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THE ELASTIC-PLASTIC CYLINDER SUBJECTED TO 

RADIALLY DISTRIBUTED HEAT SOURCE, LATERAL 

PRESSURE AND AXIAL FORCE WITH APPLICATION TO 

NUCLEAR REACTOR FUEL ELEMENTS” 

By T. B. KAMMASH~, S. A. MURCH$ and P. M. NAGHDI~ 

SUMMARY 

THE elastic-plastic deformation of a solid cylinder in the presence of a distributed heat source 
and subjected to a lateral pressure p and an axial fource F is considered in detail using Tresca’s 
yield function, its associated flow law, and a linear workhardening law. Particular attention is 
given to the class of problems in which the radial stress, and not the axial stress, is the intermediate 
principal stress. The general results are applied to the cylindrical nuclear reactor fuel element 
in the state of plane strain with a radially distributed Gaussian heat source, acting in its fissionable 
interior. The solution is expressed in closed form in terms of the exponential integral and the 
incomplete gamma function and is found to exhibit three stages of plastic deformation. In stage 
I the plastic domain consists of two concentric and adjacent zones with different stress fields and 
different rates of propagation which expand outward from the centre of the cylinder ; in stage II 
the elastic domain vanishes, while the inner plastic zone continues to propagate ; and in stage III 
a third plastic zone is formed at the outer radius which propagates inward. Throughout the 
deformation the states of stress are found to exhibit regular progression. A numerical example 
is included. 

1. INTRODUCTION 

THE brief list of existing complete solutions to elastic-plastic problems in the 

incremental strain theory of plastibity has been enriched in recent years by a 

number of thermoelastic-plastic investigations, e.g., P~HKUS (1954), BLAND (1956) 

WEINER (1956), WILHOIT (1958) and COWPEH (1958). Of the problems solved in 
the above collection, all but the first and third employ Tresca’s yield condition ; 
and of the plane strain solutions all contain, as do the isothermal solutions obtained 

to date, the axial stress a, as the intermediate principal stress. Furthermore, in 
all cases the state of stress is statically determinate. 

An exception may be found in the recent work of WEINER and HUDDLESTON 

(1959) who have obtained, for an incompressible nonhardening cylinder in the 
presence of a temperature gradient, a radially symmetric solution for the stress 

rates which for certain regimes of the Tresca yield surface is necessarily statically 
indeterminate. 

*The results presented in this paper were obtnined in the coursse of research sponsored by the Office of Ordtlauce 
Research, U.S. Army. The investigation was initiated under Contract DA-20-01%ORD-14447 with the University of 
Michigan, and was completed under Contract DA-04-200-ORD-171 with the University of California at Berkeley, 

t University of Michigan, Ann Arbor, Michigan. 
1 University of California, Berkeley, California. 
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L\mong the existing radially symmetric solutions associated with the probl~rri 
of the cl:&c~ @astic cylinder. that of the thick-walled tuhc has brcrr the suhjcct 
of 1~1m1cr011s investigations. (If partic#&r irlterest IS the work of I<OITI~:lI (1953) 

who obtained a Gmple and satisfactor\r hojution in c~losetl form for a nonhardening 
c~ompressibk elastic--plastic material, rlsiug ‘I’rescx’s yield condition and its 
assoGatcd Ilow rule. This was cxt~ntletl by RI.A~ I) (1 !k56) to include workhardening 
and a steady state teniperatllrc~ gradient. III htli of these in\~estigat,ions (a) 0, 

is the intcrmediatc* pririeipal stress so that. 011 wwurit of the symmetry of the 

protkni, tlie stress field is statically determinate, (I)) no singular regime of the 

‘I’resc73 loading fun(*tioli is eric~oilntercd arid (c) the initial yield begins at tlie lnuer 
sllrfacc. dc~\~c~lopin~ a plastk rq$on with a surrounding elastic aunrdus. 

‘I’hch prohlcrn (~oIlsidcred Ilcrc is that of the quasi-stattic deformation of au 
c,last,ic,~~l~l:\htic, cylinder. wliicali, \rith refrrelrec to c*ylindrical polar c~oortlinatcs 
(v, 0. 2) o~crilk the rc*giorl 0 2. ,’ _._ 0 ;IIKI is siil)jcc4ctl to a latqal pressilrc /I, 
:III axial forcse k’ :~rrd ii raclially tlistribrltc*tl heat SOII~~T (2. all of which increase 

monotonic~ally with time f. The solution is obtairictl for iin iuviscid workhardening 
material, with ‘I’rcnca’s loading f~lrrc+ion, its associatccl Ilow rrde. anal a work- 
hardening law based on the plastic, work per unit volume expended ; the non- 
harclcning elastic plastic, sohitiorr is also deduc~tl as a special case for eonipurison 

I)urposcs. I)~~p(~n(litig rii1011 t-tic* rcxlati\-cs valr1c5 of tlie lntlependently \*:wyilbg ’ load 
I);iraIndcm.‘ p, Q iml I+‘, tlic* initial !ieltl may occur at any rxliils 0 + I’ C n, 

wllile tlic asi; c*oInpouet~t of strcxss vz rriay or ma! not tw the intermediate principal 

stress. 11iclccd. iIr the c*l:iss of prot)lcms eonsidercd, the initial yield oecilrs ahig 

the axis of the eylindcr r 0, wlicw the state of stress reaehrs the slnjinlar regime 

Oe - a, 1 0). ~-- U_ ~. 2/c,. where gr and gB are respectively the radial and tangential 
c*oniponents of stress, and 17, is the yield limit in simple shear. The ensuing state 
then consists of an elastic, ~IIII~IIS (p z;. r < (I) surrounding a plastic* region 
(0 < r C2 p), with the elastic -plastic boundary r == p. Tlic solution ill the plastic 
domain (0 G r z p) dots not k~ticl itself to deseriptiou by a single stress field ; 
iiibtc;d, coiitlnllity recluircmcnth. iIlil)osed cm the stresses and displacement, at the 

clRsti(‘--l~l;lsti(’ t)orltldary p, together with u)nsidcratioIl of the elastic loading paths 

as well as thr l)ossiMc paths that the stress might follow in the plastic range demand 

t,liat the plastic* domain (0 < r 3. p) tw csomposed of two cboncentric zones. separated 
by an interface r p1 < p, each with different stress fields and different rates of 

propagation. In this manner the state of stress is found to exhibit regular progression 

(following the terminology of Honcx l!L56) ; i.e., the state of stress iipwi yielding 
first lies on a regular face of the yield stIrface and then moves toward a singular 
regime where it stays throughout the remainder of the plastic deformation. 

