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The Study of Nuclear Collective Motion by 
Stripping Reactions* 

The ‘intrinsic’ prohabilit,v for capt,ure of nurleons is studied for nurlei which 
exhibit collective vibrations or rotations in addition to an underlying shell 
structure of independent, nucleon orbits. Such probabilities or reduced widths 
for lowlying nuclear levels can be measured in ‘direct’ nuclear reactions; the 
present discussion is formulated chiefly in terms of deuteron stripping. Various 
selection rules are derived, and possible reasorls for their breakdown studied. 
It, is found that stripping is a particularly direct way of studying the wave 
functions of single particle orbits in st.rongly deformed nuclei. There are 
simple branching ratios between the capture probabilities int,o the various 
members of a rotational band in such nuclei. Finally, it is shown how such re- 
duced width measurements can provide an independent check on the wave 
functions postulated by (Morn and Klema t)o correlate empirically the ground 
state propert,ies of nuclei. 

IKTR( )DUCTIOS 

In a deuteron stripping reaction (I), the r6le of the incident deuteron is to 

present at the target nucleus surface a neutron or proton ready to he captured 
(or ‘stripped’ off). Since its partner in the deuteron is available to (wry off 
sny residual energy, this allows capture directly into negative energy, or bound, 
stat,es, wkhout the complications of an intermediate compound nucleus in 
which the whole deuteron is absorbed. In t’his way the stripping reaction pro- 
vides n sensitive tool for studying the wave functions of such nuclear states 
t,hrough the measurement of their reduced widths, or intrinsic probabilities for 
nucleon capture. In many xvays it, is a less ambiguous t,ool t,han, for example, 
analysis of electromagnetic moments and transitions, for thwe involve addi- 
t,ional assumptions concerning current densities, gyromagnetic ratios, etc. These 
remarks apply also to the stripping of other projectiles (such as in ((Y, I-Ie3) 
reactions) in which a nucleon is transferred to the target., or, of course, the in- 

verse pickup reactions. While these reactions are not as well understood theoret,i- 
tally as deuteron stripping, the same nuclear overlap int,egr:tl is involved as is 

* This work was sllpportrd in part h>- the I-. S. Atomic Energy (‘ommission 
i ()n leave from Clarendon Laboratory, Oxford, I<ngland. 
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discussed in the next section. Similar factors occur in t,he description of other 
direct reactions (1) (Appendix I). 

Such studies have been made for nuclei which are described well by the shell 
model (in ref. ,” for example). In the same way we can investigate t,he predictions 
of the nuclear collective model (3). Interest has been revived recently, parbicu- 
larly by the evidence for collective motion of the rotat’ional type in lighter 
nuclei in the region of Mg (4) and even F’” (5). Here the Coulomb barrier does 
not obscure e9periment.s with deuterons of moderate energy. 

In this paper we study in detail t.he excitat.ion of the recently identified nuclear 
vibrational spectra (6) as well as stripping into rotational levels. In addition we 
consider the collective model of Osborn and Iilema (7) which has been used to 
correlate the empirical properties of nuclear ground states. The aim is to present 
the theoretical predictions of t,hese models rather t,han to analyze experimental 
data. 

Recently, such analyses have been carried out by the Chalk River group (8) 
for the nuclei A125, Mg”” and Si” produced by deuteron stripping, in t)erms of 
collective rotations. The suwess of these should encourage furt,her experimental 
work in t,his region. 

The present work is, for the greater part, an elaboration of material presenbed 
in lect,ures at, Washington Vniversity, St. Louis, in February, 1957. A prelimi- 
nary study of this problem was made in an earlier publicat,ion (9). 

STRIPPING ANI) NUCLEAR STRUCTURK 

To be definite we shall discuss the (d, p) reaction. Apart from t’he absence of 
any Coulomb int,eraction with t’he outgoing particle, t’he description of a (d, n) 
reaction is ident,icxl, and, of course, by reciprocity applies equally to the inverse 
pickup reactions. 

The original Bnt’ler (10) and Born-approximation (1 I) expressions for the 
stripping reaction amplitude contain as a factor the overlap integral between 
the initial and final nuclear states. It also appears in the more realistic modified 
Born-approximation of Tobocman (12). In this, the incident deuteron waves 
and outgoing proton waves are allowed to be distorted by elastic scattering 
from suitable optical potentials! representing the t’arget and residual nuclei, 
respectively. In fact this overlap factor will be a common feature of all t,reat- 
ment.s which neglect excitation of the target nucleus before capture and exci- 
tation of the final nucleus after capture’. The neglect of these excitations is in 

1 Except for eschnnge contributions of the type considered b,v French (13) and called 
‘heavy particle stripping’ by Owen and hladansky (14). These terms contain analogous 

. . 
overlap factors, hut the>- are more comphcated than those we discuss. In addlt,lon there 
mng he small contributions from a coupling of the prot,on to the nuclear collective modes 
of mot,ion. These are discussed in Appendix II. 
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the spirit of the stripping picture. It seems unlikely t,hey would show an 
angular distribution like the characteristic Z-peaks of stripping, but rather 
provide a more-or-less isotropic background. 

