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I. Introduction

The distance problem between two static objects has extensively been studied in the literature.
Efficient algorithms have been developed for various types of objects including: line segments
(1], boxes [2], polygons [3, 4, 5, and 6], and polytopes [7, 8, 9, 10, and 11]. Other references on
the distance and intersection problems can be found in [12 and 13].

In this report, we are interested in computing the distance between two circular disks defined in
three-dimensional space with arbitrary position and orientation. The approach for computing the
distance depends on the representation used to describe a disk. For example, we can define a disk
as a finite number of concentric circles, where each circle is defined by a finite number of points,
i.e. discrete disks. In this case, it might be possible to find a polynomial time algorithm for
computing the distance between both disks. This method, however, would provide approximate
solutions which depend on the number of circles and points used to define a disk. It would

require a significant number of iterations to achieve accurate solutions.

In this work, we consider a disk as a continuous area of points, i.e. a set of an infinite number of
points, where a point can be represented by polar coordinates, Cartesian coordinates, or by some
other equivalent parametric representation. Unlike the objects in the previously mentioned
problems, which can be described by linear models, the geometry of a disk is nonlinear by
nature. In general, distance problems are nonlinear problems, which can be solved using
nonlinear mathematical programming methods [14 and 15]. However, the computation time of
these methods may not be suitable for real-time applications. In addition, for objects having well
defined shapes like disks [16], circles, spheres etc., the special geometric structure of these
objects may be used to reduce the complexity of the distance problem and provide fast

computational solutions.

Our approach for the distance problem between two disks is based on using rotation
transformations and geometric properties of disks. The rotation transformations simplify the
representation of the problem by eliminating some of the constants from the basic formulation of
the distance problem. Using the special structure of the reduced representation and the geometric
properties of disks, it will be shown that this problem can be reduced to the problem of
computing the distance between a disk and a point. We will show that the latter has closed-form
solutions. An algorithm for computing the distance between two disks will be proposed. The
proposed algorithm (apparently the first in the literature) requires only a few tests to compute the
distance and the optimal points.



II. Formulation of the Disks Distance Problem
Let F=(X,Y,Z) be the attached coordinates frame of a circular disk K of radius D, centered at the
origin O and lying in the X-Y plane of F. A disk is a collection of points V which can be

represented as follows:
K= {V:(VX,Vy,VZ)T I Vx =rcos(q), Vy =rsin(q), V;=0,0<r< D} (1)

An arbitrary 3D disk is obtained by rotating K and translating its origin with respect to a fixed
coordinates frame Fg = (X0,Y(,Zo). Let R be a 3 x 3 rotation matrix that defines the disk plane,
and let l’:(P,(,Py,PZ)T be its origin with respect to Fy. Let W be the absolute coordinates of a
point V on the disk, then K can be defined as follows:

K={W=RV+PI|V= (Vx,Vy,VZ)T, Vyx=rcos(q), Vy=rsin(q), V=0, 0<r<D}  (2)

Let K| and K be two disks of radius D| and D5, centered at Py = (P, P1y, Py )T and Py = (Poy,
Py, Py,)T respectively. Let R = {Ryjj}, and R = {Ry;j}, 1, j = 1, 2, 3, be the rotation matrices
that define the planes of K and K respectively. Determining the distance between K and K3 is

equivalent to solving the following problem:

minimize I (R V1 +P)-(Ry V2 +Py) 112 (3)
subjectto  IV{II< Dy, IV, 11Dy

where Vi = (Viy, Viy, 0)T, Vo= (Vay, Vay, 0)T, and Il - 12 denotes the Ly-norm. The best way
for solving (3) is to find a method that provides closed-form solutions for the distance and the
optimal points. In the following, we discuss some of the approaches that we have investigated,
and then we develop our geometric approach based on the special properties of the problem

under consideration.

