ss;+1 through s;; be D,. The first element of D is §'s;
and the last sy;;,. After inversion the succession in D, is unchanged
but s's; becomes the successor of s5;;,. Thus D, becomes a state cycle.
Similarly D becomes another, disjoint, state cycle. The effect of the
inversion has heen to “pinch’ the original cycle in two at s.;, Saj00.
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Theorem 7. In any transition graph containing normal cycles, there
are at most two inversions which can, individually, connect a given
pair of normal cycles (C,, C;). There are no inversions which can
separate a given normal cycle into two state cycles.

The next theorem shows the application of the inversion operation
to the solution of a combinatorial problem earlier investigated and
solved by N. G. de Bruijn (3). The problem is to show, for any #,
that there is an ordered cycle of 2~ digits 0 or 1 such that the 2» possible
ordered sets of # consecutive digits of that cycle are all different. Logi-
cal nets which can generate such sequences are of interest for error-
correcting codes and for pseudo-random number generation. Theorem
8 not only proves the above statement, but in its proof (not included
here) also shows how to construct input-free locally balanced cycles
which, for any #, will generate such sequences as output.

Theorem §&. There is a locally balanced cycle having a transition graph
in which all 2» net states belong to a single state cycle; that is, the net
will have a net-state sequence of period 2.

The next theorem begins a direct investigation of the effect of
increasing the number of feedback loops in a cycle. The theorem
basically concerns input-free locally balanced cycles in which some of
the feedback loops to the switch have been omitted, that is, cycles in
which the switch receives £ < % inputs from the cycle.

Just before Theorem S it was noted that, in a locally balanced cycle,
use of a switch with all pairs normally oriented or all pairs inversely
oriented, in effect, converts the cycle to a simple cycle. This observa-
tion can now be generalized : A switching element will be said to be of
order kif and only if there are £ numbers, 0 < 7o < -+ < 4,y < — 1,
such that all arguments with the same values for p,, -, p,, de-
termine the same output value, ¢(¢) for the switch. If this is true for &
and for no k; < k the switch will be said to be properly of order k.
The output state, g(¢) of a switch properly of order % depends only on
the state of inputs p., - - -, pi; thus in a cycle the switch could be
replaced by a switch with £ < % inputs identified with delay outputs
diy -+ di ..

For a locally balanced switch, ¢,—; = # — 1 in the above definition.
This is the case because, in each pair determined by giving values to
Do, *cy Pu—z q() = €; when p,—y = 0 and ¢(#) = €;11 = &, when
pn.—1 = 1. That is, different values of p,_, give rise to different values
of g(¢). Using these facts, the definition of order can be recast for
locally balanced switches in terms of orientation of pairs: A locally
balanced switch is of order & if and only if there are £ — 1 numbers,
0 €4 < -+ <14_2 <n — 1, such that all pairs with the same values
for pi + -, pi, have the same orientation.
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TRUTH TABLE OF A LOGICAL NET WITH GIVEN SWITCH
SWITCH OF PROPER ORDER 2
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F1c. 7. A switch properly of order 2.

Theorem 9 will describe some of the changes occurring in the transi-
tion graph of a locally balanced cycle as the order of its switch is in-
creased (that is, as the amount of feedback in the cycle is increased).
The statement of this theorem as well as that of some succeeding
theorems can be considerably shortened by making the following defini-
tion : The state-cycle partition of a net N with »n delays is a partition of
the set of 2~ net states satisfying the following conditions:

1. One subset of the partition consists just of those states which
do not belong to a state cycle in the transition graph of V.

2. The remaining net states are separated into subsets such that two
states belong to the same subset if and only if they belong to the same
state cycle in the transition graph of M.

Theorem 9. The set of state-cycle partitions associated with the set
of locally balanced cycles having » delays and a switching element of
order k properly includes the set of state-cycle partitions associated with
any collection of locally balanced cycles having »# delays and switching
elements properly of order 2" < k.