For t,he reaction .4 (d, p)B, this overlap factor may be written* 

z,+. denotes the coordinates of the captured neutron, and .$ those of the target nu- 
cleans. 4jlrn is a normalized spin-orbit function for the neutron, with total angular 
momentum j and orbital 1. +, and qIg are the wave functions of the target and 
residual nuclear states, respectively. The expansion parameters /3,l have an oh- 
vious physical int,erpretation. They measure the degree to which the residual 
nucleus B can be regarded as made up of the target A plus a neutron in an orbit 
with j and 2. That is, the degree to which il is a parent state of B (15). Thus in 
an extreme single-particle picture, only one /I will be nonvanishing, and that 
has the value unity. The last factor in (l), the Clebsch-Gordan or vector-addi- 
tion coefficient (16), just gives the probability amplitude for finding the z-com- 
ponents MA and m when their total is MB , and is purely geometrical in content. 
Finally, in writing (l), by singling out the neutron labelled xN as being in t’he 
incident deuteron, we have explicitly neglected to nntisymmetrise it with the 
other neutrons in the target nucleus. When we remedy this, if there are n - 1 
neutrons in nucleus A, we get 1~ terms like (l), each with a normalizing factor 
l/d;. So the t,otal amplitude is dn times the t.erm containing (l), and t.he 
physically significant parameter is 

ejz = VGi P,l . (2) 

Then OjF is the reduced width in units of t’he so-called single particle reduced 
width3, 8’ = y2/ySP2. 

When, as generally will be the case, the nuclear states are not described exactly 
by one simple model, the wave functions \kA , qs will be a certain mixture of the 

2 p and 4 should really include a label N for the principal quantum number of the orbit. 
However, the appearance in (1) of appreciable amounts of more than one N for a given j, 1 
is unlikely. Moreover, they could not be distinguished experimentallp. If more than one N 
does cont.ribute, we may interpret. (1) in the following way: p = ZNPN , + = Z&.&N/B, so 
that + is a weighted average. 

3 Occasionally the channel spin representation is used, where the channel spin S is the 
vector sum of the spins of the target nucleus and captured nucleon, S = IA + s. The corre- 
sponding reduced widths 0s~ are simply related to ours by the Racah change-of-coupling 
coefficients (17) 

0,~ = Z,Bjt~(2S + 1)(2j + l)W(I&l&; Sj)j-z--1’2. 
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model wave functions, (for example, configuration mixing in the shell model), 

The 9, , qo are definite model states or configurations, and appear with ampli- 
tudes K, , Ko Inserting these wave functions in the overlap integral (1) we have 
the reduced width amplitude expressed as a corresponding sum of terms 

Bjl = z,pk’,(il)KB(B)*Bjl(~p). (4 

o(&), of course, is obtained from the overlap of q’, , \k~ _ It is important to note 
that the O(C$) for a given j and I add coherently. 

In all forms of the stripping theory in use, the differential cross-section depends 
only on the orbital momentum I of the captured nucleon, not its total, j = 2 f $5. 
The two j values do not interfere, so we may write 

SL = ZjOjl’. (5) 

Following French and Raz (2), the differential cross-section may then be writ- 
ten’ 

and +l(e) called the intrinsic single-particle cross-section. S’l contains the infor- 
mation on nuclear structure. The form (6) is useful for comparing values of SI 
for different nuclear levels but the same 1. Although 41 is energy- and Z-dependent, 
we believe its variation is slow generally, so that little error is introduced by 
using, for example, the simple Butler theory to estimate any change. Then in 
such a comparison the uncertainites in the absolute magnitudes of the cross- 
sections, due to potential scattering effects etc. (IL), are largely eliminat,ed (2). 

Although the prot,on angular distribution (6) does not depend on the j of the 
captured neutron but only on the 1, this is not true of the proton polarization 
(18) or the angular correlation of the proton with any ensuing y-rays (19). These 
give a measure of the relative amounts of the two possible j values, j = I f ,i&, 
taking part in the capture. The more detailed information obtained would seem 
to make the extra effort required for these experiments well worthwhile. The 
polarization depends intimzltely upon the nature of the scattering interactions 
with the incoming deuterons and outgoing protons, vanishing if these are neg- 
lected as in the simple Butler theory. The p - y correlation is to some extent 
affected by these int,eractions, but is not fundamentally dependent on them. So, 
to the extent that the interactions are not well knovvn, t,he polarization measure- 
ment is a less reliable source of information than the p - y correlation. 
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IZCITATIO~ OF VIBRATIOKAL LEVIiLS 

It was suggested by Bohr (3) that one should observe nuclear energy levels 
corresponding to the excitation of yuadrupole (or ellipsoidal) shape vibrations. 
Each of the quanta (phonons) would have energy hw, angular momentum 2h, 
and even parity. Even-even nuclei would show energy spectra of the form E’ = 
Nhw, with ground state O+, first excit.ed state (one phonon) 2+. The second 
level is triply degenerate, since the two phonons can couple to resultant spins 
0, 2; or -L. In practice this degeneracy will be lifted by pert,urbations, so we ex- 
pect a close 0, 2, -I + triplet. The perturhat,ion arises from coupling to the UP 
derlying shell structure: the dist,urbance that the slow change in shape of the 
potential well will produce on the shell model particle orbits (3). 

