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SUMMARY

THE elastic—-plastic deformation of a solid cylinder in the presence of a distributed heat source
and subjected to a lateral pressure p and an axial fource F is considered in detail using Tresca’s
yield function, its associated flow law, and a linear workhardening law. Particular attention is
given to the class of problems in which the radial stress, and not the axial stress, is the intermediate
principal stress. The general results are applied to the cylindrical nuclear reactor fuel element
in the state of plane strain with a radially distributed Gaussian heat source, acting in its fissionable
interior. The solution is expressed in closed form in terms of the exponential integral and the
incomplete gamma function and is found to exhibit three stages of plastic deformation. In stage
I the plastic domain consists of two concentric and adjacent zones with different stress fields and
different rates of propagation which expand outward from the centre of the cylinder ; in stage II
the elastic domain vanishes, while the inner plastic zone continues to propagate ; and in stage ITI
a third plastic zone is formed at the outer radius which propagates inward. Throughout the
deformation the states of stress are found to exhibit regular progression. A nunierical example
is included.

1. InTrRODUCTION

Tue brief list of existing complete solutions to elastic—plastic problems in the
incremental strain theory of plasticity has been enriched in recent years by a
number of thermoelastic—plastic investigations, e.g., Parkus (1954), BLanD (1956)
WEINER (1956), WiLHOIT (1958) and CowprERr (1958). Of the problems solved in
the above collection, all but the first and third employ Tresca’s yield condition ;
and of the plane strain solutions all contain, as do the isothermal solutions obtained
to date, the axial stress o, as the intermediate principal stress. Furthermore, in
all cases the state of stress is statically determinate.

An exception may be found in the recent work of WeINER and HUDDLESTON
(1959) who have obtained, for an incompressible nonhardening cylinder in the
presence of a temperature gradient, a radially symmetric solution for the stress
rates which for certain regimes of the Tresca yield surface is necessarily statically
indeterminate.

#The results presented in this paper were obtained in the course of research sponsored by the Office of Ordnance
Research, U.S. Army. The investigation was initiated under Contract DA-20-018-ORD-14447 with the University of
Michigan, and was completed under Contract DA-04-200-ORD-171 with the University of California at Berkeley.

+ University of Michigan, Ann Arbor, Michigan.

1 University of California, Berkeley, California.
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Among the existing radially symmetric solutions associated with the problem
of the clastic -plastic cylinder, that of the thick-walled tube has been the subject
of nunicrous investigations. Of particular interest 15 the work of Korrer (1953)
who obtained a simple and satisfactory solution in closed form for a nonhardening
compressible elastic--plastic material, using Tresea’s yield condition and its
associated flow rule. This was extended by BLanp (1956) to include workhardening
and a steady state temperature gradient. In both of these investigations (a) o,
is the intermediate principal stress so that, on account of the symmetry of the
problem, the stress field is statically determinate, (b) no singular regime of the
Tresea loading function is encountered and (¢) the initial yield begins at the mner
surface. developing a plastic region with a surrounding elastic annulus.

The problem considered here is that of the quasi-static deformation of an
clastic-plastic eyhinder, which, with reference to cylindrical polar coordinates
(r. 6. z) occupics the region 0 <0 r -« and is subjected to a lat(*r‘al pressure p,
an axial force Fand a radially distributed heat source Q. all of which increase
monotonically with time £, The solution is obtained for an inviseid workhardening
material, with Tresca’s loading funection, its associated flow rule, and a work-
hardening law based on the plastic work per unit volume expended ; the non-
hardening elastic plastic solution is also deduced as a special case for comparison
purposes. Depending upon the relative values of the mdependently varving * load
parameters.” po @ and F, the initial vield may occeur at any radius 0 « r <" a,
while the axial component of stress o, may or may not be the intermediate principal
stress. Indeed, in the class of problems considered, the initial yield occeurs along
the axis of the evlinder r - 0, when the state of stress reaches the singular regime
gy — 0, - = g, — o, =~ 2k, where o, and o, are respectively the radial and tangential
components of stress, and &y is the vield limit in simple shear. The ensuing state
then consists of an elastic annulus {p =X r <Z ¢) surrounding a plastic region
(0 < r << p), with the clastic plastic boundary r = p. The solution in the plastic
domain (0 < » =~ p) does not lend itself to deseription by a single stress field ;
mstead, continuity requirements, imposed on the stresses and displacement, at the
elastic—plastic boundary p, together with consideration of the elastic loading paths
as well as the possible paths that the stress might follow in the plastic range demand
that the plastic domain (0 < r <_p) be composed of two concentric zones, separated
by an interface r . p; << p, cach with different stress ficlds and different rates of
propagation. In this manner the state of stress is found to exhibit regular progression
(following the terminology of Honge 1956) ; i.e., the state of stress upon yielding
first lies on a regular face of the yicld surface and then moves toward a singular
regime where it stays throughout the remainder of the plastic deformation.

An interesting feature of the problem is the continued propagation of the inter-
face boundary p;, after the elastic -plastic boundary p has reached the outer surface
r — d, so that the eviinder may sustain further loading. A second stage of the
problem (referred to as Stage 1I) is thus entered in which the elastic region has
vanished entirely. Stage IT of the problem is short-lived, however, as the state of
stress at r == « reaches the regime I3 before the boundary p, has moved appreciably
(Fig. 1). and a third and linal stage of the problem (Stage IIl) is entered. In
Stage III the state of stress again exhibits regular progression, giving rise to a new
zone py, << r «_«a (in which the state of stress corresponds to regime B), initiating at
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r = a with the interface boundary p, propagating inward ; hence the two interfaces
p2 and p; approach each other. It is found that these boundaries never meet but
approach limit values as the temperature tends to infinity. This observation is
similar to that made by WiLHoit (1958) for a ring subjected to a temperature
gradient, and the work of CowpEr (1959) for a hollow sphere subjected to a tempera-
ture gradient.

Specifically, the contents of the paper are arranged in two parts. In Part [
{Sections 1-4) of the present paper, following some preliminaries, the character
of the initial yield for a given class of temperature distributions is discussed in
detail. The differential equations for the stress fields corresponding to various regimes
of the Tresca yield surface are derived for an arbitrary, radially symmetric,
temperature distribution and without the specifications of any particular hardening
law. Also included, is the solution for the case of a nonhardening elastic—plastic
material.