Problem (3) is a nonlinear optimization problem where both the objective function and the
inequality constraints are nonlinear. The above problem has an interesting property about the
location of the optimal points that solve (3). We can show that one of the optimal points that
minimize the distance between the two disks must be on the border of K or Kj. This is also true
when the disks have some intersection. Therefore, (3) can be reduced to the problem of finding
the distance between a disk and a circle. Since the optimal point could be on the border of K; or
K, one has to compute two distances, and the minimum of these two distances will give the
optimum. This approach may lead to closed-form solutions, but as we will see later on, the

method we propose is more efficient.

Problem (3) can also be viewed as a nonlinear programming problem, where techniques like the
KKT (Karush-Khun-Tucker) with Lagragian multipliers [14] may be used. When applied to (3),
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the KKT produces a system of 10 nonlinear equations in 6 unknowns. Because of the Ly-norm
and the convexity of disks, the Hessian of the objective function is positive semi-definite.
Therefore, the KKT necessary and sufficient conditions are satisfied for the optimality of
solutions. This guaranties that any solution of the nonlinear system is a global optimal solution of
(3). However, because of the semidefiniteness of the objective function, the solution may not be

unique. But this is not of great importance, since we are looking for any pair of points that solve

(3).

Using the preceding property on the location of optimal points, and the system of nonlinear
equations produced by KKT conditions, we have tried to combine these equations and to use
induction and/or deduction procedures to find out closed-form solutions for the distance problem.
With this formulation, one has to solve three problems, where each problem is described by a
subset of nonlinear equations. The first two problems are based on the assumption that one of the
optimal points is on the border of the first disk, and the other is interior to the second disk, and
vice-versa. These two problems are equivalent to the distance problem between a circle and a
disk. We can show that the KKT approach provides closed-form solutions for the distance
between a disk and a circle. However, we failed to find closed-form solutions for the third
problem, where both optimal points are assumed to be on the borders of the disks, i.e. distance
problem between two circles. In this case, we found a system of 8 nonlinear equations in 6

unknowns, which does not apparently have a direct closed-form solution.

The approach we propose here is, instead, purely geometric. First, we show that using some
rotation transformations the formulation of the distance problem (3) can be reduced to a simpler
one. Second, using projections and the particular geometry of disks, we show that this problem
can be transformed into a problem of computing the distance between a point and a disk. The
latter has closed-form solutions. This geometric approach is developed in Sections III and IV.

II1. Geometric Transformations
Our approach for the distance problem consists first of using rotation transformations to reduce

(3) to a simpler form. For this, recall that a rotation matrix R is an orthogonal matrix satisfying R
RT= RTR =1, where RT denotes the transpose of R, and I is a 3 x 3 identity matrix. Let p be a

three-dimensional vector defined as follows:
p=RiVi+P - RpV2+Pp) 4)

Multiplying both sides of (4) by RT, one obtains after rearrangement:

RIp =V,- RIR,V, - R (P)-P)) 5)



Let P = RIT (P>-Py),and R = RIFRZ, then (5) becomes:
Rip=V,-0RV,-0p (6)

Since IR} p 12 =1l p I, the distance problem (3) becomes:

minimize IV - (OR V, + OP)[12 (7
subjectto IV Il < Dy, IVl < Dy

With the above transformation, (7) is the problem of finding the distance between a disk K lying
in the (X0,Y () plane and centered at the origin O of the fixed coordinates frame Fp, and a disk

K> of center 9P and rotation matrix OR.

Further reductions can be applied on OR to make the X-axis of the frame attached to disk Kj
parallel to the Xg-axis of the fixed frame Fg. This means that OR can be reduced to a rotation
matrix that rotates the plane of K, about the Xg-axis only. For this, we shall show that for any

given matrix OR, there exist three rotation matrices A, B, and R such that:

BORAT = R (8)
where A, B, and R are of the forms:
cos(a) -sin(a) 0 cos(B) -sin(B) 0 1 0 0
A=| sin(a) cos(@) 0 | B= sin(B) cos(B) O | R=| O cos(y) -sin(y)
0 0 1 0 0 1 0 sin(y) cos(y)