There is evidence for this type of collective motion in even-even nuclei wit,h 
70 5 il 5 150 (6). In even-odd nuclei, we have in addition t’he angular momen- 
tum J of t,he odd nucleons which, with that due to any phonons present, R, 
can form various resultants, I = J + R. Thus each member of the vibrational 
band will show additional fine structure. 

We can conveniently writ,e the wave functions as 1 NRJ, IM); N is the num- 
ber of phonons present,. The lowest, levels in even-even nuclei will have J = 0. 
The phase convention adopted is given by the coupling order (If?), 

1 NR.J, IM) = Sm / NRA1 - m) 1 Jm)(RJdl - mm 1 IAl). (7) 

j NRp) is the vibrational wave function, 1 Jm) is the shell model state for the 
nucleons. The reduced width amplitudes are readily obtained by inserting t,he 
states (7) into the overlap integral (1). Let us denote t,he quantum numbers of 
the target nucleus 12 by the suffix 1, those of the residual B by 2. A result im- 
mediately obvious from (1) is that the vibrational states of ,4 and B must be 
the same. That is, N1 = N, and RI = Rz , otherwise t>he orthogonality of the 
vibrational states makes the overlap vanish. We find 

x C-1 z’+J2-R’-‘G(RIRn)G(N~N~)ej~(.J~.J~), 
(8) 

where 6(nb) is the Kronecker delta. The last factor, 0jl(JlJz), is just the overlap 
of the shell model states, independent of the associated collective vibrations, 
and is discussed in refs. (2) and (19). For example, if the target has (n - 1) 
neutrons in an orbit with j, and the residual nucleus has n, it is just .\/G times 
the corresponding fractional parentage coefficient (15). However, we are here 
interesbed in the effect of the vibrational motion; this contributes an angular 
momentum coupling factor, the Racah W coefficient (I7), to the reduced width. 

In the case of practical interest, the target is in its ground state, hence N1 = 
R1 = 0 and nucleon capture can only lead t,o no-phonon levels in t.he residual 
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nucleus, (NZ = Rz = 0). The reduced width for these transitions is just the shell 
model value, 

ejl(ooIl , oo12) = ejl(ll12j. (9) 

However, the same perturbations we mentioned, which split the degenerate two 
phonon levels in even-even nuclei, will at the same time introduce admixtures 
into the zero-order wave functions (7). The interaction is such as to change N 
by f 1 for each order of perturbation, and R and J by 0, f 1, or f2 (20). These 
admixtures allow violations of the simple selection rules given above?, allowing 
capture into one-phonon levels to first order in the perturbation, into two-phonon 
levels to second order, and so on. Calculation of the reduced width amplitudes 
then follows (3) and (4) ; the t!?(cr/3) are given by (8). 

To make a crude estimate of their magnitudes we use the following argument. 
The amplitude of a state 1 (Y’) admixed to the zero order state 1 a) is given by 
first order perturbation theory as (a’ 1 H' / a)/(E, - Eat), of order X say, where 
H' is the perturbation. The second order terms are then of order X2. But the 
energy shift in second order is Z,l (al’ / H' ( ct)"/(E, - Ear), which is of order 
(E, - E,.)X'. Now the splitting of the two-phonon triplet in even-even nuclei 
in the few cases observed is of order 100 kev, while (E, - Ear) is of order 1 Mev 
(roughly the particle J = 2, .I = 0 spacing). So, 

(E, - Emf)X2 - X*Mev - 0.1 Mev. 

Then the first order admixtures to the wave function have amplitudes NX - !d, 
the second order -X2 - Ko5. The reduced widths 0’ are, of course, proportional 
to the squares of these amplitudes, so the capture probability to a ‘one-phonon’ 
level is roughly >$o that to the ‘no-phonon’ ground state, and to ‘two-phonon’ 
levels is roughly ?~oo. These figures, of course, are very rough. We note, however, 
that they reach down to the intensity of ‘background’ processes such as compound 
nucleus formation, so more accurate estimates are probably of little value. 

