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ABSTRACT

A theory is outlined for determining the initation of fracture and
initial fracture propagation in elastic brittle materials having non-linear
Mohr fracture envelopes. This theory is applied to a specific boundary
value problem, i.e. a truncated quarter plane with arbitrary traction
distribution on the truncated boundary and varying confining pressure. This
problem simulates the chipping phase of the penetration of a wedge shaped
tool into an elastic brittle material. Numerical results are obtained for
two rock materials, Blair dolomite and quartzite.

Results indicate that for increasing ¢onfining pressure, a limit
condition is reached for both fracture initiation location and force. This
limit location is closer to the boundary than the fracture initiation points
at lower confining pressures, indicating smaller chips. It is also found that
initial fracture propagation is less clearly defined at higher confining pressures.

Both of these results have been observed experimentally.
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NOMENCLATURE

asymptotic value of Mohr envelope

A
C(o_) T - intercept of a linear envelope tangent to the Mohr
envelope at the point where the mean stress is o
K 7L 7.x (@ ),C(@ _)) fracture function
(Ul’ T TR m
K . defines point of fracture initiation
min
L length of the truncated boundary; characteristic length
for the problem
m traction '"form'' parameter
P total vertical line load on the truncated quarter plane
(half the wedge force)
p scalar reference pressure
t ,t normal, shear traction on truncated face
n s
@, coefficients in polynomial fit for T = :(;m)
B. coefficients in polynomial fit for o= ;(:r_m)
i
N angle between x axis and normal to first principal plane
6 half wedge angle
3 length coordinate along the slanted face
P external coefficient of friction (between wedge and
material)
p,(; ) slope of linear envelope tangent to the Mohr envelope
m . .=
at the point where the mean stress is o
o y O principal, dimensionless principal stresses
1,2 "1,2 ' .
(o‘1 > 0‘2) due to wedge loading
- T total principal stresses (;T >;T)
1,2 1 2
- normal stress on a plane
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o + o

hydrostatic stress

mean stress

shear stress on a plane

external friction angle (po = tan cbf)

wo )= tan o(o )

angles between x-axis and normals to Mohr planes
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I INTRODUCTION

In a previous paper [1], fracture initiation and subsequent growth were
analyzed for elastic brittle materials which obeyed a linear (Coulomb-Mohr)
fracture envelope. Due to the linearity of the fracture criterion it was
possible to do a dimensionless parametric analysis valid for all materials
having such a linear envelope. There are, however, many materials for
which a linear fracture envelope is not a good representation. This non-linear
as in other non-linear problems, precludes a single dimensionless solution.
Here it is necessary that the specific fracture envelope be known.

In the present paper a general anal ysis is developed for fracture
initiation in non-linear brittle materials and is applied to two such materials,
Blair dolomite and quartzite. As in reference [1], the idealized boundary
value problem studied is the truncated quarter-plane with a variable traction
applied on the truncated face, see Figure (1). Fracture initiation in such
a region represents the first stage of chip formation and is important in a
number of practical situations, e.g. drilling of hard rock. Of interest, also,
and included in the anélysis, is the effect of hydrostatic pressure on fracture
initiation. This problem is of interest in drilling in the presence of large
overburden pressures.

In Section II, both a discussion of the physical significance and a
quantitative description of the non-linear (Mohr) fracture envelope are

presented. An iterative technique for handling non-linear fracture envelopes



based on a series of linear envelopes is developed in Section III. This
first requires the solution of the elastic stress field based on an integral
equation procedure and is discussed in detail in [2, 1] . This technique is
then applied to the two materials mentioned above and results obtained for
varying hydrostatic pressure and truncation angle. These results are

presented and discussed in Section IV.

II. FRACTURE CRITERION

A. Discussion of the Fracture Criterion

Mohr fracture envelopes have been used extensively in the study of
the fracture of brittle materials [ 3]. In general, these envelopes are
developed phenominologically, i.e. the Mohr's circles to which the
envelope is tangent are defined by ''strength failure'' of cylindrical test
specimens under axial load and varying confining pressure. Thus, a
criterion developed in this way does not define fracture initiation in the
Griffith sense. It will be shown, however, that it is not fracture initiation
in the Griffith sense, but rather crack coalescence that defines the onset of
fracture in the present theory.

In Figure (2) are plotted lateral, volumetric, and axial strain
versus axial stress for quartzite under zero confining pressure [4]. oOf
particular significance in explaining the microscopic behavior is the
volumetric strain curve. This is interpreted as follows. Axial stresses

in the vicinity of point A are sufficient to initiate growth at a number of



critically oriented Griffith cracks. It should be noted that the stress

field is assumed globally uniforrn1 (uniaxial) and the Griffith flaws are
randomly distributed and are located, for example, at grain boundaries [6].
As the stress increases these cracks continue to grow. Such growth is
indicated by a deviation from linearity of volumetric strain, i.e. dilatancy,
see Figure (2). This dilatancy is an increase in porosity which is a
reflection of internal damage resulting from crack growth. Further increase
in stress begins to produce coalescence of these cracks. For stresses
beyond point B crack coalescence is extensive throughout the region as
evidenced by large increases in dilatancy. This widespread damage is
preliminary to the céalescence which forms the final fracture surface
resulting in strength failure of the specimen. Thus, the Griffith theory
gives the stress level at which preferentially oriented cracks begin to

grow while the final Mohr envelope indicates when such cracké have
sufficiently coalesced to cause final strength failure. In the present boundary
value problem (non-uniform global stress field) of interest is the beginning
of the fracture forming the resultant chip. Thus fracture initiation in the
present theory is characterized by crack coalescence as differentiated from
initiation in the Griffith sense and is most closely represented by the

material strength failure (Mohr fracture envelope).

Most compression tests, in fact, produce non-uniform ''global'' stress states.
The test specimens introduced by Brace [5] closely approximate a uniform
stress state as evidenced by the uniform damage distribution in the specimen.