The proof for relation (8) is conducted as follows: let C be a 3 x 3 rotation matrix such that C =
OR AT. Post-multiply OR by AT and set the entry C3; to zero, we obtain:

C31 = 9R3; cos(ar) - OR3; sin(or)
=0
where o can be computed as follows:
OR3

OR
31
tan (1) = ~—— = o =at 9
an (o) 0y atan (0R32) )

The value of o can be computed in [0, 2xt] by checking the signs of 9R3; and OR3;, Since the
disk is assumed to have two identical sides, the solutions & + © and o - T correspond to the
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same plane of the disk. Thus, we can restrict o to be in [0, t]. Note that, if OR32 =0, then we can

permute column 1 and 2 of “R so that the entry C3 = 0. In this case, the permutation matrix is
obtained by setting ot = Tt /2 in A. Thus, the resulting matrix C is of the form:

Cii Ci2 Cy3

C=| C Cpp Cp3
0 Cs3 Cs3

Let D be a 3 x 3 rotation matrix such that D = B C. Post-multiply C by B and set the entry D7) to

Zero, we obtain:

D21 = Cyisin(B) + Cyp cos(B)
=0
which implies that:
C C
tan (B) = - C—'ﬂ = B =-atan (C—ﬂ) (10)

As in the case of o, the solution B can be computed in [0, t]. If C{| = 0, then we can permute

rows 1 and 2 of C so that the entry Dy = 0. The resulting matrix D is of the form:

D11 D2 Di3
D=| 0 D2 D23
0 D3 D33

Since D is an orthonormal matrix, then D must be equalto 1 or-1,and D12 =Dy3=0.If Dy =
-1, then we can pre-multiply D by a matrix Iy such that R =1 D, where I; is of the form:

-100
L= 010
0 01

In this case, we have Ry = 1. Since D is a rotation matrix, we have D73 = D33, and D3 = -D3).
Therefore, by setting D7, = cos(y) and D73 = -sin(y), the matrix R will be of the form:
1 0 0
R =| 0 cos(y) -sin(y) (11)
0 sin(y) cos(y)

where R =D, if Djj= 1, or R =1; D, if D1y = -1, and 7 is determined in [0, ®t] by checking the

signs of D77 and D3 Finally, the above transformations reduce OR, to a rotation matrix R that



rotates the plane of disk K, with an angle y about the Xp-axis of the fixed frame F(. Relation (8)
is proved.

Consider now the objective function IV} - (OR V; + OP)II2 of (7). Pre-multiply the expression
inside the norm by B and post-multiply R by AT A, we obtain:

NVi-ORV,+0P)I2 = IBV| - BORATAV, - BOP|2

since the Ly-norm is invariant under rotation.

LetM=B V|, V=AV, and P =B OP, and substitute R for B OR AT in the above equation, we
have:
IVi-ORV,+O0P)I2 =IIM -(RV+ P)II2

where: M = (r cos(qi+ B), r1 sin(q+ B), 0)T, V = (r; cos(qa+ ), 17 sin(go+ t), 0)T, and P = (P,
Py, P,)T. Replacing qi+ P by 0 in M, and gp+ o by 07 in V, we have:

M = (rj cos(0y), ry sin(By), 0)T ,01=q1+p
= (My, My, 0)T (12)
and,
V = (rp cos(8y), rp sin(87), 0)T L0 =qt+o
= (Vx, Vy, 0)T

Finally, (7) is reduced to the following equivalent problem:

minimize IIM-(RV +P) 2 (13)
subjectto  IIMIl < Dy, IIVIl € Dy

where disk K is lying in the (X0,Y() plane and centered at Og, and disk K3 is lying in the plane
defined by the rotation matrix R and centered at point P = (Px,Py,PZ)T. Note that, in the above
formulation, the X-axis of the frame attached to K is parallel to the Xp-axis of the fixed
coordinates frame Fg, and R is a matrix that rotates K, by an angle y about X¢-axis.