An interesting feature of the problem is the continued propagation of the mter- 
face boundary pl, after the elastic -plastic boundary p has reached the outer surface 
r ~~ (I, so that the caylincler may sustain further loading. ;Z second stage of the 

problem (referred to as Stage II) is thus entered in which the elastic region has 

vanished entirely. Stage II of the problem is short-lived, however, as the state of 

stress at I‘ == (I reacshrs the regimta I1 tjcfore the boundary p1 has moved appreciably 

(Fig. 1). and :L third anti final stage of the problem (Stage III) is entered. In 

Stage III thr st,ate of stress again exhibits regular progression, giving rise to a new 

zone pz < r i N (in whkh the state of stress corresponds to regime B), initiating at 
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T = a with the interface boundary pZ propagating inward ; hence the two interfaces 

pZ and p1 approach each other. It is found that these boundaries never meet but 

approach limit values as the temperature tends to infinity. This observation is 

similar to that made by WIIJIOIT (1958) f or a ring subjected to a temperature 

gradient, and the work of COWPEH. (1959) for a hollow sphere subjected to a tcmpera- 

ture gradient. 

Specifically, the contents of the paper are arranged in two parts. In Part, I 

(Sections l-4) of the present paper, following some preliminaries, the character 

of the initial yield for a given class of temperature distributions is discussed in 

detail. The differential equations for the stress fields corresponding to various regimes 

of the Tresca yield surface are derived for an arbitrary, radially symmetric, 

temperature distribution and without the specifications of any particular hardening 

law. Also included, is the solution for the cast of a nonhardening elastic-plastic 

material. 

As an application of the foregoing results in Part II (Sections 5-y), cylindrical 

nuclear reactor fuel elements in the state of plane strain are considered in detail. 

The solid cylinder of fissionable material forms the heat generating portion of the 

fuel element and is surrounded by a hollow cylinder of nonfissionable material 

called ‘ cladding.’ The uniform pressure between the two cylinders is then a 

consequence solely of the temperature ficltl generated (precluding a shrink fit for 

simplicity). Using a Gaussian heat source and a linear hardening law, the gcncral 

differential equations for stress and the displacement derived in Part I, corrcspoud- 

ing to the regimes which arise in the various stages of the problem, arc solved and 

applied in the plastic regime. A numerical example is worked out and complete 

results presented for a workhardening material as well as a nonhardening material 

for comparison. A further comparison is made of the solution of the coupled 

mechanical-thermal problem considered here with that obtained by a simple 

superposition of solutions to the separate mechanical and thermal problems. 

PART I. GENERAL CONSIDEKATIONS 

2. PRELIMINARY BACKGROUND 

With reference to cylindrical polar coordinates (7, 8, z), we recall for future 

reference that for axisymmetric problems in the state of plane strain the stress 

differential equations of equilibrium in the absence of body forces become simply 

z+ 
0, - @B ~ = 0, 

T 

and the nonvanishing plane components of strain are given by 

3u u 
cr = -_) 

3r 
E&q = -_) 

T 
(2.2) 

where u is the radial displacement. The elastic components of strain l ,‘, co’, cZ’ 
are related to the stresses through the generalized Hooke’s law, while the plastic 
components of strain (E?” = E, - E?‘. etc) are expressed for workhardening materials 

bY 
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where the plastic potentials is regular, dot denotes differentiation with respect to 

time, and h is a positive function (HILL 1950). When the hardening is zero the 

quantity hf on the right-hand side of (2.3) is to be replaced by A. 

FIG. 1. Tresea’s yield hesrrgon when v,, q, CQ xre the prinripal stresses. 

Throughout this paper the plastic potential is taken as Tresca’s yield function 

f=max[l 07 - ~gl, 1~8 - ~1, [CT% - orj] = 2k> (2.4) 

keeping in mind that the flow rule in the form (2.3) is valid only at regular regimes 

of (2.4) ; the functionf is shown schematically in Fig. 1 with the various regimes 

labelled. The material is assumed to harden according to the law 

2is = 7j *a, (2.5) 

where k is the yield stress in simple shear, T) is a constant which depends on the 

material, and 

wr = cry i,” + cs8 ig” + (J* 2%” (2.6) 

is the rate of plastic work per unit volume. 
Although more general constitutive equations for non-isot~~ermal plasticity 

have been recently proposed by PHAGEK (1958), the thermal effect is here accounted 

for only in the generalized Hooke’s law, so that the condition of compressibility is 

where T is the change in temperature. The mechanical and thermal parameters 

E, Y and CC (modulus of elasticity, Poisson’s ratio and the coe~ciellt of linear 

expansion, respectively), as well as the initial yield limit k,, are assumed independent 

of temperature. 
Since, for t,he problem being considered, the deformation is a direct consequence 

of the change in temperature arising from a distributed heat source within the 

body, any temperature differeuce that might occur due to the deformation itself 
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(as in thermoelastic damping) may be ignored, thus uncoupling the thermal and 

mechanical problems ; furthermore, if the loading (thermal as well as mechanical) 

occurs quasi-statically, the heat conduction equation is characterized (e.g., 

THOMPSON and ROWXHS 1956, p. 16.5) by 

K V2 T = - Q, (24 

where K is the thermal conductivity and Q is a radially distributed thermal sourre 
expressible in terms of units of heat per unit time per unit volume, and 