The argument above has to be modified in one important case. If there is an 
excited-state of the underlying shell structure close to one of the vibrational 
levels with the same total spin I, the mixing of their wave functions can be con- 
siderable and the reduced width of the vibrational level correspondingly en- 
hanced. Such appears to be the case in Cdu4, the one nucleus where the two- 
phonon triplet has been clearly identified (21). Close to the O+, 4+ members 

1 The small contributions discussed in Appendix II would also allow transitions between 
states differing by one phonon. 

5 These estimates are also consistent with the observed r-ray branching ratios (7) from 
the ‘two-phonon’ 2+ level in even-even nuclei to the ground and ‘one-phonon’ states, and 
the Ml/E2 mixture in t.he lat.ter t,rsnsition. The branching ratio is (third order)2 in the 
perturbation, that is -X6, while the energg dependence of E2 transitions favours the cross- 
over by a factor -(2h~/lh~)~ - 30. The ratio is generally found to be a few per cent. 
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of the triplet there are two 2+ levels, at 1212 kev and 1368 kev. One of these 
has to be considered to arise from a particle excitation (N = R = 0, J = 2). 
The closeness of these two levels makes perturbation theory inadequate; a more 
detailed calculation shows a strong intermingling of the two zero-order wave 
functions, leading to reduced widths for both levels comparable to that for the 
ground state. The proximity of the particle excitation also enhances somewhat 
the width of the first excited ‘one-phonon’ level, but the widths for the 0+ and 
4+ levels remain of the order estimated above. 

EXCITATION OF ROTATIONAL LEVELS 

We have reason to believe (3) that a large group of nuclei are strongly de- 
formed into an ellipsoidal shape, displaying, for example, large quadrupole 
moments. Then the potential well of the shell model is also nonspherical, and 
its deformation may greatly influence the individual nucleon orbits. But in addi- 
tion we have variables describing the shape and its orientation, with the possi- 
bility of rotational motion as well as vibration about the equilibrium shape. The 
deformation (and hence the moment of inertia) is sufficiently large for these 
nuclei to rotate adiabatically. That is, their rotation is so slow that Coriolis 
forces, etc., are almost negligible and disturb very little the nucleon orbits in 
the potential well. Then the nuclear wave function $J can he written as a simple 
product 

fi - 4vi&X (10) 

of a function 4vib describing the nuclear shape and its stat.e of vibration (the 
so-called p and y vibrations), a function D describing t.he orientation of the shape, 
and a ‘deformed shell model’ wave function X describing t’he nucleons’ motion 
in the deformed potential well. 

Generally the equilibrium shape of lowest energy possesses axial symmet,ry, 
and its orientation is described by t,he symmetric top eigenfunctions, DKM(r)(~i). 
I is t,he total nuclear angular momentum, N its z-component, and K its projec- 
tion on the nuclear symmetry axis. The corresponding eigenvalues give t,he well- 
known rotational energy spectrum 

E = E,, + $I+ I). (11) 

However, what really concerns us here is t,he structure of the generalised ‘de- 
formed shell model.’ As the potential well is no longer spherically summetric, 
the orbital 1 and total angular momentum j of each nucleon are no longer oon- 
&ants of the motion. However, as long as axial symmetry is preserved, 0, bhe 
projection of j on the symmetry axis, does remain a good quantum number for 
each orbit. The different Q, degenerate in the spherical limit, now have different 
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energies (except that ffl remain degenerate if, as we assume, the nuclear shape 
has reflection symmetry about the equatorial plane: t,hat is, it is not pear- 
shaped). The wave functions for these orhit,s have been calculated by several 
authors (z?z?) for various potential wells. It would be one of the principal objec- 
tives of stripping experiments to test these wave functions. 

Each single particle function can he expanded in terms of the spherical limit 
functions, that is, eigenfunctions of angular momentum. If w is the parity, and 
CY represents the other two quantum numbers needed t,o specify fully t.he orbital 

x0 7 

X&a = ZNjl CNjl(QWa)#NjKi (12) 

N is the principal quantum number of the spherical well eigenfunctions 9. As the 
deformation is allowed to go to zero, of course, all but one of the coefficients c 
va.nish. For finite deformations they have been calculated in refs. (zz?), or may 
be estimated by perturbation theory (Appendix III)‘. The complete shell model 
wave function we need is then a normalized, det~erminantal (for antisymmetry), 
product of the individual nucleon orbitals, whose total projection Q on the 
symmetry axis is the sum of the individual projections Q2; : 

The complete nuclear wave function (10) now takes the well-known form (3), 
symmetrized to be invariant under reflection in t’he equatorial plane. 

The phase p = I + K - Q - J/$4. X-n is a determinant similar to Xn except 
that each ctonstituent 8i has changed sign; we use the phase convention cj( -&) = 
( -)i-1’2c~(Q2i) for th e coefficients in (12). The low-lying levels of interest to us 
have K = Q, and their vibrational state will be simply that of zero point oscilla- 
tions. When K = 8 = 0, the symmetry of (14) demands I be even only, and 
t,he normalization has to be readjusted, 

We are now in a position to calculate the reduced widths, using (1). The pres- 
ence of rotation merely introduces a projection factor, representing the proba- 
bility of finding the rotating target and incident nucleon in correct relative align- 

6 In Nilssons’ calculations (B), a representation different from (12) is used. His coeffi- 
cients a are related to ours by a Clebsch-Gordan transformation (16), 

c~jt(Qwol) = Z’aa~l,4<lf$Afl - A ljQ>. 