As we can see, the above rotations have no effect on the distance problem. They only change the
phases of the optimal points, which can be restituted later by applying the inverse rotation
transformations on the obtained solutions. Because of the reduced structure of R, the above
formulation provides an optimal representation of the distance problem between two disks.
Additional geometric transformations can be applied on the objective function of (13), to produce
various possible configurations of the two disks in space. But the solution complexity of the
resulting problems will be equivalent to that of (13).
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IV. Geometric Properties

In this section, we show that the distance problem between two disks can be reduced to the
problem of computing the distance between a disk and a fixed point. For this, we first proceed by

presenting some preliminary results for computing the distance between a disk and a point.

Using the reduced formulation (13), we give in Proposition | a procedure for computing the
distance between disk K| and a fixed point in 3D. Proposition 2 gives a similar procedure for
computing the distance between disk K3 and the origin Og. Both procedures provide closed-form

solutions for the problems under consideration.

Proposition 1: Let W=(W,(,Wy,WZ)T be a point in three-dimensional space (Fig. 1), and let
IWllxy denote the distance between the origin O and the projection of W on the (Xo,Y0) plane.
Let d(M,W) =1l M - W |2 denote the distance between a point M € K and W. Then, there exists

. . * * * . . . .
an optimal point M = (M,, My, 0)T that minimizes the distance between K| and W such that:

min dM,W) = d (M, W)
MeK]

The minimum distance d(M*,W) and the coordinates of the optimal point M depend on the

following two cases:

Case 1: If Wiy > Dy, then dM",W) = (IWllyy - Dp)* + W, M, = ﬁ)\mx and M, = ]Ilj—v{,?l’—vi .
Xy Xy

Case 2: If 0 <IWily <Dy, then dM',W) = W2, My = Wy, and My = Wy .

Proof: From simple geometry, we can see that if IWllyy, > Dy, which implies that W is outside
the disk, then the optimal point M* is the intersection point between the border of K; and the line
joining the projection of W on the (Xo,Y0) plane with the origin Op. The proofs for the other two

cases are straightforward. Proposition 1 is proved.

Several remarks are to be considered for the geometric interpretation of Proposition 1 (Fig. 1).
First, we can easily see that if IWllxy > Dy, then W is outside the disk. In this case, the nearest
point M* to W is the point that intersects the boundary of K with the line joining the projection
of W and the prigin of the disk. Thus, the distance decreases when W gets closer to M*. This
means also that the closer W is to the origin Og of the disk, the less the distance between W and
the disk is.



Fig. 1- Minimum distance between a fixed point W and disk K.

This remark shows also that, if W belongs to disk K, which is assumed here to be completely
outside K, then the minimum distance between K; and K; can be obtained by computing the
minimum distance between K; and the origin of Kj. As we can see from both cases of
Proposition 1, the distance d(M*, W) depends only on the location of W with respect to the
origin O, and it is independent of the location of the optimum point M*.

Second, the minimum distance between K; and W is either the distance between W and a point
on the border of K (IIWllxy > Dy), or the distance between W and the plane of Ky (0 < Wilky <
D). Third, a necessary and sufficient condition for the intersection between K| and K, at W is
that W be in the (Xo,Y) plane (W, =0) and its projection is inside the disk Kj (0 < IWllyy <
D). Fourth, because of the symmetry of a disk, the optimal point M* may not be unique.
Therefore, there may also exist a point W' of K that gives the same distance. However, this is
not of great importance, since we are looking for any pair of points of K; and K that minimize
the distance.

These remarks are valid for any point W in the space, in particular, for the optimal point of Kj
that minimizes the distance between K| and K;. The main result from the above remarks is that
the optimal point of K, that minimizes the distance between K; and Kj is the point that
minimizes the distance between K7 and the origin Oq of Kj. This result is true for both cases of
Proposition 1. Since the objective function of (13) is symmetric, in the sense that we can move
K to the origin of K and vice-versa (by pre-multiplying the objective function by RT), the
above remarks are also valid when K3 lies in the (X0,Y() plane and centered at the origin Oy, and
W is a point of K. Therefore, it is necessary to compute also the optimal point of K; that
minimizes the distance between K and the origin of Kj.



