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I. INTRODUCTION 

Let f(z) be analytic in the upper half plane and map the upper half 
plane into itself. Then it is known [3, p. 25] that f(z) is of the form 

where I/J(~) is a bounded non-decreasing function (i.e., a mass distribution), 
A > 0, and b is real. More explicity,l 

% 

A = lim I(ir) = Imf(i) - u!+(t) 
i 

(1.2) 
y-cc ay 

--1 

and 

b = Re j(i). (1.3) 

If in addition, iyf(iy) = O(1) as 3’ -r 00, then it is further known 
‘;3, p. 251 that 

(1.4 

k The second part of formula (1.2) and formula (1.3), while trivial to derive, do 
not appear in the literature. 
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where dy(t) is another mass distribution related to d#(t) by dy(t) 
= (1 + te)d#(t) (thus the boundedness condition on f(z) guarantees that 
a+(t) has a second moment). 

This paper is concerned with the analytic continuation of j(z) given 
by (1.1) or (1.4) into the lower half plane. Such continuation is easily 
done across any interval (a,b) in which d+(t) or dy(t) has no mass. For 
inspection of (1.1) or (1.4) shows that in such intervals these formulas 
define f(z) to be real analytic, so that f(z) may be continued across (~,b) 
by reflection. 

Of more interest is the problem of obtaining non-reflective continua- 
tions. In particular, recent work of Dolph and Penzlin [ref. 1, p. 141 
shows the desirability of obtaining such continuations of (1.4) in order to 
study the complex spectra of certain non-self-adjoint operators. 

Our principal theorem is the following: 

THEOREM 1.1. If f(z) is given by (1.1)) then it can be continued across 
(a,b) into the lower half plane if and only if #(t) is real analytic in (a,b). 
If #(t) is real analytic in (n,b) and if #(z) is the analytic extension 
of #(t) as defined in (a,b), then the continuation of f(z) across (a,b) is 
given by 

f(z) = fo + 27czi(l + z”)ifY(z). (1.5) 

An immediate corollary of Theorem 1.1 is the following theorem, 
stated here because of its possible applications in operator theory. 

THEOREM 1.2. If f(z) is given by (1.4), then f(z) can be continued 
across (a,b) into the lower half plane if and only if y(t) is real analytic 
in (a,b). If y(t) is real analytic in (a,b), then the continuation of f(z) across 
(a,b) is given by 

f(z) = f(2) + 2niy’(z). (1.6) 

A proof of Theorem 1.2 independent of Theorem 1.1 can be based 
on the Stieltjes inversion formula 

(A proof of this inversion formula may be found in ref. 4, p. 163.) Such 
a proof is quite similar to the proof which we shall give for Theorem 1.1, 
based on the inversion formula for (1.1) which we shall obtain in the next 
section of this paper. 
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II. AN INVERSION FORMULA FOR FUNCTIONS WHICH MAP THE UPPER 
HALF PLANE INTO ITSELF~ 

Consider the integral 

f? 

i 
Im f(x + iy) dx = .Ay(f2 - tl) + i’ j dx Im (=Jd$(f) (2.1) 

t1 t, --s 

Since 

1 -t tz 1 + 22 
-=z+--= 

f-z t-z 
_ t -+ Wf 

f--z1 

we see that for fixed positive )‘, 

is uniformly bounded for all real t and for all -3: E [tl,f2], so that Fubini’s 
theorem may be applied to obtain 

1 
Im f(x + iv) dx = Ay(t, - tl) + 

5 
(1 + P) d+(t) Im 

(i 
as 

* t - .Y - ij 1 
t, -02 1, 

/ 1 + ttx + iy) / 
I-- 

___- 
t-x-iy 

cc 
. 

= fly@, - tJ i- 
! 

(1 + f2)0,.(t) d&f), (.2.‘) 

- ic 

where o,,(t) is the angle subtended at t by t, + iv and t, t i~f. 
It is readily verified that, for fixed f, O,,(t) is a monotone function 

of y, the type of monotonicity depending on whether or not t E Ltl, t,!. 
Furthermore, 

lim @,(t) = ’ t 

I 

t = t, or t, 
y-+0+ 

0 otherwise. 