3. TIIERMOELASTIC SOLUTION ASD INITIAL YIELD 

While our main concern is with the elastic-lArstic* cylinder occupying the region 0 2; T 5 n. 
for future reference it is necoessary to consider the corresponding thermoelastic problem. Sped- 

tally, we recall the (quasi-static) thernroelastic solution to the axisynrruetric problem of a hollow 
cylinder (p 5 r 5 n) in the state of plane strain and subjected to a temperature distribution’/‘, 
superposed on the elastic solution due only to a uniform axial stress o, = C’s (e.g.. TIMOSHENKO and 
GOODIER 1951, p. 409) : 

aET ‘LvC, E 
uz= -___ 1 - Y + (1- 2Y) (1 + v) 

+ c,, 

(3.1) 

where J 

The thermoelastic solution for the solid cylinder (0 < r < a) may be deducect from (3.1) by 
allowing in the integrals the lower limit p + 0. and by setting the coellicient C’, = I). which ensures 
the regularity of the solution at r = 0. When this solution is subjected to the boundary con- 
ditions appropriate to the solid cylinder subjected to a radial temperature dkribution T, a 
lateral pressure p, and an axial force F (which includes the effects of both CT3 as well as that 
arising from the plane strain solution) the stresses are found to I)e 

0 I = lFL!?- [B (a) - 0 (r)] - p. 
1 -Y 

9 = zv [e (a) + B (r) - T] -- p, (X.2) 

where 

oz = $, [ - T + 26’ ((I)] + $, 

B(r) =I 
s 

r 

12 
T (r) rtir. 

0 
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According to Tresca’s yield condition yielding occurs when one of the quantities 

(3.3) 

reaches the value 2ke. Since the determination of the maximum of (3.3) depends on the load 
parameters and especially on the distribution of T (which is so far arbitrary), we restrict ourselves 
to the class of monotone temperature distributions which assutnes its maximum either at r = 0 
or at T = a. W&h the notation 

the expressions (X3), when evaluated at r = 0 and r = o, read 

(3.4) 

where the arbitrary constant Q,, will be associated subsequently with a physical quantity related 
to the temperature field. A detailed comparison of the relative values of the five independent 
expressions appearing in (3.5) for the entire range of the load parameters. though st~ightforward, 
is lengthy and tedious. For our present purposes, however, we note that if the values of pn, Q,, 
and P are restricted to the range 1 5 m 5 2, Qs > 0, then one is led to the result that the initia- 
tion of yield may occur in the three ways. summarized in Table 1. It may be noted here that 
the choice of the range of w in Table 1 was motivated by the temperature distribution employed 
in Section 5 for which nr. N 1.12. 

Range of the parameter R 
~- 

Yield condition Location of initial gield 
~- 

irr - 0; = 2k 

r=O 
08 - OS -= 2k 

or - ire =- -- 2k l r=o 

--- ---~__.--_l_ _.__ __- ~_ 

RIO, SF_ - CI, F- _ Zk r=a 
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4. Sor.~~rrorus IN THF, PLASTIC DOMAIN 

The determination of the state of stress in the plastic domain generally, requires 
the solution of the system of nonlinear differential equations (2.1) to (2.7) ; however, 
it may be shown that for a littear workhardening material these equations can be 
directly integrated. To this end we observe that if f is a regular homogeneous 
fun&ion of degree II, then by (2.6& (2.3), and with an appeal to Euler’s theorem on 
homogeneous functions, IVp = hftaf. When f is the loading function associated 
with the regular regimes of (2.4), then n = 1, f = 2k. and 

I@,, = zhjk. (8.1) 

Substitution of (4.1) into (2.5) leads to &:7c = 7 (kj), w 11c 111 1 ’ :I p on integration becomes 

log (k,‘k,) = +i ; h = hj’ dt, 
I 

(4.2) 

indicating t,lic nonlincsr variation of ~5 with X. Expanding the left-hand sitir of 
(1.2) about k ‘Ir, --;I 1 and r~taiI~il~g only the Iincar tt-rtn, rc~suIts in 

!C = k, (1 + 7$), (4.3) 

as the law for linear hardening which, since the flow ruie (2.3) was employed, 
is valid only for regular regimes of the Tresca yield function. The corresponding 
result for the singular regimes of (2.4) requires different considerations, e.g.. for 
the regime B in Fig. 1, a, = ox. cB = ur + 3k, (2.6) because of the vanishing of 
plastic volume change becomes 

lFp = 2k igft. 

Bepeating the steps between (4.2) and (4.3) we obta.in 

(4.4) 

k = k, (1 + 17 Q”), (1.5) 

which is identical in form to f&3), except that h is replaced by CT@“, ExpressioI~s 
similar to (4.5) may be deduced in a similar manner for other singular regimes of 
(2.4). 

The stress field is, in general, statically indeterminate, requiring the simultaneous 
solution of the seven equations (2.1) to (Z-E), (2.7), (2.8) and one of the type (4.3) 
or (4.5). As this system is linear, it admits twelve solutions, corresponding to the 
six regular and six singular regimes of the piecewise linear loading function f2.4). 
These solutions for the radially symmetric stress and displacelnent fields are general 
and are valid either in full or in part for all radially symmetric temperature distribu- 
tions, including the more specialized examples. where the initial yield o~~+irs at 
r = a or r = 0, discussed in Section 3. 

We now proceed to consider the individual regular regimes of Tresra’s loading 
functions as follows : 

(a) BegimP AR (c+, the intermediat.r principal stress). Tfie solution here is 
included in the work of BLAND (19.56) and will not be repeated, It should be 
recalled that the workhardening parameter employed by BLASD, namely the 
equivalent plastir strain (see HILL 1950, p- 30), differs from that used here (2.6) ; 
however, as shown subsequently by BIAK;U (1957j, the two parameters are etluivalent 
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as long as the regime in question is regular and associated with either a linear or a 

quadratic loading function. 