Thus, the distance between the two disks can be determined by computing the nearest point of
disk K7 to the center of Ky, and the nearest point of K| to the center of K7. The minimum of
these two distances will give the first optimal point for the distance problem. This optimal point
will then be used to determine the second optimal point of the of the other disk. Thus, the
distance between K; and K; can be computed in two steps, where in each step a point-disk
distance is to be evaluated. Proposition 2 gives a procedure for computing the distance between

K7 and the origin Og of K.

Proposition 2: Let W = R V+ P be a point of K, and let d(Op,W) = IR V+ Pl denote the
distance between W and Og. Then, there exists an optimal point W= (W::, W;, Wz)T =RV +

P that minimizes the distance between K7 and Og such that:

min d(Op,W) = d(Op,W")
We K>

Depending on the following two cases, the minimum distance d(Op,W™) and the optimal point

V* are:

Case 1: If IR Plly > Dy, then d(Op,W*) = (IRT Pllyy - Dy)* + (RT P);,

«__DyRTPy o+ DyRTP),
X IRT Pllyy y IRT Pllyy -

*

Case 2: If 0 < IIRTPll,, < Dy, then d(Op,W*) = (RTP), Vy =- (RTP)y, and V, =- (RTP)y.

where IIRT Pllyy is the distance between the projection of point (RTP)on the (X, Yo) plane and
the origin Op, and (RT P)y, (RT P)y, and (RT P), are the absolute coordinates of (RT P).

Proof: The distance between a point W =R V+ P and the origin Oy is as follows:
d(0g,W) = IWII2
=IIRV+PI2
Since the Ly-norm is invariant under rotation, we have:
d(0g,W) =1 V+RTP |12

where Kj is lying in the (X, Y() plane and centered at the origin Og, and RT P is a fixed point in
three-dimensional space (Fig. 2).
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Fig. 2- Computing the minimum distance between K7 at center P and the origin Og. The problem is
equivalent to computing the minimum distance between K7 at center O() and the point RTP.

Thus, we can use Proposition 1 to compute the minimum of d and the optimal point V*. For this,
let IRT Pllyy denote the distance between Qp and the projection of RT P on the (Xo,Yo) plane.

From Proposition 1, there exists an optimum point V. = (V,, Vy, 0)T € K, that minimizes the

distance between Ky and RT P, that is: If IRT Pllxy > D, then d(Og,W ) = (IRT Pllyy - Dy)” + (RT
P)2. and

v o, D2RTP)y ox Dy (RTP),
X7 IRTPly * Y~ IRTPl,

If 0 < IRT Plly, <Dy, then d(Op,W*) = (RTP}. Vy = - (RTP)y, and V, = - (RTP)y. For both
cases, W* can be computed from the relation W* =R V* + P. Proposition 2 is proved.

Consider now problem (13), that is:

minimize IIM - (R V+P) |2
subjectto  IIMIl < Dy, IIVIl < Dy

Let d(Og, WS ) be the distance between Og and WS, where WS is the optimal point of K that
minimizes the distance between Og and Kj. Let d(NE, P) be the distance between M ; and P,

*
where Mp, is the optimal point of K that minimizes the distance between K and P. Then we

have the following Lemma:
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Lemma 1: The distance between K| and K3 is as follows:

dMoWp)  if d(0g,Wg) < d(M,, P)
min  min dM,W) = . . \ .

dM,W,)  if d(Op.Wg) 2 d(M,, P)
WeKy MeK;

* *
where W, is the nearest point of K3 to the origin Op, M is the nearest point of K| to W 8 M;
. . * . .
is the nearest point of Ky to the center P of K3, and W, is the nearest point of K; to M; . The
distances d(My, W) and d(Mp, Wp), and the corresponding optimal points can be computed

from Propositions 1 and 2.