As an application of the foregoing results in Part II (Sections 5-7), eylindrical
nuclear reactor fuel elements in the state of plane strain are considered in detail.
The solid cylinder of fissionable material forms the heat generating portion of the
fuel element and is surrounded by a hollow cylinder of nonfissionable material
called ‘cladding.” The uniform pressure between the two cylinders is then a
consequence solely of the temperature field generated (precluding a shrink fit for
simplicity). Using a Gaussian heat source and a linear hardening law, the general
differential equations for stress and the displacement derived in Part I, correspond-
ing to the regimes which arise in the various stages of the problem, are solved and
applied in the plastic regime. . A numerical example is worked out and complete
results presented for a workhardening material as well as a nonhardening material
for comparison. A further comparison is made of the solution of the coupled
mechanical-thermal problem considered here with that obtained by a simple
superposition of solutions to the separate mechanical and thermal problems.

PART I. GENERAL CONSIDERATIONS
2. PRELIMINARY BACKGROUND

With reference to cylindrical polar coordinates (r, 8, 2), we recall for future
reference that for axisymmetric problems in the state of plane strain the stress
differential equations of equilibrium in the absence of body forces become simply

00, | O, — 04
or r B

and the nonvanishing plane components of strain are given by

0, (2.1)

€ = g_’r‘ €5 — g (2.2)

where u is the radial displacement. The elastic components of strain ¢,’, €, €,
are related to the stresses through the generalized Hooke’s law, while the plastic
components of strain (e,” = ¢, — ¢,’, etc) are expressed for workhardening materials
by
{6, &, &} =h fb_f, o f (2.3)
3o, v, o,
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where the plastic potential f is regular, dot denotes differentiation with respect to
time, and k is a positive function (HiLL 1950). When the hardening is zero the
quantity & f on the right-hand side of (2.8) is to be replaced by A.

Og .

Fia. 1. Tresca’s yield hexagon when o,, o4, o, are the principal stresses.

Throughout this paper the plastic potential is taken as Tresca’s yield function
f=max[lo, — 0|, |og— s |0 — a]] =2k, (2.4)

keeping in mind that the flow rule in the form (2.8) is valid only at regular regimes
of (2.4) ; the function f is shown schematically in Fig. 1 with the various regimes
labelled. The material is assumed to harden according to the law

2k = n W, (2.5)

where k is the yield stress in simple shear, 7 is a constant which depends on the
material, and
Wp =0,&" +a,é) +o,¢” (2.6)

is the rate of plastic work per unit volume.

Although more general constitutive equations for non-isothermal plasticity
have been recently proposed by Pracer (1958}, the thermal effect is here accounted
for only in the generalized Hooke’s law, so that the condition of compressibility is

& + €5 + & = e (0, + 05 + 0,) + 32T, 2.7

where 7 is the change in temperature. The mechanical and thermal parameters
E, v and « (modulus of elasticity, Poisson’s ratio and the coefficient of linear
expansion, respectively), as well as the initial yield limit &, are assumed independent
of temperature.

Since, for the problem being considered, the deformation is a direct consequence
of the change in temperature arising from a distributed heat source within the
body, any temperature difference that might occur due to the deformation itself
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(as in thermoelastic damping) may be ignored, thus uncoupling the thermal and
mechanical problems ; furthermore, if the loading (thermal as well as mechanical)
occurs quasi-statically, the heat conduction equation is characterized (e.g.,
Twowpson and RocErs 1956, p. 165) by

KVeT = — @, (2.8)

where K is the thermal conductivity and @ is a radially distributed thermal source
expressible in terms of units of heat per unit time per unit volume, and

32
:W

1
Ve —1-_1.
T or

3. THERMOELASTIC SOLUTION AND INiTiarn YIELD

While our main concern is with the elastic—plastic cylinder occupying the region 0 =- r < a.
for future reference it is necessary to consider the corresponding thermoelastic problem. Speeifi-
cally, we recall the (quasi-static) thermoelastic solution to the axisymmetric problem of a hollow
cylinder (p =< r = a) in the state of plane strain and subjected to a temperature distribution7',
superposed on the elastic solution due only to a uniform axial stress o, = ('g (e.g.. TiMosHENKO and
GoopIEr 1951, p. 409):

1 +va 'T r 4 C _*Cz VC h
= - rdr 4 C 7 4 —2 - — Oy,
* 1 —vr o 1 r E 3
«E 1 (7 E ¢, C,
= — - rdr + — — — 2
i R SR PR
aE 1 TTII ocET_’_ E C, Cy .
= - rdr — e = 2 3.
T, 1 — 1+v(1—2v+r2’ s (.1)
BT BOE
S T N T S T
. o _ ~2 OF 2 ak e F
B - rdr - .
where 3 1——2v1+v+112~—p21711 o Fﬂ'((lz— p2) J

The thermoelastic solution for the solid cylinder (0 <{r < «a) may be deduced from (3.1) by
allowing in the integrals the lower limit p — 0, and by setting the coeflicient (', = 0, which ensures
the regularity of the solution at r = 0. When this solution is subjected to the boundary con-
ditions appropriate to the solid cylinder subjected to a radial temperature distribution 7', a
lateral pressure p, and an axial force F (which includes the effects of both Cy as well as that
arising from the plane strain solution) the stresses are found to be

oE I
o, = [6(a) — 8 (r)] — p.

1 —v

aE
o = v[B (&) + 6(r) — T] — p. > (3.2)

aE . r
o =7 7;[— T + 20 (a)] + s

/

1 r
where g(r) = —zf T (r) rdr.
r
[
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According to Tresca’s yield condition yielding occurs when one of the quantities

ak h
lo, — o3l = ; _~V[T—9(r)} ,
ak F
IO,. bad Uz: = ]*:'; [T — g{r) — 9((1)] - ';0‘2 — pi* > (3.3)
E F
o — off = i“——[@(r) — 8 (@] ~ —; —p|s
el 4 kil y

reaches the value 2k,. Since the determination of the maximum of (3.3) depends on the load
parameters and especially on the distribution of 7' (which is so far arbitrary), we restrict ourselves
to the class of monotone temperature distributions which assumes its maximum either at r = 0
or at r = a. With the notation
¥ Ty
R=—— —p, m = - —1, (3.4a)
el Ug

T = Ta) _20(0) — T (a)

vy ==
L) L)
{3.4)
20 {a) — T {1}
vy = - - =
L)
the expressions (3.3), when evaluated at r = 0 and r = a, read
ok h
"’r - ‘70|r=o =0, |°r - °8Ir=a o 1= vy Qo>
afl Q) mu, K )
loy — @ylymg = 11—, 2 R [0, = Oalrma = | ~ 1= V”2Qn”‘ R|s (8.3)
ok Qymu,
|og Uz!r'—o B PR R log — azlr-ua = | - R!’