(b) Regime BC (u,, the intermediate principal stress). The presence of the 

axial component of stress (To in the loading function, corresponding to this regime, 

renders the stress distribution statically indeterminate, even in the nonhardening 

case. Substituting oz from the loading function, i.e., oB - oz = 2k, and (T@ from 

(2.1) into the compressibility condition (2.7), gives 

2 (1 - 2Y) 
~-k + 3aT, (4.6a) 

E 

from which 

Throughout this section (se has been assllmrtl greater than oz; when gz > (TV the 

sign of k need only be taken negative. 

The flow law (2.3) gives upon integration with respect to time 

so that 

I, Ey : E@ I, : Ez” = 0 : 1 : - 1, 

E* = Eel + C* ,, = l O’ - E* ,I = Eg’ - EZ + 6%‘. 

By the generalized Hooke’s law together with (2.1) and the loading function, the 

total tangential strain given above may be expressed as 

l O zzz u zz - 6, _+ 
2(1 - V) 
__~. 

r E 
(4.7) 

Elimination of u between (4.6) and (4.7) after some manipulation results in the 

following differential equation for O, : 

2 (1 - V) r2 2 + 6 (1 - V) r y; + (1 - 2~) CT,, = 

--aET4Er;~+212+2(1 -V)T~;+Ec,++ (4.8) 

It may be of interest to note that (4.8) may also be obtained from the appropriate 

differential equation of strain compatibility. 

Since the yield stress k in general depends on parameters which may in turn be 

functions of the dependent variable or, (4.8) cannot be solved until k is specified. 
The nature of the loading, however, is such that the axial strain is independent of 

CS~, so that the solution of (4.8) is immediately attainable for a nonhardening material. 

The homogeneous solution of (4.8) for a nonhardening material is of the form 

and the particular solution may be found by variation of parameters to be 
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(4.10) 

With fly known the tangemial and the axial stress may be found through the 
equilibrium equation and the yield condition, respectively. The second expression 
in braces (4.10) leads to a term appearing in the expression for oz which may be 
itlcntified with C,, and results in 

EZ -= 2 (1 - %J) 2 sr 8, c, + $5 (4.11) 
, 

where C, is a function of time only. Thus, the stress d~stri~ntion for a nonha~e~i~g 
material is given by 

2, J 
Since the foregoing solution is not valid when Y = 4, the integrations leading 
to (4.12) requires separate consideration. Here the solution for an incompressible 
material may be obtained directly from (4.8) ; the result is similar to (4,12), the 
chief difference being that the leading terms are logarithmic in r, and that with 
reference to cz, corresponding for (4.11), a uniform axial stress gives rise to a 
uniform axial strain. These results, for an uncompressible material, when differen- 
tiated with respect to time, agree with the previously known solution (WEINER 
1959) for the stress-rate and the displacement-rate of an incompressible material. 
In contrast to the solution for an incompressible material, it may be seen from 
(4.11) that for a compressible material a uniform axial stress may result in a non- 
uniform axial strain. 
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(c) Elegime CD foe, the intermediate principal stress). -4s in (b) the stress 

distribut.ion is again statically indeterminate, and the procedure leading to (4.6) 

and (US) gives 

- (1 - zvj or = - 2k - %vr; 

i 

(4.14) 

-E+ET-al+, 

whose solution for a nonhardening material is 

!3=~.-.~ 
- k, lcQ J 

The states of stress for the singular regimes A, B, C, D, E and F of Fig. 1 

are also, in general, statically indeterminate for a workhardening material ; for a 

nonhardening material, however, this is not the case, and the solutions may be 

obtained dirertly from the equilibrium equation and the yield condition : 

,crr = ak, log r + D, 

regime A : \,, = o, =: a, _ Sk, 
(4.16) 

regime 8 : 
(r, = 0% = arc, log r + I& 

(4.17) 
cig = CT= - zk, 

(4.18) 

where D,, L3,, IIs are functions of time only. The states of stress at regimes I), E 
and F are obtained by replacing k, by - k, in (4.16), (4.17) and (4.18), respectively. 
The radial displacement associated with the above solutions, again obtained from 

(2.7), reads 
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where B, is an arbitrary function of time and the coefiicients tl, & and & for each 

of the singular regimes may be found from 

(4.20) 

together with (4.16), (4.17) and (4.18). 

PART II. APPLICATION TO CYLINDRICAL 

FUEL ELEMENTS 

NUCLEAR REACTOR 

5. TEMPERATURE DISTRIBUTION ANL) THE CHARACTER OF IX~TIAI, YIF.LU 

The fuel portion of a cylindrical reactor fuel element can be treated as a solid 

cylinder in the state of plane strain subjected to a thermal gradient and an external 

pressure , ’ the former is due to heat generat,ed by the nuclear fission of the element 

itself which thus behaves as a dist,ributed heat source, while the latter is due to the 

expansion of the solid fissionable core against the nonfissionable hollow cylindrical 

celacldirig, which serves to conduct heat away. The pressure p at the interface 

(r = a) of the two cylinders is, t.herefore, not independent but rather a consequence 

of the temperature field. It is assumed for clarity that when Q is zero the stress 

field vanishes, i.e., there is no shrink-fit, although this may be easily included. 

A complete analysis of the reactor problem entails an elastic-plastic treatment of 

both cylinders, but here emphasis is placed on the elastic-plastic solid core and 

the parameters of the problem are selected with this goal in mind ; the hollow 
cladding is mentioned only to the extent that it affects the solution of the solid 

core. 
The heat source will be taken as Gaussian in character, i.e., 

Q = Qoexp(-@) (5.1) 
where ~2 is a parameter. When p2 = 0, Q reduces to Q,,, a distributed source 

of uniform strength. With (5.1) the solution of (2.8), subject to the boundary 

condition T = ?n, at r = a and 

written as 

where 

T = T, + -$!L Ei 
1P2 

the regularity requirement at r = 0, may be 

- p2P)- Ei(---2a2)-2logr , 
a 1 

Ei(-a?) = - J : dy. + Y 
(5.3) 

is the exponential integral. 
Since there is no heat source in the cladding (a 5 r 5 b), the temperature 

distribution is given by the homogeneous solution of (2.8), i.e., 

T = T, - Ta log E + T,, 
(4 b/a) a 

(5.4) 

where the boundary conditions T, and T, have been utilized. 