Proof: Let W; be the nearest point of K> to the origin O of K (see Fig. 3). WS can be computed
from Proposition 2, we have:

min d(Og,W) = d(Og,Wp)
We Ko

. * . . * * . . .
Since W is known, we can compute the nearest point M of K to Wy. Proposition 1 gives:

min dM,Wg) = d(Mg,W,)
MeKj

Similarly, let M; be the nearest point of K; to the origin P of K3, then from Proposition 1, we
have:

min d(M,P) = d(M;, P)
MeKj

The nearest point W; of K3 to M; can be computed by using Proposition 2 (see fig. 4), we
obtain:

. * * *
min d(Mp,W) = d(Mp, Wp)
We K>
Assume first that d(O(),WS) < d(M;,P). This means that WS is closer to O than M; to P is. Since
w("; is the closest point of K3 to the origin Og of Kj, then WS is the closest point to disk K. This

is true because the minimum distance between a disk and a fixed point depends only on the
location of the fixed point in space, or equivalently, the minimum distance depends on the

distance between the point and the center of the disk. Consequently, from Proposition 1, there
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. . . * ~ . . * . *
exists an optimal point M of Ky, that is the closest point to W . It follows that the points M,

*
and W, are the optimal points that minimize the distance between both disks. This implies that

* * * *
dMp,Wp) < dM,, W)
and consequently we have:
min  min dM,W) = d(Mg,Wy)
WeKy MeKj
For the case where d(Oo,WS )2 d(M:;,P), symmetric arguments can be used to show that M; and
W; are the optimal points that satisfy the minimum distance between K| and K. Lemma 1 is

proved.

* *
Fig. 4- Determining the optimal points M, and Wi, .
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V. Algorithm:

The first two steps of the algorithm consist of computing the distances d(O(),WS) and d(M;,P).

The distance between the two disks and the coordinates of the optimal points are computed in

Steps 3 or 4.

Step 1: Using Proposition 2, compute the distance between the origin Og and disk K». This gives
d(Oo,WS) and the coordinates of the optimal point VS € Kj. Compute Wa from the

relation WB =R VS +P.

Step 2: Using Proposition 1, compute the distance between disk K| and the center P of K;. This
gives d(M;,P) and the coordinates of the optimal point M; e K.

Step 3: If d(Oo,WS) < d(M;,P), then use Proposition 1 for determining the distance between
Wo" and disk K;. This gives the distance between the two disks d(MS,WS), and the

coordinates of the optimal point Mgy* of K. End.

Step 4: If d(Oo,WS) 2 d(M;,P), then use Proposition 2 for computing the distance between
M; and disk Kj, thatis, compute the minimum of IV - RT(M; - P)II2. This gives the
distance between the two disks d(M;,W;), and the coordinates of the optimal point

W, of K. End.

Note that, Steps 1 and 2 require two comparison tests to find the distances d(Oo,WS) and
d(M;,P). Steps 3 or 4 require 1 test for comparing both distances and two other tests to find the

minimum distance between the two disks. Therefore, the algorithm terminates by finding the
closed-form solutions of the distance and the optimal points in at most 5 comparison tests.
Appendix A gives the detailed computational procedures for the algorithm. For all cases, we
obtain simple expressions for the closed-form solutions, which can easily be computed with only

afew operations.

V. Conclusion:

In this technical report, we presented an efficient algorithm for computing the distance between
two circular disks in 3D. Some rotation transformations were used in Section 3 to simplify the
formulation of the initial problem. These transformations may not be required for developing the
algorithm. One may apply directly the proposed algorithm on the formulation given in (7). It was
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shown that the distance problem is reducible to a two-step problem, where each step involves the
computation of the distance between a disk and a fixed point in space. Closed-form solutions
were obtained for the point-disk distance problem. An algorithm that requires about 5
comparison tests was proposed. The algorithm provides closed-form solutions for the distance

between two disks and the optimal points.