(See Appendix IV.) 
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ment for capture. Formally this arises because the particle motion is described 
in ~a in coordinates X’ relative to the rotating nucleus and the expansion (1) is 
in a space-fixed coordinate system. The neutron function in (1) has to be ex- 
pressed relative to body-fixed axes 

$jLm(xN) = 2,. ~jlm’(~N’)D,,,“‘(e,). (15) 

The overlap integral is then readily evaluated with the wave functions (IA), 
using the relation 

We see immediately that for a nonzero reduced width or overlap, the initial 
and final shell model states XQ must not, differ in more than one single nucleon 
orbital. The amplitude for capture with j and I is then proportional to the corre- 
sponding coefficient c,l in the expansion (12) of that extra orbital. Designating 
as before the target and residual nuclear quantum numbers by suffices 1 and 2, 
respectively, we find 

(16) 

g is z/a if either lil = Q = 0 or k’z = QT = 0, and unity otherwise. The + is 
taken as the captured neutron enters an orbit, with Q = 1 L$ f Qtl (. The upper 
sign in practice might occur if the residual nucleus were odd-odd. The projection 
factor mentioned above appears as a Clebsch-Gordan coefficient (16). It pro- 
vides the first selection rule: k-1 f Kz = Qtl f Qt , t.aking f as before. Since 
the target in general would have k’l = 31 , this leads to I& = fit? . In addit,ion, 
only j -2 1 OZ f O1 / is allowed, even if the values of II and I? would seem to 
permit smaller values of j. We return to this below. 

The fact,or (42 1 &) in (16) is the overlap of the initial and final vibrational 
states (zero point fluctuations in shape for low lying levels). The approxin1at.e 
forms for +vil, given by Bohr and Mottelson (3) may be used to est,imate this 
overlap. For nuclei wit,h little difference in deformation, (& 1 4L) should depart 
little from unity; for example a 10% change in deformation may produce an 
overlap of 0.9 or 0.8. However, it has an exponential dependence on the square 
of the differencae in deformations, so could produce a strong reduction in capture 
probability if the nuclei had markedly different shapes’. 

7 When the deformations of the target and residual rluclei differ, the otherwise similxr 
single nucleon orbits will not completely overlap. But again, it is easy to show t,hat this 
is not serious unless the nuclear shapes differ considerably. Also, it is not clear how much 
of t.his effect may be already included in some average w:~y in the vibmtional overlap. 
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The orthonormal properties of the Clebsch-Gordan coefficient in (16) allow 
us to deduce a sum rule. If the square of (16) is summed over all final states I? 
in a giaen rotational band which are reached by capture with j, 1, we get 

If we then sum the contributions from different j and I in the same band of levels, 
we can use the normalization condition Zj2 cjt3 = 1 for a particular orbit (la), 

z.jlr, (21, + l)ejl? = g2(211 + 1). 

With a spin zero target, 1, = 0 and j = IZ , t,his reduces to the sum rule given 
by Lit,herland and McManus (8) 

ZZjl OjF(2j + 1) = 2, 

where we still sum only over final states in a particular rotation band. Care must 
be taken over application of this rule in practice when more than one I value 
contributes. As we have stressed above, following (B), uncertainties in the in- 
trinsic single-particle cross-section 4l(0) are reflected in uncertainties in the rela- 
tive reduced widths for different 1 values. 

It is important to compare transitions to different members of the same rota- 
tional band. Each level in a band has the same internal shell structure, with the 
same K and Q, differing only in the amount’ of rotational motion as a whole. In 
addition, the vibrational character of each is the same, so the vibrational overlap 
drops out in a comparison between members. There are two cases of most in- 
terest. The first is with the even-even target nucleus which has 1, = Kl = Ql = 0. 
A nucleon is captured with j, 1 to form the even-odd residual nucleus in the vari- 
ous members of the rotational band with 12 = Q2 , Qz + 1, . . . etc. Clearly we 
must have j = I, to conserve total angular momentum. But the nucleon enters 
the same orbit (with 02) for all levels in the band. So capture into successive 
levels explores, one at a time, the j = fits , & + 1, . . . parts of the wave function 
(12) for that orbit. (16) reduces to 

A similar situation exists for capture by even-odd targets. But now the non- 
zero target spin, 11 = Ql = K1 # 0, allows capture with a particular j to feed 
more than one level of a rotational band in the residual nucleus. The capture 
probabilities to two such levels differ only in the projection factors. So we are 
lead to a simple branching ratio rule, similar to those for (Y-, fl- and r-transitions 
em, 

(18) 
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When the residual nucleus is even-even, we have for the ground state band 
Qz = K, = 0, 12 = 0, 2, 4 ..-. The Clebsch-Gordan coefficients in (16), (18) 
then have simple explicit forms, given in Appendix IV. The fact that we must 
have j 2 Q1 = 11 leads to an interesting selection rule, If I, is greater than 55, 
conservation of total angular momentum would permit capture with j < I1 into 
one or more of the excited states. Since a stripping angular distribution enhances 
the effect of lower I values, such a violation of the selection rule j 2 II imposed 
by the model would be easily detected, (see Appendix II, though). Such an ex- 
periment would be a close analogue of the tests of the spherical shell model pro- 
posed a few years ago (24). 