J
where the arbitrary constant @, will be associated subsequently with a physical quantity related
to the temperature field. A detailed comparison of the relative values of the five independent
expressions appearing in (3.5) for the entire range of the load parameters, though straightforward,
is lengthy and tedious. For our present purposes, however, we note that if the values of m, @,
and F are restricted to the range 1 = m X 2, @, > 0, then one is led to the result that the initia-
tion of yield may occur in the three ways, summarized in Table 1. It may be noted here that
the choice of the range of w in Table 1 was motivated by the temperature distribution employed
in Section 5 for which m ~ 1-12.

TaBLe 1. (1 = m < 2)

Range of the parameter R Yield condition Location of initial yield

ak m — 2 9y = 0y = 2K

oy — o, = 2k

ak Q,
Uy —
2

1 (m—~2)=R=0 o, — og = - 2k *or=ua
—

R=0. 6 — a, = — 2k r=a
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4. SorutionNs IN THE Prastic DomaiN

The determination of the state of stress in the plastic domain generally, requires
the solution of the system of nonlinear differential equations {2.1) to (2.7) ; however,
it may be shown that for a linear workhardening material these equations can be
directly integrated. To this end we observe that if f is a regular homogeneous
function of degree n, then by (2.6), (2.8), and with an appeal to Euler's theorem on
homogeneous functions, W, =k fnf. When f is the loading function associated
with the regular regimes of (2.4), then n = 1, f = 2k, and

W, = 2hfk. (4.1)

Substitution of (4.1) into (2.5) leads to k., — » (kf), which upon integration becomes

log (k/ky) = nA; A= fhf dt, (4.2)

indicating the nonlinear variation of £ with A, Kxpanding the left-hand side of
{(4.2) about k &y — 1 and retaining only the lincar term, results in

k=ky (1 + 7). (4.3)

as the law for linear hardening which, since the flow rule (2.8) was emploved,
is valid only for regular regimes of the Tresca yield function. The corresponding
result for the singular regimes of (2.4) requires different considerations, e.g., for
the regime B in Fig. 1, o, = ¢,. 04 = o, + 2k, (2.6} because of the vanishing of
plastic volume change becomes

Wp = 2k é,'". {4.4)

Repeating the steps between (4.2) and (4.3) we obtain
kE=ky(1+me") (4.5)

which is identical in form to (4.3), except that X is replaced by . Expressions
similar to (4.5) may be deduced in a similar manner for other singular regimes of
(2.4).

The stress field is, in general, statically indeterminate, requiring the simultaneous
solution of the seven equations (2.1) to (2.4), (2.7), (2.8) and one of the type (4.3)
or (4.5). As this system is linear, it admits twelve solutions, corresponding to the
six regular and six singular regimes of the piecewise linear loading function (2.4).
These solutions for the radially symmetric stress and displacement fields are general
and are valid either in full or in part for all radially symmetric temperature distribu-
tions, including the more specialized examples, where the initial yield occurs at
¥ == q or r = 0, discussed in Section 3.

We now proceed to consider the individual regular regimes of Tresca’s loading
functions as follows :

{a} Regime AB (o, the intermediate principal stress). The solution here is
included in the work of Branp (1956) and will not be repeated. It should be
recalled that the workhardening parameter employed by Braxp, namely the
equivalent plastic strain (see Hiri 1950, p. 30), differs from that used here (2.6);
however, as shown subsequently by BLaxD (1957), the two parameters are equivalent
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as long as the regime in question is regular and associated with either a linear or a
quadratic loading function.

(b) Regime BC (o,, the intermediate principal stress). The presence of the
axial component of stress ¢, in the loading function, corresponding to this regime,
renders the stress distribution statically indeterminate, even in the nonhardening
case. Substituting o, from the loading function, i.c., ¢, — 0, = 2k, and o, from
(2.1) into the compressibility condition (2.7), gives

du u 1 =2
or r ) K

(30, + 2r 3"1) B L P (4.6a)
or E

E r

_ 2_(,1_:‘2_1/)} frkr dr — 1 frez rdr + 21 (4.6b)
E r r r

u = 1—21 [27‘2 G, — frro, dr] -+ B frTr dr
r

L

Throughout this section o, has been assumed greater than o,; when ¢, > o, the
sign of k£ need only be taken necgative.
The flow law (2.3) gives upon integration with respect to time

"o, o, [7 . .
€' 1 € 1, =0:1:—1,

so that

_ ’ "o__ ’ o ' ’
€ =¢€5 + € =€ —¢€ =¢' —¢ 1€ .

By the generalized Hooke's law together with (2.1) and the loading function, the
total tangential strain given above may be expressed as

€9 =—

~ R

2 (1 —
:_E“J““("E ”)-(a,+r%‘;_’—k)—%’a,+2ﬂ. (4.7)
Elimination of u between (4.6) and (4.7) after some manipulation results in the
following differential equation for o,:

. 2o, do,
21— )t H 6 (1= ) ST (1= 2o, =

mozET—oncErg—T—‘—*—Qk—*—?(l—v)rb—k—}—Eez—}—rEiz- (4.8)
or or or

It may be of interest to note that (4.8) may also be obtained from the appropriate
differential equation of strain compatibility.