B. Analytical Description of Mohr Envelopes

The Mohr envelopes can be represented in the following form:
Tl o4 Ve = (e
7] 4 p (om)o C(om) (1)

where :, ; are the dimensional shear and normal stresses on some plane,
M (—(;m)’ C(;m) are the slope and T intercept of a linear envelope tangent
to the Mohr envelope at the point whose mean stress is ;m’ see Figure (3).

From Figure (3) the ""material constants'' p (;m), C(;rn) are given by:

(2)

Cl )= )+ p( )o@ )

The Mohr envelopes represent given input data and are further

expressible parametrically interms of the following polynomials:

:::(}_)= a.;

The two materials considered are Blair dolomite and quartzite.
The Mohr envelope data for these two rocks were obtained by Brace [5]
using the special compression specimens mentioned previously which
insure a fairly uniform axial stress distribution. With the envelopes
given, the constants in equation (3) can be found using a least squares fit.

Details of this fitting including the computer program [7] are found in

Appendix A.



III. ANALYSIS

A fracture mechanics analysis involves several steps. Itis first
necessary to determine the stress field due to the external loadings. This
stress is then compared with a fracture criterion to determine the location
and stress level at which fracture initiates. The next stage is fracture
growth which in the present problem would terminate in the formation of a
chip [1]. The main interest in the present paper is in the initiation of
fracture. However, comments regarding initial fracture propagation are
also made.

The criterion which governs here is the Mohr criterion given by
equation (1). If the planes which maximize the left hand side of equat ion (1)
are found and the resulting stresses on these planes expressed in terms of

principal stresses, equation (1) takes the form,

- 2 _
(o) T _T m —~T —T

> (0’1 + o, ) + > (0‘1 -0, ) = C(O'm) (4)
T T .. . T T )
oy T, are the principal stresses with Ul > T, reckoned algebraically.

The superscript T indicates total stress due to both loading on the
truncated face, see Figure (1), and hydrostatic pressure. There are two

angles for which equation (4) is valid,

$@F,_)

=yt G- )itan ¢ (o) = p(E_) (5)

where Y; is the angle between the normal to the first principal plane and

the x axis. It is important to note that the interpretation of the angles \.pl 2



in terms of fracture direction is unclear at present. The authors do not
believe, as is commonly interpreted, that these angles define the fracture
directions, per se. The Mohr planes defined by these angles are shown on
Figure (4), and clearly, are not consistent with known ''chipping' behavior.
The interpretation of reference [1], namely that these planes represent
directions of critically oriented Griffith cracks, is also not totally
consistent here since the Mohr criterion assumes that cracks have already
coalesced However, it can be shown (buf is omitted here) that these
directions are close to those predicted by the Griffith theory.

If the total stress is divided into its component parts;

- T - —H
= +
0'1 0‘1 o
(6)
—T - H
02 = (TZ + o

and substituted into equation (4), the following is obtained;

_ N —
) G
2 17 % 2

, 0, with respect to P/L (see Figure (1)), i.e.

Nondimensionalizing o >

1
= ;2 L/P, equation (7) becomes;

AR
K@) L+p (o ) - — —H
m m

((rl + crz) + > (cr1 - crz)




A 'fracture function'' is now defined;

T _ T 2 [C(Fm) - H(Em)EH]

_ _ _ P
o, sp(e_),Clo_))== = _ p—
2 m mi L b o, to)+ 414 pz(am) (0, - 7))

(9)

K(o‘1

This fracture function has the following physical interpretation. It is that
value of P/IL necessary to initiate fracture at a given point in the field.
Clearly, the minimum value of K (Kmin) in the field is where the actual
fracture begins.

To find K the stress field 0,0 0 must first be known. Following

2

reference [1] a traction distribution (due to the "wedge' force) is assumed;

0 on DB
B m ,  cos 2n§
t = { pE/L)y (1-—7 ) on BA
0 on AC
(10)
0 on DB
_ _ m cos 2w§
t o= |t = pw (B/L) (1 - S ) on BA

where tn, ts are the normal and tangential traction components, § a
coordinate on BA defined in Figure (1) and Mg the coefficient of friction between
wedge and rock. m is a form parameter which for increasing value gives

a more asymmetric and concentrated traction distribution. m = 5 and Mg = 0
are used throughout the analysis. These are reasonable approximations for

the traction distribution due to a penetrating wedge shaped tool. pis a



scalar pressure which can be related to the half wedge force P as follows;

P cos ¢f
p= - (1)

L sin (6 + q)f) f nm (1 - cos 2mm)dn
0

where 0 is the half wedge angle (truncation angle) and ¢f is the friction

angle; tan ‘bf = Mg

For p defined by equation (12) all traction distributions
(any value of ¢f, m) add up to the same value of P/L (vertical '"force'
component).

The stress field (before fracture has started) represents a linear
calculation and an integral equation procedure, outlined in detail in references
[1,2] can be used. For brevity, this is not repeated here.

With 0100, known throughout the field for a given traction
distribution for which P/L =1, Kmin can be found using the following

iteration equations;

H
(n-1) (n-1) (n-1),_. (n-1) —
2 |c (o ) - (o yo ]
k™ - (p/yP- m m
H(n—l)(&_nin-l)) +1/1 s W (n 1))) 0, o)
(a)
7 M v, /™ Tl b)
(n) r
T - —E —m(n)) (c)
_(n) _ Z @ oy @)



g ) ) "
(12)
where the N N n parentheses represent the iteration cycle
number. Note that oo 0,s ?H, Ozi, (ii are constants throughout the iteration.
. s _ (0) _ (0) _ . .
Assuming initially (n = 1), p =0, C = CA (the appropriate asymptotic

2
value of the Mohr envelope, see Figure (3)) , K(l) is found directly from

(1)

(12a). This value of K determines a new mean stress Fm(l) from

(1) —(

equation (12b), which in turn determines T ', o % from equations (12 c,d)

(1) (1)

and finally the new constants p= °, C from equations (12 e, f). This iteration

proceeds until convergence is obtained, namely

() _ g n-1),
@-1),

|K

I <e (13)
K

where € usually is selected to be 0.01.