As an example, suppose the target ground state were 5/2+. The residual 0+ 
ground state can, of course, only be reached by capture of a c& nucleon. But 
the restriction j > Q1 = 5/2 forbids sllz capture into the excited 2+ rotational 
level, although it is allowed by conservation of total angular momentum. Any 
such 1 = 0 transitions would be readily seen in the angular distribution, against 
the main 1 = 2 component. There may be some evidence for this rule in the 
reaction Mgz5(d, p)Mgz6 (25). The ground state of Mgz5 is 5/2+, so this reaction 
would he the one just described if Mg26 displays a rotational spectrum. In fact, 
1 = 0 capture to the 2+ first excited state is observed to be only 350 as intense 
as I = 2. The somewhat uncertain experimental data indicate the reduced width 
ratio of this group to that feeding the ground state is about 1, while (18) gives 
the value about 3s. However, this indicates the need to collect more precise data 
in this region of the periodic table. 

Any departure of the capture probabilities from the values given above, or 
any breakdown of the selection rules could be due to two causes. The first is the 
approximate nature of the independence of the collective rotat’ion and vibration 
and the particle orbits in t’he potential well, expressed by the product form of the 
wave function (10) or (14). In particular t*here is the rotation-particle coupling 
(3) which can mix (to first order) some states with K f 1, Q f 1 into the main 
wave function (14). If there are excited states with t’hese characteristics close in 
energy to the band being st.udied, such mixing could be appreciable. These ef- 
fect,s have been studied in detail for t,he spectrum of Wls3 by Kerman (26’). Rota- 
tion-vibration coupling (3) produces a small correction to the rotational energy 
spect,rum of the form AE = E(“‘I’(I + 1)‘. Associated wit,h t’his will be small 
admixtures of excited vibrational states, with amplitudes of order v’AE/~~, 
where h.w is the excitation energy of the @ or y vibrations. Thus there will be 
corrections of the same order to the reduced width amplitudes, and the branch- 
ing ratio (18). For t.he values appropriate t.o the rare earth nuclei (FL%), however, 
these are negligible. 

A second cause of deviations from the predictions of t,he simple model would 
arise from residual interparticle forces. Just as in the spherical shell model, the 
effects of the inter-nucleon forces are not exhaust’ed by the average potential 
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well used to define the single particle orbits. The nucleon motion is not completely 
independent. Inelastic collisions do occur, giving rise to configurat,ion mixing. 
This directly affects the structure of /Xn : no longer is it a simple determinant, 
but rather a sum of such terms. The two-body forces are scalar in nature so all 
terms would have the same value of Q, but, to first order, could differ in t,he exci- 
tation of one or two nucleons. The success of the simple model for the rare earth 
nuclei indicates that any residual interations are by no meLtns as important as 
the deformat.ion of the potential well in determining the overall structure of 
XQ . The raising of the degeneracy in D by the deformation seems to reduce the 
effect of such interactions. However, there is evidence that pairing energy shifts 
the relative positions of single particle levels when tlvo neutrons are added to a 
nucleus (S’). Analysis of the binding energies of nuclei around Mg also reveals 
pairing energies of as much as 4 Mev (68). In addition, configuration mixing is 
adequate to explain the observed magnetic moments of deformed even-odd nu- 
clei (29). 

In either case, the wave functions (14) remain a satisfactory representation, 
except that now we shall have one or more small admixed components, as in (5). 
The reduced widths of course must be calculated in accordance with (A), where 
the B(c@) are now of the form (16). 

In conclusion, we see that stripping is a direct way of investigating the validity 
of the collective model wave functions for rotating deformed nuclei. In particular, 
experiments with an even-even target provide a step-by-step analysis (17) of 
the wave function of the added nucleon, and the branching ratio (18) is useful to 
test whether the residual nuclear levels form part of a rotat,ional band. 

THE O-K COLLECTIVE MODEL 

For completeness, we conclude with a discussion of the reduced widths using 
the representation chosen by Osborn and Klema (7) as a kinematical model for 
the empirical correlation of nuclear ground state properties. While formally 
closely related to the Bohr-Mottelson (3) picture, this model emphasises the 
description of the ground state wave function rather than the energy spectrum. 