Before determining the location of the initial yield, as well as p*, T* and Qo* 

(i.e., the values. respectively, of p, T and Q. at the initiation of yield), it is necessary 
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to establish the functional relation between the parameters QO, Ta, F and p. One 
such relation is obtained by equating the radial displacements of the two cylinders 
at their interfare r = a. Since prior to yielding both cylinders are entirely elastic. 
the displaee~~~nts in each may be written from the first two of (3.1) as 

(5.5) 

where the index i = 1, 2, refers to the quantities appropriate to the solid core. and 
the hollow cladding, respectively. if the pressure at the inns face is - p, then by 
(5.5) 

1 + Vl 1 + v2 2!1.L24 2 
p 

-F-- --. = - Q_ 5) 
‘1 E’, 

1 1 - 
2V, 

c,cz, 1 - 1 ‘21, C’,(l), (3.6) 
1 

and the roeflicients C,(l) are found from the se~ontl of (3.1) rmtl the honndary 
csonditions (r, (n) = - p, CI~ (0) = 0: 

where by (5.2} and (5.4) 

and similarly, 

The relation between Q. and the interface temperature T,, following the procedure 
employed hy GLASSTOKE (19%) for the case pz = 0, is obtained by equating the 

flux pkr unit length, produced in the core at r = (I, 

P (4 = - $$ [exp (- I*= 9) - 11, 

to that across any surface of the source-free cladding 

p =;: iTa - Tb) 2,& 
Iogb/a 2’ 

Hence 

T, = hQ@, 
Wh~IX 

k w4 
‘=(Tb;Te_ ~)‘~~~f&~~~~p(--~~~~~ 

which reduces to GL~SSTONE’S results when p2 = 0. 

(5.9) 

(5.10) 

(5.1 la) 
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Substituting for C,(l) and C1(2) from (5.7), equation (5.6) becomes 

13 

p 

i 
__2(1 - ?a21 _ 2 (1 - %2_! 1 ; *1 

"1 

1 ; % 
2 Ii, (P,‘d - 1) Ls’, I 

= Q, [:! (1 + V2) Q2 h (g$) * i__t2.,6e - cc1 (1 + VI) (h + “&]Y (5.12) 
a 

where h arlrl v2 are defined by (5.llb) and (3.4b), respectisely. 
We are now in a position to establish the character of initial yield. Since in the 

state of plane strain the superposed axial stress C, = 0, we observe by the last of 
(3.1) that when p = 0, 

F 
-L==- 

na2 
2a, El 6 (a> - 2v, p. (5.13) 

It then follows from Table 1 and the first of (3.4a) that initial yielding occurs at 
r=O if 

-a,E,T,-a~~~veQo+Pjl-2v,)<~~ 
TFl. - 2 

% QiI 1)’ (5.14) 
1 Y 

in which case (as may be seen from Table 1) the ‘yield condition is characterized 

by 
1% - cr$f = lr& - crZl = 2k,. (5.15) 

Before proceeding further it is necessary to sperify the ratios of thr c~oef’ficicnts 
(both merhanical and thermal) in the core to those in the cladding. i.e., 

*I 
-& = % 

Q’-2 _=8, -Zl, k, Vl -- . cc2 
4 

= 0.22, (5.16a) 
VZ! 

as well as 
I:,=3 b 3 

-, _ - _. 
Tb 2 n 2 

(5.16b) 

It may he noted here that the seiection of the ratios (5.16a) is based on the assump- 
tion of a nranium core surrounded by an aluminium cladding. 

If, with the aid of (5.12) and f&11), p and T, are eliminated from (%I-&), then 
it may be easily shown that the ratios (5.16) render the inequality (5.11) valid. 
Hence if yielding occurs in the core before the cladding- which, subject to a 
later verification. is the case for the selected ratios (5.16) - then it must oc’c’ur at 
r = o according to (5.15). 

SubstitutiI~~ F from (5.13) into the second of (3.5) and equating the results 
to ‘L-k, in accord with (5.15) results in the following relation between QO* and p*, 

t? (??!a Qo* [ 2h (1 - YJ + v1 + y2 (1 - %,)I -p* (I - YV,) = ‘Lk,, (5.17) 
1 

which may be solved together with (5.12) to obtain independent expressions for 
p* and Q,*. 

To confirm the statement that the solid core yields before the hollow tladding 
we need only compare p* with the corresponding value of p obtained under the 
assumption that initial yield first occurs in the cladding instead. This value p* is 
found by incorporating (5.12) into the results of BLAND (1X16), where it is sub- 
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sequently found that p* < p* for the parameters selected, so that yielding occurs 

first in the core. It is important to observe that having established the character 

of initial yield, the value of p* ceases to be valid even for subsequent yielding of 

the cladding, since it was obtained through the use of the relation (5.12) which 

holds only when both elements are completely elastic. An exact value of p* may be 

obtained using a relation similar to (5.12) but reflecting the true state of plastic 

deformation in the core. 

6. ELASTIC-PLASYK S~LIWION boa LIZWAR ~oI~~IIA~~~~IN~ MAT~~I~I, 

Having determined the character of the initial yield, we now proceed to 

establish the mode of the plastic deformation in the solid core. Because of the 

symmetry the elastic-plastic* boundary is a cylinder of radius p, defining the 

plastic (0 5 r g p) and the elastic (p :.? r 5 a) domains. The solution in the elastic 

domain offers no difficulty and may be obtained from (8.1) by setting c‘s = 0. 