Since the yield stress k in general depends on parameters which may in turn be
functions of the dependent variable o,, (4.8) cannot be solved until & is specified.
The nature of the loading, however, is such that the axial strain is independent of
o,, so that the solution of (4.8) is immediately attainable for a nonhardening material.
The homogeneous solution of (4.8) for a nonhardening material is of the form

51) 1
S TVERGAT

and the particular solution may be found by variation of parameters to be

(o) = il -+ iz, where

4.9
751 ré2 Szj (4.9)
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(0 _ 2
k 1 — 2v

. @ {1 +26 (T 0y 142 f T oo ,1,}
2(1 — v)(sy — ) | % T, At Tq

+E {1 f 20¢) o1 gp — L f D7) gt g, (4.10)
2(1 — ») (8 — ) P71 or i or J

where
P cztET'.,=

With o, known the tangential and the axial stress may be found through the
equilibrium equation and the yield condition, respectively. The second expression
in braces (4.10) leads to a term appearing in the expression for ¢, which may be
identified with C,, and results in

52::::2(1 —o?)’%—?&lszcs-f—%é’ (4‘.]])

where C, is a function of time only. Thus, the stress distribution for a nonhardening
material is given by

or
P = + — + s + ——-"§-
B (p [l - f}‘: poat gy — L 20 f T s dr],
2(1 — vj(sy — $y) rt2 T, r* Ta
— 4, 4,
0“(1"31)E+(1“82)E+ 3+ —
> (4.12)
- b {(1 - 32) (1 -+ 232) 7‘“*“‘1 dr
2(1 — v)(s; — $3) 752 a
(1 - 31)7511 + 28) T ,.s, Ldr 4+ 2 (s, — 8) .__}
T8 __ o,
ko ko

-
Since the foregoing solution is not valid when » = }, the integrations leading
to (4.12) requires separate consideration, Here the solution for an incompressible
material may be obtained directly from (4.8); the result is similar to (4.12), the
chief difference being that the leading terms are logarithmic in r, and that with
reference to e, corresponding for (4.11), a uniform axial stress gives rise to a
uniform axial strain. These results, for an uncompressible material, when differen-
tiated with respect to time, agree with the previously known solution (WEINER
1959) for the stress-rate and the displacement-rate of an incompressible material.
In contrast to the solution for an incompressible material, it may be seen from
(4.11) that for a compressible material a uniform axial stress may result in a non-
uniform axial strain.
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(¢) Regime CD (o, the intermediate principal stress). As in (b) the stress
distribution is again statically indeterminate, and the procedure leading to (4.6)
and (4.8) gives
1—2 1 — r
U = . - —— Vf (37’0’, + re DU,-) dr — 2k(,_1_;‘_w __) f krdr

E or r

(4.18)
r r B
+§f Trdr «§f re, dr + =%
r r r
e do ok
2T 4 8r 2 —{(1—2 = — 2k — 2vr —
or? T ( Yo Y
{(4.14)
2T
— Ee, + oET — 0 E — 1,
or
whose solution for a nonhardening material is
. Ay 2 h
.C: IR v 4 +
ky s r?4 — 2y
+——(p +S°f réad dy — 1+%s f.T_ ris—ldr,
83 — 84 | 7% T, Tt T,
SO i RV PR i IR A S > (415)
kg o3 ré 1 — 2y
1] 1— 2 [T | 1 —s2 [T T
. S-a _:—;; [ o fﬁ” dr — - o 71‘:74 dr + (s, ss)ﬁ-
i S S S
ko Ky J

The states of stress for the singular regimes 4, B, C, D, E and F of Fig. 1
are also, in general, statically indeterminate for a workhardening material ; for a
nonhardening material, however, this is not the case, and the solutions may be
obtained directly from the equilibrium equation and the yield condition:

g, = Zkglogr + D,

regime A: { (4.16)

oy = 0, = o, — 2k,

o, = o, == 2kylogr + D
regime B: ¢ : (4.17)
’ g = 0, — 2k,
[Fr = T8 = Dy
lo, — D, — 2k,

where D,, D,, D, are functions of time only. The states of stress at regimes D E
and F are obtained by replacing k, by — k, in (4.16), (4.17) and (4.18), respectively.
The radial displacement associated with the above solutions, again obtained from

(2.7), reads

regime C': (4.18)

u = _E_L + Lok, 6C: Lrlogr — 1) + 3r—a fr (4.19)
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where B, is an arbitrary function of time and the coeflicients {,, {, and {, for each
of the singular regimes may be found from

1—2v
E

together with (4.16), (4.17) and (4.18).

(o, + 05 +0;)) = { + Lokg + 6Lkg log 7 (4.20)

PART II. APPLICATION TO CYLINDRICAL NUCLEAR REACTOR
FUEL ELEMENTS

5. TEMPERATURE DISTRIBUTION AND THE CHARACTER OF IN1tiaL YIELD

The fuel portion of a cylindrical reactor fuel element can be treated as a solid
cvlinder in the state of plane strain subjected to a thermal gradient and an external
pressure ; the former is due to heat generated by the nuclear fission of the element
itself which thus behaves as a distributed heat source, while the latter is due to the
expansion of the solid fissionable core against the nonfissionable hollow cylindrical
cladding, which serves to conduct heat away. The pressure p at the interface
(r = a) of the two cylinders is, therefore, not independent but rather a consequence
of the temperature field. It is assumed for clarity that when @ is zero the stress
field vanishes, i.e., there is no shrink-fit, although this may be easily included.
A complete analysis of the reactor problem entails an elastic—plastic treatment of
both cylinders, but here emphasis is placed on the elastic-plastic solid core and
the parameters of the problem are selected with this goal in mind ; the hollow
cladding is mentioned only to the extent that it affects the solution of the solid
core,

The heat source will be taken as Gaussian in character, i.e.,

Q = @ exp (— pr?) (5.1)
where p? is a parameter. When u? = 0, Q reduces to @, a distributed source
of uniform strength. With (5.1) the solution of (2.8), subject to the boundary
condition 7' —= Ta at r = a and the regularity requirement at r == 0, may be
written as

, . T
T=T,+ 4K10M2 [Ez (— p2r?®) — Ei(— pta?) — 2log c_z]’ (5.2)

where
. ©ev
Ei(—2)=— f — dy. (5.3)

is the exponential integral.
Since there is no heat source in the cladding (2 =< r < b), the temperature
distribution is given by the homogeneous solution of (2.8), i.e.,
T,—T r
T—=2%_ "%log—- + T, 5.4
(log b, a) ga+ ¢ (5-4)
where the boundary conditions T, and T, have been utilized.
Before determining the location of the initial yield, as well as p*, T* and Q,*
(i.e., the values. respectively, of p, T and @, at the initiation of yield), it is necessary
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to establish the functional relation between the parameters @, 7,, F and p. One
such relation is obtained by equating the radial displacements of the two cylinders
at their interface r == 4. Since prior to yielding both cylinders are entirely elastic,
the displacements in each may be written from the first two of (3.1) as

1+, 1— (5.5)

lfh — . T tro (’1} -+ QC (i} }“ LA
Ei 2v

where the index ¢ = 1, 2, refers to the quantities appropriate to the solid core and
the hollow cladding, respectively. If the pressure at the inner face is — p, then by
(5.5)