Let a pair be called unbalanced if €.; = €;;.,. Starting from the
normally oriented #-input switch any #n-input switch can be produced
by unbalancing selected pairs after carrying out a properly chosen set
of inversions. Using this fact, Theorem 10 and its corollary extend
the results of Theorem 9 to every input-free cycle with one switch.

Theorem 10. The set of state cycles for a given input-free cycle with
one switch, E;, of order % is a subset of the set of state cycles of an asso-
ciated locally balanced cycle with a switch, E,, or order 2 > k. No
locally balanced cycle with a switch of order less than % includes, as a
subset, the set of state cycles of the cycle with switch E;.
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Corollary. The set of state-cycle partitions associated with the set
of input-free net cycles each having # delays and one switch of order k
properly includes the set of state-cycle partitions associated with any
collection of input-free net cycles each having # delays and one switch
properly of order &' < %.

Let a net cycle of order k be defined as a net cycle whose normal
form contains at least one switch of order 2 and contains no switch
properly of order 2 > k. Using this definition, Theorem 11 extends
the results of the last two theorems to all input-free cycles.

Theorem 11. The set of state-cycle partitions of the set of all #-delay
input-free net cycles of order % properly includes the set of state-cycle
partitions of any collection of #’-delay, #»’ < #, input-free net cycles
of order &' < k.

Intuitively, Theorem 11 says that for input-free cycles, there is no
upper limit of complexity ¢ such that the behavior of any given input-
free cycle can be realized by some cycle of complexity ¢’ < ¢. Here
complexity is defined as a number pair (%, k), where # is the number
of delays in the cycle, and % is the maximum of the numbers £;,
j=0,1,---,n — 1, where k; is the number of delays in the cycle
which feed back their outputs to delay j.

We can look at this result in another way:

Consider the case of an experimenter presented with a black box
(cf. Moore's gedanken experiments (6)) about which he is given the
following information :

1. all elements in the box belong to a single input-free net cycle,

2. the box has one output for each delay element inside,

3. at any time the box can be set to an arbitrary “initial”’ net state
and observed for as long as desired.

Theorem 11 tells us that there is a net with at most k feedback loops
through each switch which will make the black box behave in a fashion
impossible for any net with »’ < #n delays and %' < k feedback loops
through each switch. That is, for each level of complexity ¢ = (#, k)
there are input-free cycles of complexity ¢ which can be distinguished
by the experiment from any of complexity ¢’ < ¢. Moreover, the set
of behaviors possible for black boxes of complexity (%, k) properly
includes the set of behaviors possible for boxes having #’ < n delays
and k' < k feedbacks to each switch.

Theorem 12 in the next section makes direct use of Theorem 11 to
prove the same statements for cycles with input.
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5. CYCLES IN GENERAL

The object of this section will be to relate the behavior of net.cycles
in general to the behavior of input-free net cycles. The basis of this
relation is the nature of the truth table of a switching element in an
arbitrary net cycle:

Let N, be an n-delay net cycle in normal form having a total of %
distinct switch inputs identified with elements not belonging to N,
that is, net-cycle inputs. The truth table of each switching element in
N. can be regarded as having a normal form with & argument columns
ho, « -+, h_y corresponding to the k& net-cycle inputs and » argument
columns p,, - - -, p,_1 corresponding to the n net-cycle delay outputs.
If a given switch in N, has j < » inputs identified with delay outputs
diy + -+, d;, of N.then the truth table output ¢(¢) will of course de-
pend only upon the j columns p, - - -, pi,, of the # columns pg, -+ -, pa_i.
That is, with respect to the n columns pq, - -, p;,_,, the normal form
of the truth table will be of order j. Similarly, if the given switch has
b < k net-cycle inputs then ¢(¢) will depend only upon & columns
By =+ hy,, of the kB columns hy, ---, k1. FEach switch in the net
cycle, regardless of the number of its inputs, can thus be given a stand-
ard truth table with & 4+ # argument columns and one output column.

