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Abstract: This report presents an algorithm for computing the intersection between two circular
disks in three-dimensional space. Rotation transformations and geometric properties of disks are
used to simplify the intersection problem. The proposed algorithm enumerates the possible
solutions of the simplified model, and uses deduction and/or induction techniques to find out the
intersecting points. In all cases, closed-form solutions are obtained, and few tests are sufficient to

compute the intersection, or to show that no such intersection exists.
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L. Introduction

The problems of minimum distance, and intersection detection and computation between two
objects in three-dimensional space, have important applications in robotics, CAD systems, VLSI
and other areas of information processing that deal with geometrical data. In particular, the
intersection problem has been studied in the literature for a class of objects that can be
represented by linear models. This class includes, line segments [1], rectangles [2, 3, and 4],
boxes ‘[5], planar polygons [6, 7, and 8], and convex polyhedrals [9, 10, and 11]. Other references
on the intersection problem and its applications can be found in [12, 13, 14, and 15].

In this report, we are interested in solving the intersection problem between two circular disks
defined in three-dimensional space with arbitrary position and orientation. The solutions to this
problem depend on the representation used to describe a disk. For example, we can define a disk
as a finite number of concentric circles, where each circle is defined by a finite number of points.
In this case, for a given pair of disks, it might be possible to find a polynomial time algorithm for
computing the intersection or the minimum distance between both disks. However, this method
provides approximate solutions, depending on the number of circles and points used to define the

disks. This approach may not be adequate if we are looking for exact solutions.

In this work, we consider a disk as a continuous area of points (an infinite number of points). A
point of the disk may be represented by polar coordinates, Cartesian coordinates, or by some
other equivalent parametric representations. Unlike the previous problems, where the objects are
defined by half planes, the geometry of a disk is nonlinear by nature. In general, nonlinear
models can be solved using nonlinear mathematical programming methods. However, for some
problems, these methods may not be suitable for real-time applications because of their
computational complexity. Besides, reasoning the geometry of disks may sensibly reduce the

complexity of the problem, and provides fast computational solutions.

Our Approach for the intersection problem between two disks is based on using rotation
transformations and geometric properties of disks. These operations produce a system of
nonlinear equations that is more simple to solve than the original system. An algorithm that uses
induction and/or deduction technique for solving the reduced system will be proposed. In all
cases, closed-form solutions will be obtained for the intersection problem. The proposed
algorithm (apparently the first in the literature) requires a small number of tests to compute the

intersecting points, or to show that no such intersection exists.



IL. Disks Intersection Formulation

Let F=(X,Y,Z) be the attached coordinates frame of a circular disk K centered at the origin O and
lying in the X-Y plane of F. A disk is a collection of points V which can be represented as
follows:

K = {V=(x,y,2)T | x =r cos(q), y = r sin(q), z= 0,0 < r < D} (1

where D is the radius of the disk.

An arbitrary 3D disk is obtained by rotating K and translating its origin with respect to a fixed
coordinates frame Fg = (X0, Y,Zo). Let R be a 3 x 3 rotation matrix that defines the disk plane,
and let P=(P,(,Py,PZ)T be its origin with respect to F(. Let W be the absolute coordinates vector of
a point V on the disk, then K can be defined as follows:

K={W=RV+PIV=(xy,z)T,x=rcos(q),y=rsin(q),z=0, 0<r<D} (2)

Let K1 and K7 be two disks centered at Py = (P1x, P1y, Pi,)T and Py = (Pyy, ng,Pzz)T with radius
D and Dj respectively. Let R; = {Ryjj}and Ry = {Rjj}, i, j = 1, 2, 3, be the rotation matrices
that define the planes of K and K respectively. Determining the intersection between Kj and
K is equivalent to solving the following problem:

RiVi+P1 =Ry Vo + Py (3)
subject to IV{ll < Dy, IV Il < Do,

where V1= (Vix, Viy, 0T, Vo= (Vay, Vay, 0)T, and Il - Il denotes the Lp-norm. Problem (3)
represents a quadratic system having five equations in four unknowns, namely X, y1, X5, and y».
In the following Lemma, we show a relationship between the locations of the optimal points V

and V7 when the two disks have some intersection. This property is stated as follows:

Lemma 1: If K; and K intersect, then there exists at least one intersecting point V for which:
r1=D; or =Dy
Proof: Assume that K; and Ky have an intersection A, then three cases arise:
A is a point
A is a straight-line
A is an arbitrary area

It is clear in the first case that the intersecting point is on the edge of either K and K3, and hence
either r; = Dj or ry = Dy. If the intersection is a straight-line, then the two end points of the line
lie either on the edge of Ky or Kj, or both. This implies that the end points have ry =Dy or ry =

Dy. Case 3 implies that the two disks lie in the same plane which contains the intersection area.



Hence there exists at least one intersection point for which r{ = D and ry = Dy. This completes

the proof.

Recall that a rotation matrix R is an orthogonal matrix satisfying R RT = RT R = I, where RT
denotes the transpose of R, and I is a 3 x 3 identity matrix. Multiplying both sides of (3) by R;T,

one obtains after rearrangement:
Vi =RTRy V3 + R T(P2-Py) 4
Let 0P =R,T (P, - P1), and )R = R;TR;, then problem (3) becomes:

Vi =0RV, + 0p ®))
subject to IIV1ll < Dy, IV, Il < Do,

With the above transformations, the intersection problem is reduced to the problem of finding the
intersection between a disk K lying in the (X, Y() plane and centered at the origin O of the
fixed coordinates frame F, and a disk K of center OP and rotation matrix OR.

III. Geometric Transformations

Our approach for solving the intersection problem consists first on transforming the equality in
(5) to a simpler form. This can be done by using rotation transformations that do not alternate the
geometric structure of the problem. For this, we shall show that for any given matrix OR there

exist three rotation matrices A, B, and R such that :

BOR AT = R (6)
where A, B, and R are of the forms:
cos() -sin(o) O cos(B) -sin(B) O Lo 0
A=| sin(@) cos() 0 p  B=| sinB) cosB) 0  R=| O cos(y) -sin(y)

0 0 1 0 0 1 0 sin(y) cos(Y)

For this, let C be a 3 x 3 rotation matrix such that C = 0R AT. Post multiply OR by AT and set the
entry C31 to zero, we obtain:

C31 = OR3; cos(ar) - OR3q sin(ct)
=0
where o can be computed as follows:
0 0
tan (o) = ORA = o =atan (5@) (7)
R32 R3p
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The value of o is not unique, but since the disks are assumed to have two identical sides, the
solutions oo + © and o - © correspond to the same plane of the disk. Therefore, we can restrict o
to be in [0, 7] by checking the signs of 9R3j and OR3;. Note that, if OR35 = 0, then we can
permute column 1 and 2 of OR so that the entry C31 = 0. In this case, the permutation matrix is
obtained by setting oo = 7t /2 in A. Thus, the resulting matrix C is of the form:

Ci1 Ci2 Cy3
C=| Cy1 Cp Cyp3
0 C3 Cs3

Let D be a 3 x 3 rotation matrix such that D = B C. Post multiply C by B and set the entry Dy to

zero, we obtain:
Dy1 = Cyysin(B) + Ca1 cos(B)

which implies that:
C
tan (f) =- = B =atan (C—ﬂ) 8)

Similarly, the solutions B+ and B - provide the same plane for the disk. Therefore, we can
determine B in [0, ] by checking the signs of C11 and Cy1. If C11 = 0, then we can permute rows
1 and 2 of C so that the entry D1 = 0. The resulting matrix D is of the form:

D11 Di2 Dis
D=| 0 Dy Dy
0 D3y D33

Since D is an orthonormal matrix, then D11 must be equal to 1 or -1, and D12 =D13=0.If D11 =
-1, then we can pre multiply D by a matrix I such that R =I; D, where I is of the form:

100
=| 010
001

In this case, we have Rq1 = 1. Since D is a rotation matrix and D1 = 1, then Dy = D33, and Dp3
= -D3p. Therefore, by setting Dyy = cos(y) and D3 = -sin(Y), the matrix R will be of the form:

1 0 0
R=| 0 cos(y) -sin(y) 9)
0 sin(y) cos(y)



where R=D, if D;j=1, or R =1 D, if D11 = -1, and 7 is uniquely determined by D77 and D73,
The above transformations show that for a given matrix OR, we can find a matrix R such that R is
a rotation matrix about the Xy-axis of disk K.

Consider now the equality V1= OR V5 + OP. Pre multiply this equality by B and post multiply ‘R
by AT A, we obtain:

BV, = BORATAV, + BOP

Let M{ =B V{, My = A V,, and P = B OP, and substitute R for B OR AT in the above equation,
we have:

M; =RM; + P

where: M1 = (r1 cos(qi+ P), 11 sin(q+ B), 0)T, My = (rp cos(qa+ o), rp sin(gp+ o), 0)T, and P =
(Px, Py, P,)T. Replacing q;+ B by 81 in My, and go+ 0. by 67 in My, we have:

M = (r1 cos(81), ry sin(81), 0)T ,01=q1+ P

= (x1,y1,0)T (10)
Mj = (r2 cos(0y), ra sin(07), 0)T L0 =@+ o

= (x2,y2, 0T

Finally, the disk intersection problem (5) is reduced to the following form:

M; = RM; + P (11)
subjectto  IIMjll < Dy, IMy Il < Dy,

Expanding (11) in terms of the coordinates of M1, My, and P, we have:

X1 = X2 + Pyx

y1 = cos(y) y2 + Py

0 =sin(y) y2 + P, (12)
subjectto:  (x1)2 + (y? < (D1)?

(x2)2 + (y2)? < (D2)?

The above transformations, have reduced the problem of computing the intersection between two
arbitrary disks in 3D, to a problem where disk K is centered at the fixed origin, and disk K is
centered at a point P, and whose plane is rotated by an angle y about the X¢-axis of the fixed

coordinates frame Fy. Finally, it is clear that these transformations preserve the geometric
structure of the intersection problem.



IV. Intersection Computation Algorithm
In this section, we give the algorithm for solving (12):

Case 1: If sin(y) = 0, which means that the planes of disks K; and K, are parallel. Then the
intersection depends on the value of P;.
. Case 1.1: If P, # 0, then there is no intersection between Kj and K».
Case 1.2: If P, = 0, then the intersection depends on the values of Py and Py.
Case 1.2.1: If Py = Py = 0. In this case the disks are centered at the origin. The
following cases should be examined for the intersection:
Case 1.2.1.1: If D; > Dy, then K> is contained in K1, and the
intersection is the set of all points of Kj.
Case 1.2.1.2: If D; = Dy, then K; and Kj are identical, and the
intersection is the set of all points of K or K».
Case 1.2.1.3: If D; < Dy, then K is contained in K3, and the intersection
is the set of all points of K.
Case 1.2.2: If Py # 0 or Py # 0, then the intersection can be checked as follows:
Case 1.2.2.1: If (Py)2 + (Py)2 > D1 + Dy, then there is no intersection
between K1 and K».
Case 1.2.2.2: If \/(Py)? + (Py)2 = D1 + Dy, then the intersection is

reduced to a unique point given by:

\ - DIP s o DIPy
Di+Dp D1+ Dy
_ -DyPyx __-1 Dby

where cos(y) == 1, depending on whether y=0orm .