An even-odd nucleus is said to consist of the odd single nucleon moving in a 
shell model orbit @jirn , coupled to collective motion of the ‘core’ with angular 
momentum X, $hP . The basic wave functions are then 

\E(XjZ, ZM) = zm+31ml)X.~-m(AjM - m w2 1 ZM). (19) 

The nuclear wave function is then a certain mixture of these states. 

9(ZM) = ZX,l ax$P(XjZ, ZM). cm 

To avoid introducing too many parameters, when fitting the ground state data 
Osborn and Klema assumed that two components of (20) were dominant. 

These authors regard the collective motion of the core as that of an axially 
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symmetric rigid rotator, with zero projection of the angular momentum X on 
the symmetry axis. I+& then becomes a spherical harmonic Yx,(e,) in the polar 
angles of the core axis. Although this is a natural interpretation for nuclei where 
rotational energy levels are observed (SO), in ot,her regions of the periodic t,able 
it might be more appropriate to t’nke some other picture. A glance at (7) shows 
the wave function (19) (apart from a change in notation) has a form identical 
to t,hat of the phonon model, so t.hat the core motion could be of a vibrational 
t,ype. 

The equivalence of (19) and (7) shows that the expression for t’he reduced 
widths, and t,he associated selection rules, is the same as for the phonon model, 
(8) and (9). The stripping reaction then provides an independent chec*k on t,hc 
values of t)he coefficient,s awl in (20) deduced from magnetic moments, etc. The 
neighbouring even-even nuclei are assumed t.o have ground staks described 
simply by the core function #I.M , with 1 = 111 = 0. Then t.he Ax = 0 selection 
rule shows that reactions leading to even-odd residual nuclei with ground states 
principally X 2 2 should be strongly inhibited compared to those with large 
X = 0 components. In these cases t,he reaction amplitude is just proportional to 
anj1 . 

API’FTIJIY I I > 

As mentioned in t’he introduction, the stripping of projectiles other than deu- 
terons involves the same nuclear overlap factor (1). In addition, inelastic nu- 
cleon scattering of the type A(p, p’) R, when considered to occur by the direct 
interaction of the incident, nucleon with one in the kget, requires a similar over- 
lap for its description (1). This can be expanded analogously to (l!, 

For the direct amplitude, x = X’ and represents the coordinates of the target 
nucleon responsible for the scattering. In the exchange terms, z and X’ are the 
coordinates of the ejected and captured nucleon, respectively. P represents the 
various parent states obtained by removing the nucleon from ‘4 or B; only par- 
ents common to both A and B can contribute. The parameters @jl are just the 
same as those in (1) which we have studied, with the parent P playing the role 
of target nucleus. 

The interpretation of inelastic scattering from nuclei exhibiting collective 
motion is complicated by the possibility of excitation through direct coupling of 
the incident nucleon to the collective modes (31). However, the two types of 
excitation may display different selection rules. For the excitation of vibrational 
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levels, the direct process described above obeys the same rules as stripping: no 
change in vibrational state between A and B. However, this rule is necessarily 
violated by the surface coupling; in Born approximation only states differing by 
one phonon are connected. Both processes can excite a ground state rotational 
band, but in Born approximation the surface coupling does not reach particle 
excitations. Of course, surface coupling does not compete in the analogous 
(p, n) or (n, p) reactions. 

APPENDIX II 

The coupling which is present in a (d, p) reaction between the incident nu- 
cleans and the collective modes of vibration or rotation of the target may give 
additional small contributions to the reaction amplitude which could be impor- 
tant when discussing the violation of the simple selection rules given above. To 
study this we use the exact form of the reaction amplitude given by Gerjuoy 
(39). This is proportional to 

(!bf 1 VNP + VP, I *). 

tir described the residual nucleus, and protons in a plane wave state. VNp , the 
dominant term, is the potential binding the deuteron, and VP, is the interaction 
with the target of the proton in the incident deuteron. 9 is the total wave func- 
tion; the Born approximation consists of replacing it by #i , which describes just 
the target nucleus and incident deuteron beam. Now VP, includes terms not 
scalar in the proton coordinates and thus coupling the proton to the collective 
motion of the target. In the simplest approximation, regarding VpT as an oscil- 
lating potential well, these are the well-known surface coupling terms of ref. 3. 
It has been estimated that at medium energy the effect of VpT is at most about 
10 y0 of VP, (SS), and the surface coupling term will be only a small part of this 
(of order k/3/U,, for rotational levels, (k/Uo) l/h~/2C for phonon states (3), if 
[I,, is the shell model potential well depth). However, its possible importance lies 
in its principally quadrupole nature, that is, because it behaves like a spherical 
harmonic YzP in the space of the captured neutron. So that if the neutron is 
captured with orbital momentum I, terms appear in the angular distribution 
which are characteristic of 1 f 2 captures, if allowed by conservation of total 
angular momentum. (Not E i 1 because of parity). Since lower Z-values have 
greater intrinsic cross-sections, it would be possible for such an 1 - 2 contribu- 
tion to be non-negligible in comparison with the main 1 term arising from Vxp . 
This is clearly important if we are investigating the validity of the selection 
rules discussed in the main text, which demand capture with 1, even though con- 
servation of total angular momentum wmld seem to allow I - 2. Quite small 
admixtures of I - 2 can be seen experimentally; for example, a few per cent of 
s-wave in a predominantly d-wave capture (24). 