Note that the 2 4+ n argument columns of the truth table of each
switch in N, are identical when they are given the order iy, - -, Aoy,
Po, -+, Pai.  In the normal form of the net cycle N., each delay in
the cycle, d,, has its input identified with the output of one of the
switches, ¢, in the cycle so that d;(t + 1) = ¢.(¢). Furthermore,
p.(t) = d:(t). [f the n switch output columns are arranged in the order
Gty oy G1v * + - Gu—z at the right of the £ 4 7 argument columns the result

TasLe H1.—Derived Transition Table for a General Cycle with Inpul.

(1) s() s+ 1)

B oo (D) |do® e dua() d+D e D

=[)n(t) =/)n~-l<t) :(Invl(” :l]n..z(f)

0 e 0 0 v 0 €, 1,0 Tt €y—2.0

0 e 0 0 e 1 €11 Tt €p—2,1

0 cr 0 1 ct 1 €p1,2m1 e €2 2" -1

0 s 1 0 o 0 €n_1,2" Tt €p—nen

1 T 1 0 T 0 €1, 2k te €p—y 2k tnrl

1 < 1 1 o ] €, 1,‘2"+”A1 ce € 20Ty
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is a transition table where the transition from (do(¢), ---, d.—.({)) to
(do(t + 1), -+, d—1(t + 1)) depends upon the value of the net-cycle
input state (ho(2), - - -, hi_1(2)).

Now fix a value, I,, for I(t) = (he(t), ---, hi_1(t)) and consider,
in the derived transition table for N., the 2» rows having the given
values for the arguments ko(t), - - -, A_1(t). The 2 rows so selected
constitute the transition table of an #n-delay net cycle N;, which has »
switches in normal form, each with » inputs. Of necessity, Ny, is an
input-free cycle in which the switch at position ¢; has, for arguments
po(t), -+, pa_i(t), an output ¢;({) = €, 27+, where x = the decimal
equivalent of the binary number ho(f) 271 4 -+ 4 hy_1(£)-2° and
y = the decimal equivalent of py(t)-2»' 4 -+ 4 p,_:(¢)-2°. That
is, at each position in N;, we have a switch whose output for an argu-
ment (po(t), - -+, pa_1(t)) is simply the value ¢,(t) given for the corre-
sponding # argument values of p,, - - -, p, in one of the selected 2" rows.
We see that the effect on N, of a given net-cycle input state I, is to
select an #-input switch at each position in N, the result being an
n-delay input-free cycle Ny. If I(t) = I, then the behavior of the
cycle N, for that one moment of time will be exactly that of Ny,.

LOGICAL NET N¢ TRANSITION GRAPH Gy

G OF N¢ °

Lo =(ho =0)

=
o
¥
o

do di]| g0

1o

-——=l0000

0
0
!
)
0
0
l
|

—0o-0o|-0-0

Io= (ho=0)
L,=(hyzt)
Fi16. 8. An example of the selection of G by the input-state I(2).

The importance of the preceding observation lies in the relation
between the transition graphs of the various Ny, and the transition
graph of the cycle N.. Let G be the transition graph of N, and let
the 2% possible net-cycle input states of N., (%o, - - -, s_1), be labelled
I, I, +--, I, Let Gy be the subgraph of G obtained by retaining
all of the vertices of G and only the edges of G labelled I; (see Section 2).
Then Gy, is exactly the transition graph of the net cycle Ny;, the input-
free net cycle selected when I(t) = I;, Conversely, if the 2* graphs
Gr, 7 =0, .-, 2% — 1 are given, then the graph G can be constructed.
This is done by simply superposing all the graphs G;; so that vertices
with the same label are identified and each edge for each G;; appears in
the result, G, connecting the same vertices. In the process of forming
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G from the G;; many of the properties common to all the G, will
reappear as properties of G.