This iteration procedure should take place at every point in the
field with that point at which K is minimum being the fracture initiation
point. To implement this numerically those points shown as dots on

3
Figures (4) were the initially selected field points. = The iteration procedure

Beginning the iteration from the asymptotic value of the Mohr envelope avoids
certain numerical difficulties, i.e. too large an initial value of y may result
in an unbounded first iterant.

3I’c is necessary to have K throughout the field for later comments on fracture
propagation.



was done at all of these points and the location and value of Kmin found.

The field was tl?en subdivided in the vicinity of this point, as shown in

Figure (4), and the iteration repeated for this smaller field. The new

value and location of Kmin is the one finally selected. The computer program
which does both the stress field calculation and Kmin iteration procedure is

found in Appendix B.

IV. DISCUSSION OF NUMERIC AL RESULTS

Numerical results for the two materials considered, namely,
Blair dolomite and quartzite, are summarized in Table 1, and in Figures (4-6).
’fhe confining pressures considered in these results, i.e. zero to three
kilobars, represent moderate pressures and the materials are still in their
brittle state, see Robertson [8] .

Fracture initation locations for the various cases are shown in
Figure (4). As the confining pressure increases the fracture initiation
point approaches a limiting point nearer the surface. This indicates a
decreasing ''chip' size with increasing confining pressure. Similar results
have been noted experimentally by Gnirk and Cheatham [9]. The force
necessary to initiate fracture also approaches a limiting value as confining
pressure increases as is seen in Table 1. An important result is that
fracture initiation location for a given traction distribution is solely dependent

on M(Fm) (location on the Mohr envelope)fL The small differences in fracture

This conclusion is consistent with the results of reference [1], where the
dependence on p is discussed in more detail.

10



initiation point for Blair dolomite and quartzite at low confining pressure
is due to differences in the slope of their respective Mohr envelope at

low mean stress. Differences in the two materials show up in the relative
magnitude of the forces required to initiate fracture (Kmin)’ see Table 1.
Mohr envelope intercepts of the various fracture initation points of

Figure (4) are shown in Figure (3) for Blair dolomite.

Effects of wedge angle (truncation angle) on the magnitude of the

fracture initation force for Blair dolomite can also be seen in Table 1.

As expected, fracture initation forces increase with increasing wedge

angle. It is interesting to note that for all three wedge angles (and

EH = -2kb) the location of the fracture initiation point was identical

(within the range of accuracy of the subdivision)relative to the truncated face.
This is expected, however, since the fracture initiation point is somewhat
removed from the boundaries DB and AC of Figure (1).

The anaiysis (determination of K throughout the field) can be used to
predict initial propagqtion of the fracture also. In Figures (5), (6) contour ma
of K for Blair dolomite at zero and three kilobars confining pressure are show
Following reference [1] it is proposed that the initial propagation of the
fracture follows the minimum gradient of the contour plot. An interesting
result is that this proposed fracture path is well defined at zero confining
pressure, Figure (5), but less so at higher confining pressure, Figure (6).
This would indicate more ambiguity in chipping behavior at higher confining

pressures. This has also been seen experimentally by Gnirk and Cheatham [9

11



APPENDIX A

POLYNOMIAL FITS FOR o =7 (@) AND T =7 (7 )

The coefficients . Bi of equation (3) were obtained in the following
way. Normals were drawn to the Mohr envelope of the material at a number
of points spanning the range of interest. The intercepts of these normals with
the ¢ axis determine the values of o_-m and the corresponding points on the
Mohr envelope determine the corresponding values of ¢, T. Data points
obtained in this way are shown in Table A-1 for Blair dolomite and Table A-2
for quartzite. Polynomial curves were then fit to these data points using the
following computer program developed in ref.[7].

A. Input Data

M - Number of data points to be fit

MIN - Lowest order polynomial fit desired
MAX - Highest order polynomial fit desired
X —E:m values of data points

Y - Corresponding ¢ or T values of data points
B. Output Data

N - Order of polynomial fit

DET - Determinant of Matrix

S - Standard deviation

A -a or f8 o

B(I) -a. or ﬁi, i=1,N

12
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INPLICIT REALXA(A-H, N=7)

IMTEGRR PNOINT

DIMENSIMON X(100)aY(100)sB(IN) e PNTHT(10), THAGF(2500)

DATA POIMT/ VLV 120 038 140,050 041 170,038,098 408/

NAMELIST/DATA/MGHMINGIMAX ¢ Xo Y

READ (54DATA)

WRITE (H4DATA)

NN S M=T N FAY

WRITE (hea202) N

S=R[F6GR (“’9X9Y0M'/‘»vn)

IF (S.HFEL0.0) G Tn 3

WMRTTE (6e2073)

GOTN 1

HRTTE (6e204) SeAe(Teli(T)el=1 o)
DELTAN=(X(1)=X(1))/?25,0

WP ] =it

APD =ik A

N 4 T=iP],iiP26

STFPS=]=ti=1

XTI Y=X{1)+STEPSRDELTAX

Y({T)=A

N4 =101

YD) =Y (T)+n( )Ty

HRTTE (Ae20S)

CALL PLNTYL (D4 G5, 10, A, 20)

CALL PLOT? (I2AGE(1)e —e —¢ =0 =)

CALL PLOT3 (POINT(ri)e X{Ui01)y Y{(2P1)y 26, )

CALL PLOTR (v, XN{1), Y(V)e it @)

CALL PLOT4 (10, 10HMOTRATE V).