L4w  14w]  2(1 =), 2(1 — ) .
I M ] S C,® — ~ o, 6
7)[ E, E, ] 1— Va (e ~H (5:9)

and the coefficients C,¥ are found from the second of (8.1} and the boundary
conditions o, (@) = — p, a, (b) = 0:

¢, = a - 2”112§1+ “) [ P + E, g{a}J (3.7a)
“1
@ (L 2n) (1 + ) ( —. b ) B, T, (‘?ﬁ,’i.) !
G Z, =Py T T ) ) BT

where by (5.2) and (5.4)

xp (— p?a?) — 1
8 (a) = f Trdr = T @ SK%;? (1 4 oxp( ;af ) _.) (5.8a)

and similarly,

T, (T, T, az/b® — 1 + 2log b/a}}.
oo i () [P e

The relation between @, and the interface temperature T',, following the procedure
employed by GrLassTONE (1955) for the case u? = 0, is obtained by equating the
flux per unit length, produced in the core at r = q,

0(@) = — T2 exp (— it at) 1], (5.9)

to that across any surface of the source-free cladding

T Ty g 5.10
q = "W LEPE (5.10)

Hence
T, = hQ,, {5.11a)

where
B o= log (b/a) - [exp (— u*a? —1], (5.11b)

(Ty/Tq — 1} 2u2 K,

which reduces to GLASSTONE’s results when p® = 0.
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Substituting for €,V and C,® from (5.7), equation {5.6) becomes

p[1+vl__1+v2_ 2(1 — ) _2(1»~v12)]

E, E, B (e —1) z,
8 1
= @y {2 (I +v)agh ( T(‘a)) T T M (L + )k + Vz)]’ (5.12)

where h and v, are defined by (5.11b} and (3.4b), respectively.

We are now in a position to establish the character of initial yield. Since in the
state of plane strain the superposed axial stress C, = 0, we observe by the last of
{8.1) that when p = 0,

—F;z = — 20y K, 8 (a) — 2 p. (5.13)
ma

It then follows from Table 1 and the first of {8.4a) that initial yielding occurs at
r =20 if

m— 2

2
2

—ay By T, — oy By vy @ +p(1 — 20 < ’ (5.14)

o E
e vy Qg
1y
in which case (as may be seen from Table 1) the yield condition is characterized
by
|t79 — az! = IU, — O'zl = 2R, (5.15)

Before proceeding further it is necessary to specify the ratios of the coeflicients
{both mechanical and thermal) in the core to those in the cladding, i.e.,

E
E_ o m_, R_g  n_y oo (5.16a)
E, ) ky Vg
as well as
Z_g == :33 ._b.,. == :3- (5.16}))
b 2 a 2

It may be noted here that the selection of the ratios (5.16a} is based on the assump-
tion of a uranium core surrounded by an aluminium cladding.

If. with the aid of (5.12) and (5.11), p and T, are eliminated from (5.14), then
it may be easily shown that the ratios (5.16) render the inequality (5.14) valid.
Hence if yielding occurs in the core before the cladding — which, subject to a
later verification, is the case for the selected ratios (5.16) — then it must occur at
r = ( according to {5.15).

Substituting F from (5.13) into the second of (8.5) and equating the results
to 2k, in accord with (5.15) results in the following relation between Q,* and p*,

o E -

2&(11«.9;5 Qo* [2h (1 — v) + vy + v (1 — 20)] — p* (1 — 2v,) = 2k,, (5.17)

which may be solved together with (5.12) to obtain independent expressions for
p* and Qg*.

To confirm the statement that the solid core yields before the hollow cladding
we need only compare p* with the corresponding value of p obtained under the
assumption that initial yield first occurs in the cladding instead. This value 7* is
found by incorporating (5.12) into the results of Braxp (1956), where it is sub-
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sequently found that p* < p* for the parameters selected, so that yielding occurs
first in the core. It is important to observe that having established the character
of initial yield, the value of p* ceases to be valid even for subsequent yielding of
the cladding, since it was obtained through the use of the relation (5.12) which
holds only when both elements are completely elastic. An exact value of 7* may be
obtained using a relation similar to (5.12) but reflecting the true state of plastic
deformation in the core.

6. Epastic—Prastic Sovvrion ror Lingar WoORKHARDENING MATERIAL

Having determined the character of the initial yield, we now proceed to
establish the mode of the plastic deformation in the solid core. Because of the
symmetry the elastic-plastic boundary is a cylinder of radius p, defining the
plastic (0 = r < p) and the elastic (p = r = a) domains. The solution in the elastic
domain offers no difficulty and may be obtained from (3.1) by setting C; == 0,
Yor the plastic domain all the possible fields of stress discussed in Section 4 are at
our disposal. Attempts to characterize the state of stress in the plastic domain by
a single regime (although satisfying all of the field equations) disclose that such
solutions do not conform to all of the continuity requirements concerning the
stresses and displacements at the elastic-plastic boundary and hence must be
rejected. These continuity requirements, together with the consideration of (a) the
loading paths during the purely elastic stage of deformation (Fig. 2) for any r < 0,

2k

7=

N

0

Fic. 2. A portion of Tresca’s yield surface showing the stress profiles for a nonhardening
material (y = 0). The dashed curve corresponds to the state of stress at the initiation of yield.

(b) the fact that the initial yield occurs on an edge of the Tresca yield surface
(the singular regime C), and (¢) the possible paths the state of stress may take
following the initial yield, lead to the possibility of regarding the plastic domain
(0 =7 < p), as copsisting of two concentric zones, separated by an interface
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r = p,, and with the state of stress in each zone characterized by a different regime
of Tresca’s loading function. For reasons that will become apparent later, the
solution in the range of contained plastic deformation of the cylinder will be
subsequently referred to as the solution for Stage I of deformation.