Case 1.2.2.3: If \/(Py)? + (Py)? < Dy + Dy, then the following cases
should be considered:
Case 1.2.2.3.1: If \V(Py)2 + (Py)2 + Dy <Dy, then the set of
intersecting points is disk K», since K> is contained in K.
Case 1.2.2.3.2: If V(P,)? + (Py)2 + D1 £ Dy, then the set of
intersecting points is disk K1, since K1 is contained in K.
Case 1.2.2.3.3: If non of cases (1.2.2.3.1) and (1.2.2.3.2) is valid,
then the disks have some overlapping area. In particular, the point
M; on the border of K satisfying the following coordinates:



D Py Di Py

X] = =

Y1
V(P2 + (Py)? VP2 + (Py)?

is an intersection point. Substituting x1 and y1 in (12) , we obtain

the following coordinates for Mj:

Dj Py 1 [ D; Py _P}

= -Pyx,y2 =
V(P2 + (Py)? 727 costy V(P2 + (Py)?

X2

Case 2: If sin y# 0, then we should have for the intersection:
9 =- .PZ and y1 =-—
sin 7y siny

cos Y

P, + Py

We now use Lemma 1, which states that if K; and K7 have a non-empty intersection, then one of

the intersecting points must be on the border of K; or K. The following cases should be studied:

Case 2.1: Assume (x1)? + (y1)? = D12
Case 2.1.1: If D42 < (y1)2, then the disks have no intersection, since (x1)% +
(y1)? = D12 has no real solutions.
Case 2.1.2: If D;2 > (y1)2, then the coordinates of M1 are:

2
X =+ »\/Dﬁ-[-gﬂpﬁpy} y1=-2¥p 4 p,
siny siny
Using (12), the coordinates of M are:
P,

X2=X1—Px y2=-—
sin 7y

Case 2.1.2.1: If (x2)2 + (y2)? < D2, then the above points verify the

intersection.

Case 2.1.2.2: If (x)2 + (y2)2 > D72, then the disks have no intersection.

If Case 2.1 does not hold, then we have to check whether M> is on the border of K. This is done

in the same way as in Case 2.1, that is:

Case 2.2: Assume (x2)? + (y2)? = Dy2.
Case 2.2.1: If D)2 < (y2)2, then the disks have no intersection, since (x)* +
(y2)? = D,2 has no real solutions.
Case 2.2.2: If Dy2 > (y2)2, then the coordinates of My are:

2
X2=J—’\/D2z'[.PZ] y =L
sin . siny

Using (12), the coordinates of M are:
8




cos Y

X1 =X2 + Py y1 = P; + Py

siny
Case 2.2.2.1: If (x1)? + (y1)2 < D42, then the above points verify the
intersection.
Case 2.2.2.2: If (x1)? + (y1)2 > D12, then the disks have no intersection.

Finally, if non of Cases 2.1 or 2.2 hold, then the disks have no intersection.

Note that the above algorithm provides closed-form solutions for all cases of intersection. The
worst case is the case for which sin y = 0, and the disks have or not an overlapping area. In this
case, at most 7 comparison tests are required to find the result. If the proposed algorithm
terminates by finding the intersection, then one has to reapply the inverse transformations given
in Section 3 to compute the exact solutions of the initial problem. In this case, if a solution M =
(x1, Y1, 0)T and My = (x2, y2, 0)T is found, then the relative coordinates of the original points V;
= (Vix» Viy, 0)T and V = (Vay, Vay, 0)T corresponding to M and M, respectively are given

by the following transformations:
Vi=BTM; and Vo=ATM,
where BT and AT are defined by (6), (7) and (8).

V. Conclusion:

We presented in this report a geometric algorithm for computing the intersection between two
circular disks in three-dimensional space. Several transformations were used to simplify the
intersection problem and to provide closed-form solutions with simple expressions. The
algorithm requires few tests to locate and compute the intersecting points. However, the
implementation of the algorithm could be done without making these transformations. In fact,
equations (5) will be enough for developing the algorithm. In this case, we may end up with an
algorithm that requires more tests to find the intersection , than the proposed algorithm with

transformations.
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