HRTITE (6e20A)

GOTN 1

FIAT (32HY POLYRIOSTAL RECDRESSTNM OF NRAFR/T1HN. 55X e TH = = .1
AAT {AQHD BATRIX € 1S MEARSSTHGIHIL AR, RFGRESSI(N CNEFSTCTE )
NETERATEN)

FAT (1H0. 8Xe B4 8 = o Flheh/ A¥Xy SH A = o ND16.8//
Yo 3 D(s 124 4H) = o N1AR))

JAT (111

HAT (100e 86X. 13H ARSCISSA (X))

Fin

FUNCTION RFEGR (H1yXaYaltaAeh)
LIWPLICIT REALKRS(A=H, N=7)
REALSE AdBPFEGR Y,V

DATA EPS/ 1.0FE=20/
NIAFNSTON CL11411)eSXI20)eSYX(10)CYX(10)eX(1ND)Y(INN)E(10)
MT U = 23t

NP 1=lt+]

SY=0.0

SYY=0.0

DO 1 I=1,0

NP T=01+]

SX{I)=n.0

SYAHPT)=0,.0

SYX(I)=0.0

NN 3 1=1,H

SY=SY+Y(T)

DUM=1.,0
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NN 2 J=1,N
DUM=DLIM=X ()
SXE)=SX ) +NDUM
> SYX(JI=SYX(J)+Y{T)xDNitd
N3 g=MP1l, MTHO
DUM=DUMX({T)
3 SX{=SX () +DHM
Fil=id
CYY=SYY=-SY:SY/FM
N4 I=1,40
CYXUT)=SYX(T)=QYSX (1) /FM
CATLNPLY=CYX(T)
NN 4 gl oM
IPI=1+J ,
4 COTad)=SXTRA)=SX (TS () /F
NDET=STUHL (i1eCePalFPSy1al1)
PRITE (6e200) DET
200 FNRGAT (1310 NET = o Fla.n)
TE (DET JME. 0.0) 6GOTN A
RIEGR=0, 0
RETHDN
A AIEREINY
TEMP=CVY
O T=1,0
. NN =R (T )5=8Y (1)
7 TRAP=TESHP=R(TINCYX(T)
A=D1/ S
ir‘);l'.".vlz}':-—,-'-l
S=NSORTTEIR/DEMM
REGR=S
RETHR
=i
FUNCTTION ST AN G AeXeFRS G TINTA MR
INPLICIT BEALSR(A=H, N=7)
REAL Ay Mg BFPS ST,
DEAEUSTHR TROWEEN) s JENLEE0) s JNRNDISN) g Y (K0 ) o A(HRGC 100 ) o ()
MAX =11 o
TROTHRNIC L GFELN) MEAX =N
ITF (HalFa80) G T 8
HRITE (Hh.200)
STitiL=0,
RETHR W
S DETFR=1,
DN 18 K=14M
K] =¥ -1
PIvVOT =9,
D11 I=1.0
NN 11 J=14N
IF (K.EDL1) 6N TN 9
DY 8 TSCAH=1 K]
DO 8 JUSCAN=1,Ki1]
IF (T.ENJIRNWIISCAR)) 6N TN 11
IF (JeFOLICNLIISCANY )Y 6N TN 11
8 CONTINUE : ‘
9 IF (DABSIA(TIS)) e LEJDARS(PIVATY) GO TO 1)
PIVNT=A(Ts.)
IRNU(K)=T
JCOL (K )=J
11 CONTIMUE
IF (DABSIPIVOT)«GTLFEPS)Y G TH 13
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Polynomials of order 1, . . ., 9 were fit to the data of Tables A-1
and A-2 and the best of these fits were chosen in each case, The resultant

coefficients are given in Table A-3.
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APPENDIX B
COMPUTER PROGRAM
NONLINEAR FRACTURE ENVELOPE

A computer program was employed for the numerical computation of
the stress field and "'fracture function.' A listing of that program is
presented in this appendix.
A. Input Data

The following information must be provided as input (all values are

dimensionless unless otherwise designated):

NML - total number of subdivisions on the boundary,
see ref. [1].
NDB, NBA - the number of these subdivisions allotted to

boundary segments DB and BA respectively
(figure 1); see ref. [1].

(S (1), I =1, NML) - the lengths of the boundary subdivisions be-
ginning with right-most on boundary DB and
listing counter-clockwise, see ref. [1].

PC - degree. of accuracy desired in the iteration to
determine fictitious loads, see ref. [1].

Al - value of the convergence parameter, o, see
ref. [1].
NFPI - the number of field points at which the stress

tensor components and '"fracture function'' are
to be computed.

(XF (I), YF (I), I=1, co-ordinates of these field points with respect
NFPI) - to the co-ordinate system designated in figure 1.
DIV - Once the '""fracture function,' K, has been

evaluated at each of the specified field puoints,
the computer determines at which of these points
K is a minimum. A grid is then set up about
this point as in figure B-1, the computations are

repeated and a new location of minimum K is

17



THETA -

MUF -

MUI -

CI -

TO, . . ., T7 -
so, ..., ST -

SIGMAX -

TAUMAX -
SGMAH -

B. Output Data

determined. A minor adjustment to the program
would allow for further subdivisions and sub-
sequently better accuracy.

the half wedge angle, 0.

coefficient of friction on loaded surface, Mg
form parameter, m,

(0)

initial choice of p: p

(0)

initial choice of C: C ( in kb).
coefficients ., equation (3).
1

coefficients iy equation (3).

value of ¢ at which Mohr envelope is essentially
equal to asymptote ( in kb).

maximum value of T for Mohr envelope (in kb).

hydrostatic stress (in kb).

The fo‘llowi.ng information is obtained as output (again, all values are
dimensionless unless otherwise designated):

(LOCT (I), XB (I), YB(I),

I=1 NML) -

(PX (1), PY (1),
I=1, NML) -

(PXS (I), PYS (I),
I =1, NML) -

Given the number and lengths of the boundary
subdivisions, the computer determines the co-
ordinates of the center point of each and assigns to
each a location number. This numbering begins

at the right-most subdivision on the boundary
segment DB and proceeds consecutively in the
counter-clockwise direction (figure 1); see ref. [ 1] .

components of the real traction on the boundary,
represented by the concentrated real load at the
center of each one of the subdivisions, see ref. [1].

components of the fictitious traction on the bomﬁary,

represented by the concentrated load, P ‘xi’ P gi’
at the center of each one of the subdivisions, see

ref. [1].