B I have recently learned that my formula has also been obtained by F. Nevanlinna 
and T. Nieminen [Z, p. la]. I nevertheless believe my method of proof to be of 
interest. Furthermore its inclusion makes the present paper more self-conta.ined. 
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Writing the last integral in (2.2) as 

t,-0 t,+o 1,-o t,+o 4) 

i+l+l+l+S 
--m t,-0 t,+o t,-0 t,+o 

we may apply monotone convergence theorems to these integrals to 
obtain 

fa t, 
lim Im f(x + iy) dx = (1 + t*) d+(t), 

y-of s 5 
f, 4 

provided that #(t) has been given the normalization 

w = HW + 0) + JN - 0)) .3 

Note that we could not have used the dominated convergence theorem 
since d+(t) may fail to have a second moment. Thus we have the following 
theorem : 

THEOREM 2.1. Let f(z) be given by (1.1) and let v(t) = & (1 -+ x2) d+(x). 
Then 

y(&) - y(Q =,ty+ Im f(x + iy) dx 

4 

and 

(2.3) 

(2.4) 

The following examples illustrate the inversion formulas (2.3) and 
(2.4) : 

(i) The most trivial example of an analytic function mapping the 
upper half plane into itself is f(z) = i. From formulas (1.2) and (1.3), we 

3 Such normalization is equivalent to redistributing the mass so that $ili d/~(f) 

= 2$iwo 4(t) = 2JiifO d+(t). The full significance of this redistribution is perhaps 

best seen by recalling that any Lebesgue-Stieltjes integral lit(t) d+(t) can be rewritten 

as the ordinary Lebesgue integral s$$ f(t(t,$) d#. 
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have -4 = b = 0. Since Im f(z) = 1, it follows that dy(t) = lin dt and 
d+(t) = dt/n(l $- t2). Hence 

1 “1 + tz Lit 
l=q t:Ilf I 

(Im Z>U), 

- m 

which is easily verified by contour integration. Kate that the value of 
the integral is equal to - i for z in the lower half plane. 

(ii) Let f(z) be that branch of z1j2 which is analytic in the plane \vith 
the non-positive real axis omitted and maps the positive real axis onto 
itself. Then it is easily seen that Im f(,~ + iy) tends continuously to 

as x + iy approaches the real axis from the upper half plane. Hence the 
mass is restricted to (- oc,O) with d+(t) = jt(1’2 df/(,rc( 1 + t”)) there. From 
( 1.2) and (1.3), we have A = 0, b = Vi$. Hence 

(iii) Let f(z) be that branch of zlir which is analytic in the plane with 
the non-positive real axis omitted and for which rc,4 < arg f(z) < 322/k 

In this case A = 0, b = cos 5~18 = - .$ VT3 and Im f(~ 1. iv) tends 
continuously to 

as x + iy approaches the real asis from the upper half plane. Hence 

(Im z > 0). 
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III. PROOF OF PRINCIPAL THEOREM 

Suppose f(z) as defined by (1.1) can be continued across (a, b), and 
let [xi, ~a] c (a, b). Then 

lim Imf(x + i~j) = $ (f(x) - f(x)j = g(x) 
y-+0+ 

uniformly in [x1, xs], i(z) being the analytic function f(s). From the inverz 
sion formula (2.3), we conclude that 

x1 22 

j 
(1 + P) dJ&) = ; g(x) dx. 

5 
-I, -EL 

Consequently #(t) is absolutely continuous on (a, b) with 4’(t) equal to 
the real analytic function g(l)/n(l + t2). Hence $(t) is real analytic in 
ia,b). 

Conversely, suppose $(t) is real analytic in (a, b), and let [x,, x2] c (a, b). 
Then we may write f(z) as 

Since II(a) is real analytic on (xi, x2), we need only show that I,(z) can 
be continued across (xi, ~a). 