Stage 1

The central zone I (0 = r = p,) consists of stress states lying along an edge (regime C in Fig. 1)
and are given by equations (4.18). The state of stress in the plastic annulus, zone Il (p, = r = p),
surrounding zone I, lies on the face

0g — a5 = 2k (6.1)

of the Tresca surface and thus satisfies equation (4.8) whose solution for a nonhardening elastic—
plastic material is given by (4.12). However, before the stress field in zone IT may be found for
a workhardening material, the yield stress k appearing in (4.8) must be determined through the
workhardening law (4.3), which by the flow rule (2.3) and for the state of plane strain (¢, = 0)
becomes

k=ky(1 4+ ne) (6.2)

With the use of the generalized Hooke’s law, (2.1) and (6.1), the elastic component of the axial
strain may be written as

1
o =— f(1 X (1 — 2o, — 2 - B vl (6.3)
£ | or J

so that by (6.2) k assumes the form

k 1 K a ) d (o, a ) ‘\r+¢ T 6l
— = —— -} - — r— g -— — 2 — — .
by T4y 2 Y VY A LR (6-4)
where
21]"{0’ K L4 ’ (6.58.)
El 14y
and
E. T
o, =271 Ta (6.5b)
ko

When (6.4) is substituted into (4.8), there results the following differential equation in o, :
2 2 2 T 1
b2 ) sy = () b, = Py ——
or2 \k, or \k, kg 1+ Tel + v
+ Dy r—

> (X 1 2 6.6
o o [ R EE

where
by=201 —v) -0 — Vl)2 K,
by = (1 — 2v) (1 — «).

The homogeneous solution of (6.6) has the same form as (4.8) with s; and s, in (4.9) replaced by

S"'} =17F \/(él_ bz), (6.7)
Sq by

respectively ; these reduce to s; and s, when n = 0.

The particular solution of (6.6) for any temperature distribution, as in Section 4, may be
obtained by variation of parameters. However, since the character of the initial yield was
established only for the class of temperature distributions for which 1 <{m <{2 (Table 1), in the
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complete solution of (6.6) recorded below the specific temperature distribution (5.2) corresponding
m ~ 1-12 has been used:

o T T ) [0 = e e — 2]

¥
4 Bi{ - p2r2) —~ Ei(— p2a?) — 2log -
a

1 s 11 — 2, 1 — vy} 84
s | g 1 { 1) %6 <] Iy (5572)
2(1 — 2v) {85 — 5¢) 1’6 rs

R UL T L Y 1 /2,] }

u¥s r¥s

ag 1 1 2 — @

Bl -5 -2 (1 — 5 - ST
( 5)735 { 3),’36#—]“

(6.8)

2y

Dy [%5+ %

oK. W2 h — (1 — (1 + 1 — 9
2K, ph | v (=1 + P[0 —v)e—=2]

r
boEi(— p2r?) — Ei{- p?a?) - 2log -
a

L s s — 286+ (1= v g o] Iy (s/2)
20 — 2V1) (.8‘5 . ,s's) 456 156
S {1 — 531 — 28 HA{U — »)85x
—_ #ﬁ_ﬁ-*iL,,-,g_‘%, ARG 4 5,J Fx{ss/z}} t,
§55 s |
oy 9 2k
ko ko Ko
where

=23
I,(n = ¥ yn=1dy
¢

is the mcomplete gamma function. [t follows from (8.1) and (2.3) that for loading from an elastic
state ¢,’* = 0, and hence the radial strain is purely elastic. Thus, the radial displacement corres-
ponding to the solution (6.8) is most easily evaluated through (2.7) with ¢, = 0, the generalized
Hooke’s law, and {6.1) by
B e b2l =) ag—2(1 — vk - 2 B, T 6.9
PURLe B S 1) % vk o ey By T, (6.9)
which with {6.8) completes the solution for zone II {p, == r = p).
Summarizing, the temperature field is given throughout the region 0 = r == « by (5.2}, the
stress and displacement fields are given:
(a) in plastic zone I (0 = r 2 p;) by (4.18) and (4.19), respectively, and represented in
stress space by the singular regime C in Fig. 13 (b) in plastic zone II (p; = r = p)
by (6.8) and (6.9) respectively, and represented in stress space by the regime BC; and
(e) in the elastic zone {p =< r 5 a) by (3.1} with (3 = 0.
With the form of the stress and displacement fields established in all three zones of the problem,
it remains to determine the five coefficients Dy, 4y, A4;, C, C,, as well as the relation between
the boundaries p, p;, and the load parameters p and ¢,. Equilibrium together with continuity
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of the yield condition and displacements requires that the stresses themselves be continuous
not only at the elastic—plastic boundary p but at the interface p; between the two plastic zones.
Furthermore, an examination of the compressibility equation reveals that continuity of u at
r = p, is equivalent to the requirement that ¢’ {(p;) = 0 : this latter condition considerably
simplifies the determination of the five coefficients mentioned above. In order to determine
the foregoing unknowns, we require (1) continuity only of a,, o5, and €. at r = p,, since g, and u
will automatically be continuous through the yield condition, and the compressibility equation,
respectively ; (b) continuity of o,, o5, and o, at r = p, since « is continuous again through the
compressibility equation and the vanishing of ¢’ in zone Il ; (¢) satisfaction of the boundary
condition o, () = — p : and (d) the matching of the displacements of the solid evlinder with that
of the hollow cladding, as was done previously in Section 5 for the purely elastic solution of the
problem. For a given value of p this stage of the problem is thus statically indeterminate, requir-
ing the solution of eight equations in eight unknowns.

In the central zone I the stresses through equilibrium and the loading function are found to have
the same form as (+.18) except that kg is replaced by k ; the radial displacement is found through the
compressibility equation (2.7) to be

31 -2 2 1 —2 1T 17
w = "1, ( ") - krdr. + - Ba Trdr, (6.10)
E, rfe r

2 E 0

from which with the use of Hooke's law and the plastic component of radial strain is found to be

1 —2 2k 1 -2 2 3, [T
€ = i Dy — — (1 — ») 4 S——« - VQ I\uh + 20, T — = e (601)
2K, E, o |,

It may be seen from the ¢ompressibility relation (2.7) which holds throughout the cylinder, that
since the stresses and displacement u are continuous at r = p,, the elastic as well as the plastic
components of the radial strain each must be continuous separately. Since ¢’ = 0 throughout
zone II, then by (6.11)

1 —2v, Dy 2k 1—20) 2 [0 32, [*1
il - I Bl 0z _‘.1_3_..5 krdr — 2a; T (p;) + izlf Trdr.  (6.12)
E, 2 £, By ol P Jo

1

Substituting (4.18) into (6.2), though Hooke's law, the value of £ throughout zone 1 is found to be

¢1 y T (r)’
2 T,

IS I
P (149 =14 %’(1 — 2y)) fﬁ (6.13)

which, when solved with (6.12) after some simplification, yields

1— 20 Dy T 6 6 T
ekt Yt S —2451——(”—1) 30, (”1) Fy( +v) o |2 ey Tl 0y
b ‘o ’la a Ta Ta
k T(p) &, T(r) 3B, (py)
"“"&“}’)=1+}'[1“"¢ " s - +
kg g, 2 T, Ty
o T
+ 52 [ 9led _ {‘O‘)J (O + ) D). (6.13)
,ia Tﬂ-