18



(LOCT (1), XF (I), YF The computer also assigns a location number
(I)I =1, NFP) - to each of the field points. The set of specified
field points (input) are numbered from 1 to NFPI

whereas the points of the grid(figure B-1) are
numbered from (NFPI + 1) to NFP = (NFPI +22).

(SGMAXX (I), SGMAYY components of the stress tensor, ¢, o0, o,
XX

= yy Xy
S)F:PS)GI_\_AAXY (1), I=l, .t each of the field points, see ref. [1].

(SGMAL (I), SGMA2 (1), principal stresses and their directions at these
ALPHAIL (I), ALPHA2 same field points. SGMALI (I) is the larger
(1), 1 =1, NFP) - stress in an algebraic sense.

(K(1), PSIL(1), PsSI12 (I), the "fracture function,' K (equation 12 a) and
=1, NFP) - the Mohr amgles (equation 5) at each field point
for each iteration.

(SGMAM (I), MU (I),C the mean stress and slope and T - intercept of a
(1), I=1, NFP) - linear envelope tangent to the real Mohr envelope
at a point defined by the mean stress at each field

point for each iteration.

KMIN - minimum value of K; value of K at the point of
fracture initiation.

The computer program follows.
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$STANANM
SRUM 3§

&R

100
20
301
401

501
607

70

KON
RO

RO 2

a0

5

G

12-31=73 12-31-73 : 12-31-73

TATUS

HETH
T ISNTRNPIC CASE = NOANLINFAR CRITFRINM

REAL MUF

REAL 111

REAL MU(16h4)

REAL K{164410)

REAL KHIN -

DIMENSTHN S(96) e XRIYA) e YRIGA) s ANXTOA) 3 ANY(QA) 4 PX(96),PY(94A),
RL(G6,96) eR2(9A,9A)RI(UALAA) JPXS(94),PYS(9A) PXSN(96) .

TPYSH{OH) ¢ SIMXLGR ) SINY (YA) o XFI1AL) s YE(164) s SGMAXX(1AL) ,

SCHMAYY (1AA4)  SGHAXY(1A4) 4 SGHAA(1AL) (SOMAR(1AL),
SGHIALIIAA) g SGAAD(TAL) s ALPHAA(TAL)Y s ALPHAR(1AL) ALPHAL (1 AL),
MPHA? (1AG) PSTIIT1A64)oPST2(164) L NCT(1AL)YC(164) s SGHAMI 164) ,
SIGLIAL)JTAI(1AL) _
FORMAT (v10) | _
FORPAT (VOLNCT G 19X, TXRITG3EX,VYRI/I0/( [4, R\.FZO. 2] AXGFE2N0 7))
FORVAT (TOLNCTY o 1OX G PPY Y GAGY G IPY Y /IO [ (Tho8Y G F20, 83 1TAX 4 F20, &) )
FORDAT ('0OCICLE =',IA/'0'/'LHCT' 18X 'PXStaR4x, 1PYSY/ 0001/
(TOHRY G F20,. 8 TAXGF2N,R))
FORGAT ('NLNCTY,1OXe VXEV 38X, VYEL /10 / (T4, RY, F)()._,,]z\,\,p’)‘n.;;)).
FARDAT (YOLNCTY o 17X VSOGHAUNTY 30X 3 'SGIHAYY N o 30X, VSGILAYY Y /001 Y/
(T4, EPN Ry IAXGF2NFEL 1A F20.8)) .
FORMAT ('OIﬂFT'b17\o'§FHA1'.?1%.'§GHA?' 20Y « VALPHAL Y, 20,
VALPHAD VD0 S Th G HN g F20,0 ¢ AXgFI2N R4 AX G F20, R, v AXSE20.8))
FOWRAAT (YOTTFRATINN =1,713)
FORJAT ('Nlﬂrn'.1/\.'SGMAw',?7X9"H' 25X, 01 /'n'/(Ia.a <F20.#,
AY o F20 84 ANGFR2N 1))
’ﬂr'AT ('nvﬂrT'.l'\o'K'-?ax-'PSIl'.H?X,'PSI?'/'O'/
(TARYGFEPN RGTAENGEIN R ,1AXGF2N,R)) |
FARAAT (YNCTOLFES =1, T4, 10X AN =1 ,F20, 8)
MAMELTIST/DATAL/HL G DR GMAA S G PO oAl o HFPT g XFe YE DIV THETA SIIFE &

. MAhlI l/an\?/ i\'l'llvnI?Tan]9T?9TROT(F'TROT'AQT7QSOQ-§1QS?~S.”'

Sh e 554856 eST o STONANGTANAY (S AH
READ (DyNATAY)

VRTITE (64DATAL)

N2 I=1,164

LNCT(I)=1I

C PETERMIMATION OF XBR(TI)Y AMD YR(T)

4

XD.—..(\‘ N
rW1 3 1=1,MHNR

=XN+5(1)
I I =HNR41
JJ=H0RETIRA -
DO 4 T=1T1...
XD=XND+S{T)=STH(THFTA)
XB1)=MD=S(1)/2.0
YR(1)=2.0
NN 85 T=2,iDR
XB(I)—VR(I-I)—(S(I)+S(I~1))/2.0 |
YR({T)=0.0
XBIHNDR4EY )=XR{MDR)=S(RNR) /2 .0- §(NDH+1) SIN(THETA) /2.0
YBINNDB+1)==S(HDR+1IXCOS{THFETA) /2.0 ‘
II1=NDR+2
JI=NDBERA
NO 6 I=I1T1,4d
XBOI)=XR(T=1)=(S(I)+S{I=1))=STIMITHETA)Y /2.0
YR(I)=YR(I—1)—(S(I)+S(I—1)6*CHS(THFTA)/?.O
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& CONTIMUE
II=MDR+NRA+?
XB(II=1)=0.0
YB(IIf1)=YR(II-?)—S(II-I)/2.0-S(II-Z)*COS(THETA)/R.H
NN 7 T=1TMIL
XB(I)=De0
YR(I)=YR(I=-1)=(S(T)+S(T1-11)/2.0
7 CNNTIHYE
URITE (6.100)
HRITE (H9201) (ELNCT(I)aXBITI)YR(T)s TI=1,M00)
C
C DETERMATMATING NF ANX(T) AN ANY(T)
N2 T=1.0N0R
AX (T )=0a0
I ARY (T)=1.0
[I=i1hn41
AN ENAI
N g T=IT.0d
A (T ) ==CNS L THETA)
Q AW AT )=STHTHETY)
TI=1NPEIRALT
NN 1N T=TT.0Hi0
AN TI)==1." :