In the special case that a subgraph Gy, of the transition graph «
consists just of state cycles, it can be conveniently represented by an
element of the group of permutations on 2* elements. To do this we
make use of the fact that any permutation can be given by the product
of a set of disjoint circular permutations: Let C; be the ¢* state cycle

of G1; (under some arbitrary ordering). Lets, o, Si,1, - - -, Si.n, be the net
states belonging to C; ordered so that s, succeeds s;, (and s, suc-
ceeds s;,,) in G;;. The circular permutation (s, i1, - -+, Si..) repre-

sents the state cycle C; and, thus, the group clement
2= (So,00 S0, * 5 Sono) (S1o0y =y S1o) =0 (Seyoy 7y Suinl)

represents G;,. Note that, if the state cycles C; are normal state cycles,
the operation of inversion on the pair of states sy and s..: can be
represented by multiplying g; on the left by the transposition (s, Sany1).
Thus, if the switch in a locally balanced cycle is obtained by inversions
on pairs ky, k1, - - -, k. of a normally oriented switch, the resulting transi-
tion graph G;; will be represented by the group element

i = (SamSonr1) (SamSont1) - -+ (SonSons1) g

where g; represents a transition graph consisting just of normal state
cycles.

If G is the transition graph of a net cycle NV, with input and if each
subgraph Gr; of G consists just of state cycles, then given an input-
state sequence of period m the resulting net-state period of N, can be
determined by means of the group representation. This is accom-

plished by using the graphs G, Giy, -« -, Gronen specified by input
states 1(0), I(1), ---,I(m — 1), where I(t) = I(j) if and only if
t=jmodm, j =0, ---,m — 1. If g;., is the group element corre-

sponding to Gy, then the net-state period will be a divisor of the
product »-r,, where 7, is the order of the group element

g = Lgrm-8ray * 0 im—1-

As a more general example of the way properties of the G;; reappear
in G, Theorem 11 will be applied to net cycles in general. First, the
definition of a cycle of order » (given in Section 4) must be extended
appropriately: Let E, be an arbitrary switching element with b=n-+%
inputs. Let # of these inputs, pq, - - -, P.—1 be identified with the out-
puts of elements belonging to a cycle N.. Let %k of the inputs kq, - - -, Br_s
be identified with the outputs of elements not belonging to N.. E; will
be said to be of order r w.r.t. a cycle N, if, ignoring the argument columns
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ho, = -+, By—1, it is of order » when just columns p,, - - -, p.—; are con-
sidered. A net cycle N,, with or without net-cycle inputs, will be an
(n, r)-cycle just in case the normal form of the cycle contains exactly
n delays, at least one switch of order # w.r.t. the cycle N,, and no
switches of proper order 7' > r w.r.t. the cycle. An (n, r)-cycle will,
in effect, have no switch which receives more than 7 distinct feedbacks
from delays in the cycle.

Theorem 12. The set of stafe-cycle partitions of the set of all (n, #)-
cycles properly includes the set of state-cycle partitions of any collection
of (n', 7')-cycles with n’ < n, ¢’ < 7.

Proof:

1. In order to apply Theorem 11 to an arbitrary net cycle, V., of
order 7, consider first the transition graph G, of N.. Each G;; will be
the transition graph of an input-free cycle N;; of order r (since the
switches of N;; cannot have any cycle feedbacks not present in N.).
Thus each G;; will be subject to Theorem 11 as applied to input-free
net cycles of order r. The result will be that each G;; can satisfy the
following three conditions: (1.1) G, consists just of disjoint state cycles;
(1.2) All normal state cycles with more than # — » + 1 ones are present
in G;; (all states of a given normal cycle have the same number of ones
in their coded form; when this number is ¢ the normal state cycle will
be said to contain ¢ ones—see proof of Theorem 9 for exact discussion) ;
and (1.3) One normal state cycle with # — 7 + 1 ones is not present
in GIJ-.