With D, and k known, the radial displacement may now be written as

Eju 1 -2 D, 1~ 2p, #(n
= 3—(1 -2 e et o (D 1 2 6.16
iy 2 K 28 —( vy) ] T P T, [B—¢ vi) k], (6.16)

which completes the solution for zone I.
Continuity of the plane components of stress [given by (3.1) in the elastic zone, and by (6.8)
in the plastic zone II, and by (4.18) in the plastic zone 1] at r = p; and r = p gives, respectively,
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%5

P
Ay = — =5~ 8],
a5 - N
{6.178)
p'
lg T . [yt = s 1 B
N5 S
where
E, C k. C, 1 P Gipy
Yy oo Lt ooy T A ‘0 . — Or(ph
(1 = v} (1 — 2r) Fowypy T o-n T,
(6.17b)
E, C E, C, 1 @ Gpy Dk, Tp)
141 1l 1 1% .
T e s D Ut E LS RN R . L ,
Pusiy s (1 2v) 1 2 . T, 1y T, o (¢)
and
Py’ py'®
Ay e [y (1 = sg) — Bole Mg = [y (1 8g) o+ By, (6.18a)
?5 — 35 Ss — .\*6
where
va - Dy oy lpy) By Dy - oplpy) {6.18Db)

where the barred quantities correspond to the particular solution of (6.6),
The time parameters (. C, of the elastic domain appearing in (6.17b) are no longer given
by (5.7) but must be redetermined from (3.1) with the additional boundary condition

(09 — opdr_p = 2ky giving

E, 1 17 1 ) E, 1 0y 8 ’
_E G Al t LA o (Jg.. (;”) y  (6.19a)
(r - vy (1 - 2»1)5‘0 n P 5{0 ¢« b— ;:’o p i

E,
(=2l e 2 L o) — = o@) s (619
,'0 oy kg

1 — 2

where D = — + ———1,
p? o2

With 1) thus determined it is appropriate to record here the relation between p and &,
for Stage I, which may be obtained from (5.6) through (5.7b) and (6.19a) :

rl 20 -0t K . 2(1— v,y
k th Dp? ME( BT F 2%

0
e 21T vm Oy 20w (ﬁﬁfﬁ? _ ?ﬂi’?) R )
e ooaE et T, Dp? T, a® T, Da? )

Fquating {6.17a) and (6.18b), there results two equations in the unknowns ®,, p;, and p which
may be best solved numerically for various choices of p. With &, and p, determined, all of the
coefficients Cy, C,, 4,, 4,, Dy, given by (6.19a), (6.19b), (6.17a) and {6.14), respectively, may be
evaluated, and the solution for this stage of the problem is complete.

Stages Il and 111

Due to the nature of the problem and the yield condition (6.1), when the elastic-plastic
boundary p reaches the outer radius r =~ a. the interface boundary p; continues to propagate
and the cyhnder is still capable of accepting more load, even in the absence of workhardening.

Since zone I1 now extends to the interface r = a, the relation {6.20) ceases to be valid and a
new relation between p and ¢, must be obtained. Since the cladding is still assumed to be elastic.
(3.5) with { = 2 remains valid and is set equal to {(6.9) at r - a.

A second relation between p and @, may be found by substitution of (6.18) (which remains
valid in Stage II, since the form of the sclution in zone I has not changed) into the boundary
condition g, {¢) = — p. The two new relations between p and ¢, may then be solved simul-
taneously for the two unknowns, Throughout Stage II, in the absence of an elastic-plastic
boundary during Stage I, p, may be treated as the independent variable.
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The description of the plastic deformation provided hy Stage II continues to be valid, until
the state of stress at the outer radius r = « of the cylinder, represented during Stage I by a point
moving in regime BC of Fig. 1, reaches the singular regime B, at which time the solution enters
Stage IIL As the states of stress at suceessive points in zone IT of the ¢ylinder enter regime B,

The differential equation governing the radial stress o, {as well as o, since ¢, = 0.} in zone
I, derived in & manner similar to {6.6) for zone 11, is given by

A (ar) 309 ("r Ko, + @, | T N ('I') .
Ny L R B I T R g SRt N P {6.21)
o2 \k, ror 1“0) I N R L 2T, wAT, }
for u workhardening material. The tungential stress o, is then obtained through the equilibrium
equation (2.1) and the displacement u through the compressibility condition (4.6a). For a non-
hardening material the stress field is given by (4.17). The method of determining the coeflicients
appearing in the solution is similar to that of Stage T with p replaced by p, and y; and §;. in
{6.17a) replaced respectively by

vz = or {po) — o, (pyh By — ag {py) — &g {poh {6,22)
where o, (py) and gy (py) in (6.22) refer to the components of stress m zone I found from (6.21)
{or ($.17)}).

Subsequent to the determination of @ new relation between p and g for Stage 111 and the
redetermination of the time functions in the stress and displacement fields, it is found that the
separation boundaries p; and p, approach each other monotonieally but do not meet ; ench
approaching » limit value as the temperature is indefinitely inereased. This is reminiscent of the
results given by Wintorr (1958) for a ring in the state of plane stress, subjected to a temperature
gradient, and by Cowesr (1938) for a hollow sphere also in the presence of a temperature
gradient,

This completes the solution of Stage I of the problem which remains valid until vield oceurs
inthe cladding. It muy be noted here that, once the cladding has yielded, a fourth stage of the
deformation begins, since the interaction of the three boundaries p,, p, and p, (the elastic—plastic
boundary in the cladding) must be considered.

7. Discussion — NuMmericarn Resuvurs

In the preceding Sections the character of the initial yield and the subsequent
deformation was established for a class of radially symmetric temperature distribu-
tions (1 =< m =< 2), chosen to include (5.2) which was due to a Gaussian heat
source, distributed throughout the region. The expressions in Section 6 are written
in general terms to include any temperature distribution in this class. In order
to gain an insight into the problem, it is desirable to consider a detailed example
for one case. Since the expressions in Section 6 become involved and intricate,
when (5.2) is inserted, for the sake of simplicity we allow the parameter u? to
approach zero. The temperature distribution (5.2) then assumes the simple form

T=T, + %’g [ - (2)2} (7.1)
A

a

and becomes

oo

where
a?