10 ATIY (T )=0.0
C.
C NETERMATMATING NE PX(T) AMD PY(T)
C AT BYOFERED S

PI=3.14254027
NN 11 T=1 4,000
PX(T)=n.0

11 PY(T)=0.0
TI=00RaiA+]
N 1y I=TT0M0
PRXIT)YI=940

12 PY(T)=0.0
II=itn+1
JJ=inpaeima
FTA=0.7
PHT F=ATAMHNIF)
NIM=GTIH(THETA-PHIF)
NIN=CNSITHRETA+PHTE)
N1=01i1/D10
N 19 I=1T..0.
A=FTA
FTA=FTA+S(T)
R=FTA
SA=SIM(2 . P IxA)
SR=STIM(2, NP TR
CA=CNS (2, 07PTHA)
CR’-C”S(,’?,”*DI*R)
SA1I=SA/(2.0%P]
SB1=SP/(2.0%PT)

SRP2=SNR /(R N (PI5x3))
SA3=SA/ (32,05 (PIE%h))
SRR=SR/ (32,0 (PI¥k5))
CAL=CA/ (4 03 (PT%D) )
CRI=CR/ (4 0¥ (PT%2))
CAP=CA/ (1AL 0P Taska))
CRP=CR/ (1AL 05 (P IHx4))



13

14

156

1A

17

18
lg

—

N =

N =

CAR=CA/ (64, 08 (P Yaks t’w))

CR3=CR/ (A4, 0% (P TkxA))
IF (1M.GT.0) GN TN 13

ND=N1

PX(I)={R=A=SR1+SA1) /DN

GO TN 183

IF (M, GT 1) G TN 14

N=0.5%01

PY(T)=( (REkD) /0 0= ( A #2) /72 0=BESRL+ARSAL-CR1I+CAL) /D
60 TN 18

IF (M, GT.2) 6N TN 18
n:n.,3°5177 n1 :

PXCI)=( (R R) /R.0= (A2 3) /3 0= (B3 ) SR+ (A )G AT
+24 SN2 =D M QAP=D2 (R CRT 42, 0%ARCAL ) /D

GNOTN 1w

[F (H.5T.R) 60 TN 1A

r)=0,17/,n()0\)'!:kl’)'l

PY(I)~(( “““ G) /0 0= (A0 ) f4  Ne (RERDYEQRT+( Ak )2CAT
+(y o (YR SN = g AN CAD =R N {0k D YO R +3, N3 [ Asiesk MO,
+6. 0 —C”E—h.ﬂ'CA?)/ﬂ

aNn Tno1a

IF (11.5Ta4) G0 TN 17

N=0,1140770:0]

PXIT )= ( (W) /6 0= (AR ) /6, 0 [ P4 )RR+ Askls )5S AT
+17 .05 ("*"-"’) SR =12, 0% (AR D )2 GA D= Db, 1 9“"-+7& NS A3
A AL ( 3 )3 CRT+4, N2 1\:3::':‘2):':(",'\1.{.7_4-0:::“;;:(‘_{:?-—71..’l):::A:::ﬁA? )/ﬁ

G0N TN 1"
D=0, (\7‘;31 28N

PXIT)=( (’ AY/E.0=( P R) /A, 0= (BB ) RQR ] 4 (AR5 )G AT
+20N N (R )k QR ')—7(;. Ve AR R)R QA= 20, N3 ,:SRR-;-] 20 .0N3A%CAR
=5 0D 4) EH1+H. AL )OI HAN SO (R2ED YRR D

_(,ﬂ.n:!:(A:'::’:")):‘:(‘A,’_)._'l_,’)n.():‘:(:s).?,.;_]_?()" n:f:("/\g)/[\

PY (T )==D1"PX(T)

CANTINNE

TRTTE (60300) (LOCTEI)WPYAI)YoPY (T )e T=1,000)

NETERATMATION OF PYXS(T) AMD PYS(T)

21

22
23

24

NP3 I=1,000)
D22 J=1 .0t
RXR=XR{I)=Ya()
RYR=YR(TI)=v{.a)
IF (I.UEs0) 50 T 21
R1I(T,.0)=0,.0
R2(T40)=n
R3I(T,4d)=0.0
G TN 22
PH=ADX(T ) P“WLAHY(T) <R YN
PL= (R XD 4y stk )x~7
Rl(Iq‘l)“'w-?.O S(I) SPRE (RYRSRD ) /(PTRPG)
R2( Ty J)==2, 05K (T ) priR YRk wYR/(PI-pP)
RB(T o )==D 0T )Pl (BYR®kD) /(PIDPA)
CNNTINYE
CONTIMNYE
NN 24 T=1,MH4]
PXS(I)=PX(T)
PYS{T)=PY(I)
COMTTINYE
NCICLE=1
GO TO 27
IF (MCICILF GTL4N) GO TN 33
22



NCICLE=NCICLF+]
DO 26 T=1,01ML
PXS(I)=PXSM(I)
PYS(T)=PYSI(T)
26 CONTIMUE
27 NO 28 I=1,1""10
SUNMX(IY=0.0
SUMY (T )=n,D
28 COMTINUTE
DN 30 T=14ML
NHY 29 Jg=l g M
SX=PXS )P (T, 1)+PYS( )2 (T,0)
SY=PXS{ )2 (T4 1)+PYS )R] ,.))
SUIM (T Y=SIiX (T)Y+8X
SULIY (T )=Str Y T)+S5Y
2q COAaTIak o '
2N CONTINGE
N A1 IT=14007,
PYXSIHETY=APX (T )R (T N=ALYDYS T )= seSUMY (T)
PYSM(T )=AM Y LI ) +(1.0=AL )= PYSET)=ALRSIEAY(T)
3] COMTT M :
DY 372 I=14i00L
FPYS=PCARSIPXNSIT))
FPVYS=pPLhrns(pPVYS(T))
NDPXS=ARSIPYSIHT)=PYUS(T))
DPYS=ADS{PYSIHTI)I=-PYSII))
IF (DPYS,GTLFPXSY 6N TN 25
IF (DPYSGTLFRPYS) Gy TN 25