Since for fixed z in the upper half plane the integrand in I,(z) is analytic 
in t, I,(z) may be rewritten as 

I,(z) = Jg &id dt, 
C 

where the path of integration C is a rectifiable arc with endpoints x1 
and x2, all other points of which lie in the lower half of the complex 
t-plane. This new integral representation of I,(z) gives an analytic 
continuation of I,(z) across (x1,x2) into the domain bounded by (x1,x2) 
and C. Thus f(z) is analytic in (a,b). 

To obtain the continuation formula (1.5), note that f(z) - ni(l +z”)$‘(z) 
is real analytic in (a,b) and may be continued across (a,b) by reflection. 
Thus we have 

f(z) - ni(1 + z”)a#‘(z) = fpj + xi(l + z”)@(z). 
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IV. REMARKS ON CONTINUATION AND SOME EXAMPLES 

The continuation formulas (1.5) and (1.6) show that the behavior in 
the lower half plane of a given continuation of f(z) depends on the analytic 
function y’(z) = (1 $- z’)@(z) defined by the values of I/J(~) in the interval 
of continuation. In particular, singularities in the lower half plane of 
any continuation are singularities of the pertinent y’(z). 

If two disjoint intervals determine different f(zj, then (1.1) is the 
restriction to the upper half plane of a branch of a multiple valued analytic 
function. .4ny common endpoint of two such inter\-als is a branch point.’ 

.%ny limit point of points on the real axis at which $(t) is not analytic 
will be a non-isolated singularity of f(z). Thus by taking any 4(t) having 
jumps at all rational points, we can construct an i(z) having the real 
axis as a natural boundary. 

That poles can occur in the lower half plane can be seen by taking 
y’(t) = (1 + t*)-“. To produce an essential singularity in the lower half 
plane, we can take y’(f) = exp [- t2 - (1 - P-l!. 

\Vc close with some esamples. 

(i) Let f(z) be the branch of ZIP considered in example (ii) of the preceding 
section. In this case there are two possible continuations, corresponding 
to the positive and the negative real axis. For the positive real axis, 
formula (,1.5) yields continuation by reflection. To obtain the continuation 
/i(z) across the negative real axis, we must obtain a function analytic 
in the lower half plane and equal to l/n It1 ‘r/2 fot the negative t. The function 

i/n f(z) meets the requirements. Since f(2) = f(z), the continuation 
formula becomes /i(z) = f(z) - 2/(z) = - f(z), corresponding to the fact 
that continuation across the negative real asis takes us onto the other 
sheet of the Riemann surface of zlp. 

(ii) Let f(z) be the branch of .z’/’ considered in example (iii) of the 
preceding section. There are two possible continuations, /‘i(z) across the 
positive real axis and f,(z) across the negati\.-e real asis. Since - if(z) 
is the branch of zl/* mapping the positive real asis into itself, it is easily 

seen that f(z) = - f(zj. The analytic function tl’*/.~ continues to the lower 
half plane as - i/x f(z). Hence /i(z) = - j(zj + I/(z) = f(z), as was to 

be expected. The analytic function determined by \/z/2 Itll”/~ is given 

for Im z < 0 by e-in’r (??/2) f(z)/~. Hence fz(z) = --- f(z) + if-ini4 i’$(z) 
= f(z)(- 1 + i + 1) = if(z), in accordance with the fact that crossing 

* Provided, of course, that the common endpomt is no worse that1 an isolated 
slngularitv of the appropriate y’ for each interval. 
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the negative real axis from above takes us onto the sheet of the Kiemann 
surface of z114 for which 344 < arg z114 < 5n/4. 

(iii) Consider 

f(z) = 5 && (Im z > 0). 

According to Theorem 1.2, this is the restriction to the upper half plane 
of an entire function. Indeed, by use of Fourier and Laplace integrals 
it is easily shown that 

from which it is easy to verify that the relationship f(z) = f(i) + 2nie-“’ 
given by (1.6) does hold. 

Note Added in Proof: As for isolated singularities on the real axis, it is easily 
seen that any poles of f(z) on the real axis must be simple poles. That essential 
singularities can occur on the real axis is shown by taking dy(t) in (1.4) to be 
exp (- t2 - t-2) and considering z equal to zero. 
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