For the plastic domain all the possible fields of stress discussed in Section s are at 

our disposal. Attempts to characterize the state of stress in the plastic domain by 

a single regime (a~thougt~ satisfying all of the field equations) disclose that such 

solutions do not [~onforI~~ to all of’ the continuity ret~uirements concerning the 

stresses and displaremetrts at the elastic-plastic boundary and hewe mu& hc 

rejcrtrd. Thrsc~ continuity requiremrnts, together with the consideration of (a) the 

loading paths during the purely elastic stage of deformation (Fig. 2) for any r < 0, 

FIG. 2. A portion of Tresca’s yield surface showing the stress profiles for a nonhardening 
material (y = 0). The dashed curve corresponds to the state of stress at the initiation of yield. 

(b) the fact t,hat the initial yield occurs on an edge of the Tresca yield surface 

(the singular regime C), and (c) the possible paths the state of stress may take 

following the initial yield, lead to the possibility of regarding the plastic domain 
(0 s r -; p), as consisting of two concentric zones, separated by an interface 
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r = pl, and with the state of stress in each zone characterized by a different regime 

of Tresca’s loading function. For reasons that will become apparent later, the 

solution in the range of contained plastic deformation of the cylinder will be 

subsequently referred to as the solution for Stage I of deformation. 

The central zone I (0 5 r 5 pl) consists of stress states lying along an edge (regime C in Pig. 1) 
and are given by equations (4.18). The state of stress in the plastic annulus, zone II (pl 5 r 5 p), 
surrounding zone I, lies on the face 

00 - Oz = 2k (6.1) 

of the Tresca surface and thus satisfies equation (4.8) whose solution for a nonhardening elastic- 
plastic material is given by (4.12). However, before the stress field in zone II may be found for 
a workhardening material, the yield stress k appearing in (4.8) must be determined through the 
workhardening law (4.8), which by the flow rule (2.3) and for the state of plane strain (c, = 0) 
becomes 

With the use of the generalized 
strain may be written as 

k = k, (1 + 7 Q’). (6.2) 

Hooke’s law, (2.1) and (6.1). the elastic component of the axial 

so that by (6.2) k assumes the form 

where 

(6.4) 

and 

y _ P?ko, Y 
K=-, 

E 
(6.5a) 

1 '+Y 

(6.5b) 

When (6.4) is substituted into (4.8), there results the following differential equation in q : 

where 

b, = 2 (1 - vl) - (1 - Y~)~ K, 

b, = (1 - a~,)(1 - K). 

The homogeneous solution of (6.6) has the same form as (4.8) with s1 and s2 in (4.9) replaced by 

, (6.7) 

respectively ; these reduce to s1 and s2 when 7 = 0. 
The particular solution of (6.6) for any teniperature distribution, as in Section 4, may be 

obtained by variation of parameters. However, since the character of the initial yield was 
established only for the class of temperature distributions for which 1 < m < 2 (Table l), in the 
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complete solution of (6.6) recorded below the specific temperature distribution (3.2) corresponding 
nc u 1.12 has been used : 

_t Ei ( - p2 r2) - Ei (- 

(6.8) 

where 

is the mrompletc gamma function. It follows from (6.1) and (2.3) that for loading from an elastic 

state Zrr” = I). and hence the radial strain is purely elastic. Thus, the radial displacement corres- 

ponding to the solution (6.8) is most easily evaluated through (-. 0 7) with cZ = 0, the generalized 

Hook’s law, and (6.1) by 

E, u -- __ - ‘Jq or 1 2 (1 .- Yl) 0* - 2 (1 - V,)/S t 2LcLr 23, 7,. (6.2) 
r 

which with (KS) completes the solution for zone II (pr 2 r S p). 
Summarizing, the temperature Aeld is given throughout the region 0 2 r 2 Q by (3.2), the 

stress and displacement fields are given : 
(a) in plastic zone I (O 5 r 2 pl) by (1.18) and (4.19). respectively, and represented in 
stress space by the singular regime C in Pig. 1 ; (b) in plastic zone II (pl & r 2 p) 

by (6.8) and (6.2) respectively, and represented in stress spate by the regime IN’ ; and 
(c) in the elastic zone (p 5 r 5 n) by (3.1) with Cs = 0. 

With the form of the stress and displacement fields established in all three zones of the problem, 

it remains to determine the five coelllcients D,, A,, A,, C,, C,, as well as the relation between 

the boundaries p, pt, and the load parameters p and Qi,. Equilibrium together with continuity 
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of the yield condition and d~spIacements requires tll;ct the stresses themselves be ~ontiI~u[)us 
not only at the elastic-plastic boundary p but at the interface p1 between the two plastic* zones. 
Furthermore, an examination of the c*nmpressibility equation reveals that continuity of u at 
r = p1 is equivalent to the requirement that tl” (pl) = o : this latter condition c*onsitlerably 

simplifies the determination of the five coefficients mentioned above. In order to determine 

the foregoing unknowns, we require (a) continuity ouly of +, oe, and c,” at T = pl. sincbe oz and 14 
will automatically be continuous through the yield rondition, and the rompressibility equation. 
respectively ; (1)) continuity of or, os, and gZ at r = p, since ,I is continuous again through the 
compressibility equation and the vanishing of er” in zone II ; Cc) satisfaction of the boundary 

ronditinn o‘~ (n) = - p : and (d) the m:ltching of the displacements of the solid rylinder nlth that 
of the hollow cladding, as was done previously in Section 5 for the purely elastic solution of thr 
problem. For a given value of p this stage of the problem is thus statically indeterminate, rrrluir- 
ing the solution of eight equations in eight unknowns. 