32 COMTIINE .
33 VRITE (64401) MOCICLFE, (LNCTOT)«PYXSI{T)PYSMIT ),y I=1480500)
C
CODNFTEQNTIHATION NDF SGAAXN (T ) e SGITAYY (T )e SEHAXY(T)
M=
=1
MED=IFEPT
340 NN 35 I=]JFP
SGEAXX(IY=0,0
SGUAYY(T)=n.N0
SGAAYY(TI)=0.0
35 COANTIINE
N 37 I=l4i'Fp
N 26 J=71,:410
RYF=XF(I)=XR({.1)
RYF=YF(I)=YR(.I)
SHYI==2 0/ {PTs ((RYFI D4 PYESD )k D))
SH2=P XS JYNXFLRYSH( J)*RYF
SHUX =S5 SpiDs (RYNFs D)
SilYY=Si1:: 8
SHXY =SSN YFRRYF
SGHAUXTT Y=SGHAX (T )+SHXX
SGHAYY (1) =SGIiAYY ( T)+SPIVY
SGHAXY (T )=SGIMAXY (T )+SNMYY
36 CORTIME
37 COMTIMYE
HRITFE (Ae10N)
MRITE [A4501) (INCTII)eXF(IV4YF(I)s L=L,MNFP)
VRTTE (6,601) (LNCT(I) o SOMAXY(T) 3 SGHAYY (1) o SGHMAXY (T)e T=L MEP)
o

C NDETERMIMATINN OF SGITAL(T) AHD SGIHAD(T)
DN 41 T=L,NFP
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o}

30
39

40

I

1

TE (ARS(SGHAXX(I)=SGIAYY (1)) 1 T.0.00001) GN TN 3R

ALPHAA(I )=, GATAM( 2.0 SEMAXY(T) /Z(SGUAXX(T)=SGAYY(T)))
G TN 230

ALPHAA(T)=PT /4.0
SOGMAALTY=SGRAXYX(TI(ANS(ALPHAA(T) )2k ) +SEMAYY (T )
(STHLALPHAA{T) )22 )2  0xQGHAXY (T ) STNIALPHAAM(T ) )=COS{ALPHAA(T Y)Y
ALPHAR(I) =AM PHAA(T)+PT/2.0

SGMAR( T ) =SOHANXX (T )Y{CNS(ALPHAR(T) )52 )+SAMAYY( [)*

(STMOALPHIAR (T )Y )32 )42 e SOIAYY (T ) STMIALPHARCT) )COASTALPHARCT )Y
TFISGHAAMT)LGTSGHEAR(T)) 0 TN 40

SGIAL(T)=anitA(T)

SGAA2 (T )=SGItAA(T)

ALPHAT(TY=ALPUAR(T )R (180 ,1/DT)

ALPHA2 (T )= Al PHAA(T ) (180,12 /P 1)

GO TN 41

SGAAL (T )=SRiAN(T)

SGMAP(TY=SEiAR(T)

ALPHAT(I)=AT PHANM T )R ( TR0 D /PT)

ALPUA? (T)=ALPRHAR(T)(1RN.N/PT)

COLTTI R .

IRTTE (64700) (1OCTII)«SOETATIT) G SGEHA2(T ) AL PHALITY .

ALPOADP (T)y T=l o 11FP)

ARETERVTIATIOG NF K(T) "ARD PRI(T)

LR

&t

L7

(Lq

A1

h?

L4

pa—)

IF (6T 1) 6N To 47
READ (5,N\TA?)

MRTTE (6,NATAD)

J=1

NOY 4D T=i ¢ MEP

I Y=Y

Cliy=r1

T ) =2 00 (T )=t TY5sQAFAHY Y /LT )R (SGHAL(T)+SGA2 (T ) )+

PSTTLT)=ALPH AT (T)+45.0=((ATAMIII(T)))/240) % (1ROLO/PT)
PSI2(TY=ALPHATLT ) =4S JOR ((ATA (N T)))/2.0)%(120.0/PT)
COTTiE ‘
IRTTE (6e800) )
MRTTE (AyR02) (INCTIT) o K(T3 ) PSTI(T),PST2(T)s T=l MFP)
RENES] -
JP=0=1
N a4 I=l oiFP
SGHAI (T )= Ta PR (SGIHAL(T)+SEHA2(T))/2,0)+SGHAN
IF (SGIA{T) LI TSSIGIFAX)Y GO TN A1

TAN(T ) =TT I (SOAG(T) ) +T25 ( SGHAH( T )%%2 )+ TR (SEHAN(T)50k3 )+
Tas (SGRAN (T ) Y+ T ( SOGHAN( T )2k ) +T AN (SGHAM( T )36 )+
T73 (SGEHANT )seT)

STG(T)=SO=S 1 (SGITAM(T) ) =S5 (SAMAM (T )22 )+ S (SGHAF (T )33 ) +
St { QOGIAIT( T )oY+ S8 ( SEMAN (T )t R)+SA% (SGMAM( T )%R%kH)+
ST (SGHAN (T )¥ex7)
MUCT )= (STGIT)=SGHAM(T))/TAI(T)
COI)=TAU(T)+STG(T)=H(T)
GO TN 62
MUT)=0.0
CLT)=TAAX
K{Te )= (205 (CIT)= (T ) RSOHMARYY /il (T)=(SGHMAL(TI)+SGHAZ(T) )+
(SORT (1o O+II{T)2) ) (SGIAT(T)=SRIAZ(T))) |
PSTU(I)=ALPHALIT)+45.0=((ATAN(IMI(T)))/2.0)%(1R0.0/PT)
PSI2LIN=ALPHAL(T) =450+ ((ATAMIMI(T))IY/2.0)%(180.0/PT)
CONTINYE
WRTTE (6,300) |
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B