=2,
E (7.3)
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and by (5.11b)
b & _ a? 10g b ’{1 . (7.4)
Q, 200 —T, THK,

Comparison plots of the functions specified by (5.2) and (7.1) as well as the
integrals which appear in the solution reveal a yualifative similarity between the
two temperature distributions, which together with the fact that both produce
initial vield of the same character (m == 1, so that the results in Table 1 are
applicable) justifics the use of (7.1) 1 place of the more realistic expression (5.2).
The resulting equations are thus considerably simplified.

We now proceed to obtain explicit results for a workhardening material cheying
(2.5) subjected to a uniformly distributed heat source (u2 = 0) which gives rise to
the temperature field (7.1). In each expression the nonhardening material may be
obtained by setting y = « == 0.

For the values of the parameters (5.16a) selected in Section 5 we continue the
example and obtain explicit expressions using the alternative temperature field
(7.1) for the quantities discussed in Section 6. In zone I for all stages of the problem
the state of stress and the displacement continue to be given by (4.18) and (6.16)

with D; and k becoming through (6.14) and (6.15). respectively :

e R Y SRR |

2 kg 21 I vy
)]

k Dy Sk [(ry? p1\?

S R ~)_J)

: l(a ( a [
In zone II for all stages the stresses may be found by allowing p? to approach zero
in (6.8) or more easily from (6.6). the right-hand side of which upon substitution
of (7.1) becomes

(7.5)

rafer

2
by + b4 (a) ’ (7.6)
where
1
by = 2 — @, (1 - 9)|,
= Bl (7.7)
by = @, 8[5 — (3 — 2v) «], )
and consequently the stress field in zone II is
] =
o Ay Ay, +A8(f)’
ko = 785 7rSe a
O __ A oy e r 2’
T (L= ) B (e T8 Ay 434, (5) - (18)
L 2k
kO k() kO J
where
bs by
= 5 Ay = — 7.9
A= =gt (7.9)

and k is given by (6.4).
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By (7.5) and (7.9), 4; and 4 may be found through (6.18) to be

1 poste DS,
A, = 1’ {Se 1 [5/2+y(1+u1)]—-(36+2)As}’

sg — sg a* |1 — 2y

(7.10)
1 0136+2’{.S‘5 P, 3

or 1 |

A, = : (5/2 4 v (1 4 v))] — (55 + 2) Ag)s
6 55y @ “_21,1[/ 7\ 1) 5 8} )
» L
.% =z 0-6. 2 f
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16 \ —%-Ioeza
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Fic. 3. Distribution of radial stress (y = 0). Fis. 4. Distribution of tangential stress

(y =0).

FKquating these values of 4; and 4 with those given by (6.17a) with subsequent
elimination of p, between the two resulting equations leads to the following relation :

(f’_‘)z(“_s“) N (1 —s6) — B 2¥se )
@ T @ 5[5 2+ v (1 +v)] + (2 + ) 4y
P Lo ()
y1 (1 —s¢) + By 2+"’ '
T2 2, 5(5,2 4 v (1 4 )] — (2 + ) 4y
11— 2v1

-
which indicates the complex nature of the interaction between p, @; and p even for
the simple distribution (7.1). Equation (7.11) may be solved simultaneously with
(6.20) to determine p and @, in terms of p.
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The values p**, @ ** for which the cross-section becomes fully plastic, signifying
the start of Stage II, may also be obtained from (7.11) and (6.20) by setting p/a -= 1.
During Stage 1I of the problem (7.5) continues to hold in zone I and (7.10) in zone
H. Only the means of obtaming relations hetween p and @,. discussed in Section 6,
differs from Stage L. Stage II ends when o, = o, at r ~ « signifving that the state
of stress has entered a singular regime (B), constituting the start of Stage TTI
The procedure used in the solution of Stage I parallels Stage T and for economy
of space will not be included here.
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Fre. 5. Distribution of axial stress (v G} Fig, 6. Ratio of radial displacement to

ceyhnder radius (y = 0-3).

For a nonhardening material (y = 0) the stress distributions and displacements
for various positions of p, are shown in Figs. 3-6, and the projection of the loading
paths on a plane perpendicular to the axis of the yield surface is shown in Fig. 2.

To illustrate the effect of workhardening, a very drastic value 0-3 has been
selected for y . this corresponds roughly to the value of y for uranium in com-
pression (GUrINskY and DieNes 1936, p. 58).

Although not included in the Figures, it is found that at the completion of Stage
I the greatest difference between the hardening and nonhardening cases oceurs in
the axial component of stress (7:2 per cent at 7 == 0) ; the plane components differ
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Fic. 8. Comparison of the ratio of radial
displucement to cylinder radius for hardening
(y = 0-3) and nonhardening (y = 0)
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F16. 9. Load parameters for various positions of the boundaries p,. and p,, showing values
at initial yield (p*. @ *). at the start of Stage 11 (p**, @,**), and Stage IIT (p***, Q@ **), as
well as the asymptotic values of p; and p,.
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by less than 2 per cent, while the radial displacements (Fig. 8) are indistinguishable.
Larger differences oceur during Stages IT and JII and in Figs. 7 and 8 the components
of stress and displacement. respectively, for p; = 0-5 of Stage III are compared.
The character of the yield stress in simple shear for two values of p, is shown in
Fig. 10. The load parameters for the workhardening case are shown in Fig. 9 as a
funetion of p; and p,. The boundaries p, and p, for u workhardening material are
found to lag behind the nonhardening values for a given value of the load para-
meters p and @,.
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Fic. 10, Yield limit in shear at the completion F16. 11. Comparison of the thermo-mechanical
1 solution at the completion of Stage I for the
of Stage 1 and when T 03 shortly after the state of plane strain with that obtained by
start of Stuge I superposition of the purely thermal solution for
o e ' the state of plane strain and hydrostatic
pressure {shown by dashed lines) for y = 0.
Finally it may be noted that the cffect of adding o, = — p to the purely

thermal problem (p = 0) is not a matter of the simple super-position of a hydrostatic
pressure. In fact the plane strain conditions prevent this so that the elastic-plastic
deformation depends to a great extent on the relation between @, and p. To
illustrate this, a comparison of o, at the completion of Stage I for the thermo-
mechanical problem, considered in this paper, with the result obtained by super-
imposing a hydrostatic pressure upon the purely thermal solution* is shown in
Fig. 11.
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