Sawicki (34) has pointed out that similar 1 - 2 terms appear if distorted, not 
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plane, waves are used for the deuterons and protons (12) and the distorting po- 
tential is nonspherical; even without such distortion, the approximation of evalu- 
ating the stripping matrix element at or near the nuclear surface r = R (11) 
introduces these small contributions when the surface is nonspherical. 

APPENDIX III 

In many cases perturbation theory may be used to estimate the coefficients 
of the expansion (12) of the wave function for a nucleon orbit in a nonspherical 
potential well. Indeed, in view of the uncertainties in the exact radial dependence 
of the potential well, the way it is deformed, the effect of the deformation on the 
spin-orbit coupling (69), and so on, such a calculation may be as reliable (if not 
as convenient) as an exact solution for a particular choice of well. For axially 
symmetric nuclei with a quadrupole distortion we can use the potential 

U(r) = U0(r) - k(r)PYd@b). (21) 

If the spherical well Uo is square, k has the form of a delta function at the sur- 
face for small deformations. The deformation parameter 6 is related to the in- 
trinsic quadrupole moment (3)) 

Any spin-orbit coupling is included in the spherical well L70 , which defines the 
states #Njln in the expansion (12). Consider the orbit which in the spherical 
limit /3 = 0 becomes #Nila . In the usual way, the coefficients in (12) are, to first 
order in the perturbation, 

c,.pj~l’(Q) = P(N’Z’ 1 k / NZ) (j’n j Yx, 1 jfI)/‘AE. (22) 

AE is the separation of the unperturbed states in the spherical well, AE = 
E(N'J'Z'j - E(N$). The matrix elements of k are roughly independent of the 
orbits involved; they have been estimated (3) to be about 40 Mev. The spherical 
harmonic matrix element is independent of 1, I’ provided they have the same 
parity. 

(j’s2 1 YN 1 $2) = (jQ / Y*o I j’fo 

5 3t/(j--+fI)(j-D+2)(j+f2+l)(j+~+f) = 
2c.7. + l)(.i + 2) 9 

j’ ++ 2. 
, 

5 3fh.fq.i - f2 + l)(j + Q + 1) =- - 
y/- 64~ 3l.i + l>(j + 2) ’ 

j’ =j+ 1; 

/5 3Q2 - j(j + 1) =- 
/1/i% j(j + 1) ’ 

If the deformation strongly couples two orbits because their unperturbed energies 
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are close, that is, AE in (22) is small, the perturbation may be exactly diagonnl- 
ized in these t’mo states, the others still being t,reated approximately as in (22). 
In this way we can obtain a very good idea of t’he structure of the single particle 
wave function XQ without making very detailed assumptions about the potential 
well, or calculating the exact solution. 

BPPES1)K-i IV 

The Clebsch-Gordan coefficient,s, relnt’ing the coefficients of Xilssons’ calcula- 
tions’ (22) to those we use, have a simple explicit, form. 

(14~& - A 1 jQ) 

Q - ‘i E 15 Q-A= -1; 

j = 1+ IV: 
J- 

.i + Q / _I ‘> -J 

j z?z 1 - $2 : j-s+i 
J 

.i+n+j 
aj + 2 d 2j+2 ' 

The reduced width for capt’ure of nucleons by an even-odd nucleus to form t,he 
even-even residual nucleus in a rotation state (16) includes the Clebsch-Gordan 
coefficient (120 1 IjZ, - Z,j. For the first’ three levels of the band, 1? = 0, 2, 4, 
this has the form 

Iz = 0 j = I1 : 
ti2.1 + 1; 

zz = 2 j = I1 : d 5j(2j - 1) 
(j + 1)(2j + l)(Zj + 3)’ 

j = I, + 1: 
d 

15(j - 1) 
j(j + 1)(2j + 1)’ 

I2 = 4 j = I1 : 

j = II+ 2: d 30 
j(2j - 1)(2j + 1)’ 

9j(j - 1)(2j - 1)(2j - 3) 
(j + l)(j + 2)(2j + I)% + 3)(2j + 5)’ 

- - - j = I1 + 1: 9O(j l)(j 2)(2j 3) 
j(j + l)(j + 2)(2j + 1)(2j + 3)’ 

J - II+ SlO(j 2)(2j 5) - j = 2: 
j(j + 1)(2j - 1)(2j + 1)(2j + 3)’ 

- j = I,+ 3: 189O(j 3) 
j(j + l)(j - l)(2j + 1)(2j - 1)’ 

j = I, + 4: 3780 
j(j - l>(Zj - 3)(2j - l)(Zj + 1)’ 

RECEIVED: October 30. 1957 
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