In the central zone I the stresses through rquiIibrium and the loading function are found to hare 
the same form as (4.J 8) except that k, is repiaced by IS ; the radial displacement is found through the 
comp~ssibility equation (2.7) to be 

3 1 - 2 Y1 Z(l - &VI) 1 r 7 

,(,=-_-r_-_ -- - krdr. 
2 E, E s + 1 s 3~ Trdr, 

1 r 0 r 0 

(Klrt) 

from which with the use of Iiookc’s law and the plastic c~otnponent of radial strain is found to be 

It may be seen from the c~r)tlll)ressil)ilit~ relation (2.7) whic*lt holds throughout the c~glintlrr, that 
since the stresses and displacement u are continuous at r = pl, t,he elastic as well as thr l)lastic* 

components of the radial strain e;tch must be continuous separately. Since Ed” L o tbroughtmt 
zone II. then by (6.11) 

1 - zv, D, ‘Lk (P,) _ _ = __ (1 _ yl) _ !.!$.%.4 P1kr& - ‘la, T fpI) + f?! PITr&. 
e 

(6.12) 

1 2 El 1 s Pl 0 s Pr2 0 

Substituting (1.18) into (6.2). though Hnoke’s law, the value of h- throughout zone I is f(~und to br 

whicah. when solved with (6.12) after some sirlll)lific~;ltion, yields 

((i.13) 

?‘(P*) Gp, 7’(r) +r)=l+Y l-‘@12’-+-‘1’ 
0 [ * n 

+“+hJ + 

Iz I 

(6.13) 

With D, and k known, the radial displat~ernrnt may now be written as 

which completes the solution for zone I. 
Continuity of the plane romponents of stress [given by (3.1) in the elastic zone. and by (ti.8) 

in the plastic zone II, and by (4.18) in the plastic zone I] at r = p1 and r = p gives, respcetively. 
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be (Ph 

where the barred quantities correspond to the partic*ui:tr solution of (6.6). 
The time parnmcters Cr. C, of the elastic domain appearing in (6.i7b) are no longer given 

by (5.7) but must he redetermined from (3.1) with the additional boundary condition 
(ue - uz)rzP = 2ko giving 

With C,(l) thus determmed it is appropriate to record here the relation between I+ and “P, 
for Stage I, wh~h may be obtained from (5.6) through (5.7b) and (Kl9a) : 

E:qusting (6.17a) and (6.18b). them results two equations in the unknowns 0,. pr, and p whic*h 
may be best solved numerically for various choices of p. \Vith @, and p1 determined, all of the 
coefficients C,, C,, A,, .4,, I),, given by (6.10:r). (&lRb), (6.17~1) and (61s). respectively, may be 
evaluated, and the solution for this stage of the problem is complete. 

&ages II and III 

Due to the nature of the inoblem and the yield condition (6.11, when the elastic--plastic 
boundary p reaches the outer radius r := (I. the mterface boundary pr cont.inues to propagate 
and the ryhnder is still capable of acceptrng more load, even in the absence of workhardening. 

Sinre zone II now extends to the interface r = a, the relation (6.20) ceases to be valid and a 
new relation between p am1 @r must be obtuined. Sirme the cladding is still assumed to be elastic,, 

(5.5) with i = 2 remains valid and is set equal to (6.9) at r :: n. 
A serond relation between p and @t may be found by substitution of (6.18) {which remains 

valid in Stage II, smce the form of the solution in zone I has not changed) into the boundary 
condition O,(U) = -- 1~. The two new relatmns between p and “b, may then be solved simul- 
taneously for the two unknowns. Throughout Stage II, in the absence of an elastic-plastic* 
boundary during Stage II, p1 may be treated as the independent variable. 
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The description of the plastic deformation provided 1)~ Stage II continues to be valid. until 
the state of stress at the outer radius T = (E of the cylinder. represented during Stage I I by a point 
moving in repimr RC of Fig. 1, rea(hrh the singular rrgimc R, at whieb time the s~ilution enters 
Stage III. As the St&es of stress at su~c~essive points in zone 11 of the cylinder enter regime U, 
a second interface pz is formed which m~)ves inward from r =.: u and forms a I&stir domain III 
(pz ;.i r 5 n), rorrcsponding to st.atcs of stress lying in regime B. 

The differential equation governing thr rAinI stress or (as well as 0%) since a, = L,) in zone 
III, derived in a manner similar to (KG) for zone II, is given by 

In the preceding Sections the character of the initial yield and the srrbsryuent 
~lef~)rmation was established for a c*lass of radially symmetric! tem~)eratL~re distribu- 
tions (1 5 BL 2 2). chosen to include (5.2) whit*h was due to a Gaussian heat 
source, distributed throughout the region. The expressions in Section 6 are written 
in general terms to include any temperatnrc distribution in this class. In order 
to gain an insight into the problem, it is desirable to consider a detaiIed example 
for one case. Since the expressions in Section 6 become involved and intricate, 
when (5.2) is inserted, for the sake of simplicity we allow the parameter ~2 to 
approach zero. The temperature distribution (5.2) then assumes the simple form 

and !f-!? becomes 
T* 

where 

(7.4) 

(7.3) 
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and by (5.11b) 
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n2 log h ‘0 
(7.4) 

~‘on~pamon plotr5 of the functions spe(*ilictl 1)). (5.2) and (7.1) as well as the 

integrals whkh appear ~II the solutiotr revcal a qualitative sinlilarity betwrrn t,he 
two temperature distributions, which together with the fact that both produce 
initial yield of the same character (~1 -.: I, so that the results in Table z are 
:rl~plicat~lc) justilics the use of (7.1) 111 place of the more realistic cxprcssion (5.2). 
l’11c resulting equations are thus c*onaitlerably simpliflchtl. 

We now proceed to obtain explicit results for a workhardening material obeying 
(2.5) subjected to a uniformly diskibuted heat soltrcc (pz = 0) which gives rise to 
the temperature field (7.1). In each expression the nonhardening material may be 
obtained by setting y = K = O. 