2. It follows from step (1) and the discussion preceding this theorem
that there is a cycle N, of order 7 with the following properties for its
transition graph G: (2.1) All subgraphs G;; of G consist only of disjoint
state cycles; (2.2) For each state s with¢ > » — 7 4+ 1 digits equal to 1
there is a unique state s’ with ¢ digits equal to 1 which succeeds s no
matter what the input state I(¢) is. The cycle of states so determined
has » states, or a divisor thereof, as elements; (2.3) There is a state
so with ¢, = n — » 4 1 digits equal to 1 which, for some input state I,
has a successor state s’y with 4, — 1 digits equal to 1. The state cycle
to which s, belongs has #, > # elements.

3. Using the state-cycle partition (see the definition preceding
Theorem 9—mnoting that a state cycle in the transition graph is defined
analogously to a net cycle in a logical net) properties (2.1)-(2.3) can
be restated: (3.1) The state-cycle partition of G contains no subset of
elements not belonging to a state cycle; (3.2) Each net state with more
than » — » 4 1 digits equal to 1 belongs to a subset of the partition
which contains exactly # states or a divisor thereof; (3.3) Some net
state with » — 7 4+ 1 digits equal to 1 belongs to a subset with more
than #» states.
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4. For an n-delay cycle N, of order *' < v no derived transition
graph G';; can satisfy all three conditions (1.1)-(1.3) that cach Gy,
satisfics (by Theorem 11). Hence no n-delay net cycle of order v -2 7
can have a transition graph satisfying the conditions (2.1)—(2.3). Thus,
in turn, no n-delay net-cycle of order ¥ < 7 can exhibit the state-cycle
partition of step (3).

5. The remainder of the proof follows the argument of step (12) of
Theorem 11. :

Theorem 12 is the counterpart of Theorem 11 for arbitrary cycles
with input. Intuitively it says that there is no level of complexity ¢
such that any behavior possible for a cycle can be realized by a cycle of
complexity ¢/ < ¢ (cf. the second question asked at the beginning of
Section 1).

Theorem 12 can be interpreted in Moore’s framework in much the
same way Theorem 11 was. Let B;(n, k) be a black box having the
following properties: (1) n observable outputs each of which is a delay
element output; (2) k inputs (net inputs) whose statesatt = 0,1,2, - --
are specified by the observer; (3) an arbitrary number of elements in
the box all belonging to one and the same (%, 7)-cycle.

The set of behaviors possible for the set of all B;(#n, k) which contain
an (ny, 7o)-cycle properly includes the set of behaviors possible for any
collection of B;(n, £) which contain an (n,, 7,)-cycle such that #, < #n,
and r, < ry. In other words, no cycle with at most # delays or %
inputs and less than 7 feedbacks to each switch can imitate the behavior
of particular cycles with n delays, % inputs and r feedbacks to one or
more switches.

The results of Sections 4 and 3 lend strong support to the following
stronger conjecture :

For any (u, #) there is some transformation not realized by any net
containing only (n, 7)-cycles.

In fact it should be possible to construct a lattice of behaviorial trans-
formations defined as follows: Let N, ., be the set of all logical nets
containing only (n,7) cycles. With each logical net in N, ,, will be
associated a transformation which gives the net-state sequence pro-
duced by each input-state sequence. Let B, be the set of transforma-
tions associated with the set N,.,. The lattice should satisfy the
following conditions: (1) Bq,.., properly includes B, if #' < n and
v <rorif v <moand v <r; (2) glb. [Bayros Boors ] = B
where #, = min (#y, #,) and r, = min (r,,72); (3) Lub. [Ba, .,
Busrsy ] = Bius.ry Where n; = max (4, n,) and 7; = max (ry, 7,).

It seems that the interrelations between periodic input and net-state
sequences, net cycles, state cycles, and permutation cycles, as sketched
in this paper, could provide a basis for the proof of this conjecture.
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