Acknowledgments:
The authors would like to thank the Research Committee at King Fahd University of Petroleum

and Minerals for its support to conduct and accomplish this work. Thanks are also extended to
The Department of Industrial and Operations Engineering at the University of Michigan, Ann
Arbor, where the first author is currently on Sabbatical Leave. In particular, we would like to
thank S. O. Duffuaa and K. G. Murty for their helpful comments and fruitful discussions.

15



Appendix A

Detailed Computations of the distance algorithm between two disks:

Step 1: Computing d(Oo,WS) from Proposition 2:

) (IRT Plly, - Dy)* + (RT P); if IIRT Pllyy > Dy
d(Og,Wp) = 5
(RT p)? if 0< IRTPlly, <D

Step 2: Computing d(M;, P) from Proposition 1:

) (IP llyy - Dy)* +P; if IIP llyy > D
d(Mp, P) =

2

P, if 0< 1IPliky <D2

At this stage of the algorithm, we assume that both distances d(Oo,Wz;) and d(M;, P) are known.

Step 3: If d(Oo,WS) < d(M;, P), then from Proposition 2, the coordinates of the optimal point VS

€ K are as follows:
RTP), . * D, (RTP) *
Case 1: If IRT Pl D», th Vi =-L—X,V = - -4 — andWy=R
e xy 2 D2 e Vox =7 TpTpy,, YOV T T RT il MO

Vz; + P. Using proposition 1, the minimum distance d(Mg ,WS) and the coordinates of

the optimal point MS € K depend on the following cases:
* * * * * 2
Case 1.1: If W llyy > Dy, then d(Mg ,Wq) = (IW¢ llxy - D)2+ (Wp);

*
D1 Woy

*

Case 1.2: If0< W lly <Dy, then d(Mg ,Wg) = (Wo)z , Mo, = Woy > and

* *
Moy = WOy :

Case 2: If 0 < IIRT Pllxy < Dy, then VSX =- (RTP), ,ng = - (RTP)y, the distance

d(M; ,WS) and the coordinates of M; are:

Case 2.1: If W lly, > Dy, then d(Mg ,Wg) = (IW{ llxy - D1)2 + (Wp);
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* Dl WOX * Dl WOy
MOX = N y and Moy = "

Case 2.2: 0 < IWg ll,y <Dy, then d(Mg ,Wg) = (Wo)3 , Mgy = Wy, and

* *
Moy =Woy.

Step 4: If d(OO,WS) > d(M; , P), then using Proposition 2, the coordinates of the optimal point

M; € Kj depend on the following cases:

, « DyPy . _DP —
Case 1 If ”P ”xy > Dl, then Mpx - “P ”xy ) Mpy - ”P “xy, and d(Mp, Wp) 1S as

follows:

Case L.1: If IRT(Mj - P)llyy > D, then d(My ,Wy) = (IRT(M, - P)llyy - D2)2

+ (RT(M; - P))g and the coordinates of the optimal point V; are:

. Dy (RT(M, -P))q ., Dy®RT(M, -P)
Vo = : 1:4p vand Vpy = s
IRT(M,, - P)llyy

IRT(M, - P)lly

Case 1.2: If0 < IRT(M, - P)llyy < Dy, then d(M,, Wy) = RT(M, - P));
* * * *
My = RT(M, -P))x ,and M, = (RT(M,-P))y.

* * * *
Case 2: If 0 <IIP liyy <Dy, then Mpx =Py, Mpy =Py, and d(Mp ,Wp) 1s as
follows:
* * * *
Case 2.1: If IRT(Mj, - P)llxy > Dy, then d(Mp, Wp) = (IRT(Mj - Py - D1)?
+ (RT(M; - P));2 and the coordinates of the optimal point V; are:
M ™M
« Dy RY (M, - P))x . Dy (RY*(M, - P))y

Vox = andV,, =
* ’ Yy
P IRT(M; - Py P

*
IIRT(Mp - P)llxy

Case 2.2: If 0 < IRT(Mj - P)llyy <Dy, then d(M, W) = RT(M, - P));
[ 3 T * * T *
Vo = RT(Mp - P))x ,and Vy, = (RT(M, -P))y .
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