For the values of the parameters (5.16a) selected in Section 5 we continue the 
example and obtain explicit expressions using the alternative temperature field 
(7.1) for the quantities discussed in Section 6. In zone I for all stages of the problem 

the state of stress and the displacement continue to be given by (1.18) and (6.16) 
with D, and k becoming through (6.11) and (6.15). respectively : 

1 -- 2V, I), 
__--- = 

‘1 k0 

- (7*5) 

In zone II for all stages the stresses may be found hy allowing p2 to approach zero 
in (6.8) or more easily from (6.6). the right-hand side of which upon substitution 
of (7.1) becomes 

r 2 
0, + 0, - ’ 

0 
(7.6) 

a 
where 

I (7.7) 
h, = & [2 - Q1 (1 -I- S)], 

h, = Q1 6 [5 - (3 - 2VJ K], 

and consequently the stress field in zone II is 

Qr 4 _=- + A, + A, + A, 
k, r”a p6 

“B = (1 - s5) ;; + (1 - sg) 2 + A, + 3.4, (;)2s 
ko 

*z ue 2k 
_z_- 

k, k, G’ 
where 

and k is given by (6.4). 

A, = ;, A, = -d&-b, 
2 36, + b2 

(7.3) 

(7.9) 
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By (7.5) and (7.9), A, and A, may be found through (6.18) to be 

21 

A, = -- l p1 -; [;_Z [5/z + y (1 + “,,I - (% + 2) A,). %i - 86 

AsL1 p1 __ 56+2 [~~~~ [5/2 + y (1 + q)] - (ss + 2) ‘Is]’ 
85 ~ 86 a2 1 (7.10) 

q _- 
ko 

0 0.2 0.4 r 0.6 0 8 I.0 0 0.2 09 r 0.6 0.8 I.0 

ii a 

VI(:. 3. Distribution of radial stress ( y = 0). FIG. .I.. I)istribution of tangential stress 

(Y = 0). 

Equating these values of A, and A, with those given by (6.17a) with subsequent 

elimination of p1 between the two resulting equations leads to the following relation : 

P‘ Ns.5 -se) 

(-’ 1 ,a, 
Yl (1 - %I - Bl ztsg 

f+ 01 s [5, 2 + y (1 + "I)1 + (2 + se) 4) 
"1 1 

1 r1p - se-) + Bl I 
2f.Q 

, 
= 

$$- @I 6 [5,‘2 + Y (1 + vl)l - (2 + 8s) A, 
"1 I (7.11) 

which indicates the complex nature 6f the interaction between p, Q1 and p even for 

the simple distribution (‘7.1). Equation (7.11) may be solved simultaneously with 

(6.20) to determine p and OI in terms of p. 



the start of Stage II, ma?_ also be obtained front (7.11) and (6.20) by settingp.‘n -= 1. 

During Stage II of the prohlcm (7.3) continues to hold in zone I and (7.10) in zone 

II. Only the mea,ns of obtaIrli~~~ relat iol\s i)etwecn p altd @,. tiiscr~sscd in Section 6. 

differs from Stage I. Stage II ends when V, -: U, at r --- u signifying that thck state 

of stress has entered a singular rcgimc* (B), ~,~I~stIt~itir~~ the start of Stage III. 

The procedure used in the solution of Stage III parallels Stage 1 and for economy 

of spcr will mt he inciuderl here. 

a; -..- 
ko 

*o O-2 0,4,06 0.8 
?i- 

0.2 04,06 08 
a 

For a nonhardening material (y = 0) the stress distributions and displacements 

for various positions of p1 a,re shown in Hgs. 3-6, and the projection of the ioadiuy 

paths on a plane perpendicular to the axis of the yield surface is shown in Fig. 2. 

To illustrate the effect of workhardening, a very drastic value 0-3 &s been 

selected for y ; this corresponds roughly to the value of y for ~lrani~~rn in com- 

pression (GIXINSKY and DIKNES 1036, p. 5~). 

~4Itho~~g~~ not jncl~lde~~ in the Figures, it is found that at the completion of Stage 
I the great& difference between the hardening and nonhardening cases occurs in 

the axial component of stress (7.2 per cent at 7 == 0) ; the plane component,s differ 
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@‘IO. 7. Comparison of the three components 
of stress for hardening (y = 0.3) and non- 

hardening (y = 0) materials when h = O-5 
a 

during Stage III. 
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FIG. 8. Comparison of the rat&t rtf rad~11 
displacement to cylinder radius for hardening 

(y = WY) and nonhardening (y .L- 0) 
materlals. 
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+-----STAGE I -----+T +sTAGE 131-l ~STAGE m-j 

IJIG. 9. Load parameters for various positions of the boundaries pl, and p2, showing wlue~ 
at initial yield (p*. Qs*), at the start of Stage II (p**, Q,**), and Stage III (I)***, Q,**), as 

well as the asymptotic values of p1 and pz. 
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by less than 2 per cent, while the radial tlisplactmcnts (Fig. 8) are irldistinguishahle. 
Larger differences occur during Stages II and III and in Rgs. i’ and 8 the components 
of stress and displacemrnt. respec~t.ivcly, for p1 = O-5 of Stage III are compared. 
The character of the yield stress in simple shear for two \-nines of p1 is shown in 
Fig. 10. The load parameters for the workhardenin~ c*asc are shown in Fig. 9 as a 
function of pi and pz. The boundaries pi and px for 2~ workhnrdening material are 
found to lap behind the l~oi~l~ar~ler~i1~~ values for a gix-en value of t,he load para- 
meters j9 and aj,. 

2k 
ko 

0 02 04 r 06 08 IO 

BIG. 1 I. C’omparison of the thermo-~leehani~~~l 
solution at the completion of Stage I for the 
state of plane strain with that obtained by 
superposition of the purely thermal solution for 
the state of plane strain and hydrostatic 
pressure (shown by ffdwd lines) for y = 0. 

Finally it may ?)e noted that thcb cffetbt of adding sl = - 21 to the purely 
thermal problem (p :--. 0) is not a matter of tile simple super-position of R hydrostatic 

pressure. In Fac*t the plane strain conditions prevtnt this so that the elastic-plastic 
deformation depends to a great extent on the relation between Q1 and y. TO 

i&&rate this, a romparison of cr, at the e~)Rlpletion of Stage I for the thermo- 
mechanical problem, considered in this paper, with the result obtained by sul~r- 
imposing a hydrostatic pressure upon the purely thermal solution* is shown in 

Fig. x1: 
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