45
46

MRITE (64801) (LNCT(I)oSOGHAM(T) MU(T) o (T)e

IT=LsMFP)

NRITE (69802) (LOCT(T)yK(TaJ)aPSILI(T)4PSI2(T), I=L,NFP)

IF (J.0T9) GN TN 4A

NO 45 I=]  MFP

FK=0,010%ARS(K(T«JP))
NK=ARS{K(T+J)=K({I4.P))

IF (NK.GT.FK) GO TN 43
COMTIMIE

COAMTIMUE

KilTid=K(L+J)

X=XF({1)

Y=YF(I)

I11=IL+-1

NO 49 I=TT1,NFP

[F (K(I,).LT.0,0) 6N TN 49
IF (KT, M) JGRJKHTHY GN TN 49
KMIHN=V(T..1)

X=¥YF(T)

Y=VE(T)

49

FIIR THED

8N

52

54

55

56

57

COBTIHYE
VIR TTE (6HeQNYY Jo¥itIM

SURNTYISTING NE FTELD
i\‘:f.‘-l-l
IF (HHFPJFOLUFPTY) 6N TH /0
M=1
=1
DEP=IEDT
G TN 4R
=i+l
MEP=IIFPL? D
TI=L+7
S =ilEp =i
NN H1 I=Tlet 0B
XF(I)=X=DP nxDTIV
TI=l+3
JJ=FP=3
NN 52 I=I1T..0d45
XF(I)=X=DT1V '
XF(1.)=X
17=l+4
JI=itFp=2
NN 53 I=T7Ts.00e5
XF(I)=X
XFL+1)=X+DTVY
II=L+5
JJ=HFp=1
NN 84 I=11,1e5
XFE(T)=X+D1Y
XFIL+2)=X+2,0%DIV
II=L+6
NN 55 T=T1,[FP,5
XE(T)=X+2,0D]IV
JJ=+2
DO 56 I=L+JJ
YE(T)=Y+2.0%DTV
II=1.+3
Jd=L+6h
NN K7 I=I1T..0Jd
YFR(I)=Y+NTV
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59

AD

SRMDETLF

AREIM =] AAN®SESP (IAP K= SRk

eSTRMNER
SFMDFTYF

II=L+7

JJ=L+11

PO 58 I=1T,.11
YF(T)=Y
I1=1+12
JJ=L+16A

NO 59 TI=TT1..1)
YFR(I)=VY=-NIV
I1=L+17

NOY AD IT=T11 0 FP
YFRE(I)=VY=2,0%NTV
Gn TN 34
FrID :

A= QT R s
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Table 1

Fracture Initiation Results for Blair dolomite
and quartzite; m = 5, by 0.0

Material ) 71 (kb) K . 7 (kb)
: i min m
Blair dolomite 45° -3.0 4.185 -11.3
~2.0 4.185 -10.3
1.0 4,185 - 9.3
0.5 3.946 _ 4.9
0.0 2.708 - 2.65
O
30 -2.0 3,035 -10.4
[0}
60 -2.0 4.774 - 9.5
quartzite 45° -0.5 5.278 - 5.25
0.0 2.953 - 2.48
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Table A-1

Points obtained From Mohr Envelope of Blair Dolomite

Em (kb) T (kb) T (kcb)
-7 .25 4
-.9 .5 3
1.4 1.0 0.0
-2.0 1.3 -.25
2.5 1.6 -. 45
-3. 6 2.4 1.2
4.4 3.1 -1.95
-5.9 4.2 -3.5
~6. 45 4.75 -4, 65
7.1 5.1 -5.7
-8.2 5.5 7.4
9.1 5.6 -9.0
-10.0 " 5.6 -10.0
-11.0 5.6 -11. 0
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Table A-2

Points obtained From Mohr Envelope of Quartzite

Fm (kb) T (kb) ¢ (kb)
-2 .2 3
1.2 6 1
-3.4 1.5 .4
4.7 2.2 -.8
-6.2 3.3 1.5
-9.0 4.6 2.4
-11. 0 6.0 -3.6
-11. 65 7.2 -4.6
-12. 65 8.1 -5.55
-14. 0 8.75 -6.4
_14. 8 9. 55 -7.35
-15. 8 10. 4 -8.5
-16.95 \ 11. 4 -10.1
-17.5 12. 3 -12.0
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Coefficients of Least-squares Polynomial Fits

Table A-3

Blair dolomite quartzite
@, . 90932523 .14589997
ay -2.2527893 . 39293411
@, - .98623052 .11661122
@, - .27366620 . 07536858
a, - .03557571 . 01643163
@, - .00211718 . 00168279
o 6 - .00004702 . 00008117
. . 00000000 . 00000149
S . 058635 . 257773
B 0 . 64800776 . 37275022
B, . 25671860 . 44518983
B 5 -.22792865 . 32929945
B 3 -.10632980 .14898031
B 4 -. 02453351 . 02914393
B -. 00222438 . 00282896
B 6 -. 00006876 . 00013247
B . . 00000000 . 00000239
S .1134 64 .205440
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FIGURE CAPTIONS

Figure

1 Problem Geometry (symmetric about y-axis), after [1].

2 Relationship Between Axial Stress and Axial, Lateral, and
Volumetric Strain, for Quartzite in Uniaxial Compression
after [4].

3 Mohr Envelopes for Blair Dolomite and Quartzite (based on data
from [5] ).

4 Fracture Initiation Points for Blair Dolomite and Quartzite;
m =5, P = 0.0.

5 Contour Map of Fracture Function for Blair Dolomite at Zero
Confining Pressure.

6 Contour Map of Fracture Function for Blair Dolomite at Moderate
Confining Pressure (3 kb).

Bl Grid Set Up About the Point of Minimum K,
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