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ABSTRACT 

A general strategy for attacking problems in nonlinear least squares is developed. 
Parameters are classified as linear or nonlinear, depending on whether they appear 
linearly or nonlinearly in the functional expression being fitted to a set of data. 

Basically the strategy consists of transforming the functional expression so as to 
maximize the number of linear parameters and then solving the problem in a two-stage 
process. For given values of the nonlinear parameters the linear parameters are first 
defined as functions of the nonlinear parameters by the solution of a linear regression. 
The nonlinear parameters are then found by minimizing the usual quadratic form with 
the use of standard search techniques. 

1. INTRODUCTION 

Consider the following well-known problem. We are given the function 

Y =.0x, JO (1) 

where K is an unknown vector of parameters. Iff(x, K) is of the form 
shown in Eq. (2) 

Y = k,g,(x) + k&%(x) + . . ’ + f&(& 

it can be rewritten as in Eq. (3) 

(2) 

y = k,z, + kg, + * * * + k z 92, (3) 

and we have a problem in linear regression; the parameters kl, . . . , k, 

are said to be linear parameters. Parameters that appear in any other 
way are said to be nonlinear parameters. We are given a set of measure- 
ments {(xi, vi) ; i = 1, . . . , n}, n > p. The xi are assumed to be free of 
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error but the yi include errors of measurement. Actually we need not 
assume that xi is error free but that the observed values xi of the inde- 
pendent variable can be chosen and set by the experimenter [I]. Thus 
we assume that a measurement is given by Eq. (4), 

yi =f(xi, K) + si (4) 

where si is a random sample from some error distribution. More generally, 

if replicates are taken at xi, the jth replicate at the ith point is described 

by (5) 
yij =f&, K) + &ii. (5) 

Further, we assume that we take as our estimate of K the value obtained 
by minimizing the quadratic form (6), 

Q = c bi - f(xiv WI2 

or in case replicates are available, the quadratic form (7). 

Q = 7 z bij - fh W12. (7) 

The minimum of Q is usually’sought by setting the derivatives aQ/ak, 
equal to zero and solving the p simultaneous equations (8). 

(8) 
where 

afh m fi = f(xi, K) and 2 = ) 
3 akj . 3?=5i 

We will call the set of simultaneous equations (8) the normal equations. 

If f(x, K) is of the form of Eq. (3), we have a problem in linear 
regression and for such a problem a complete theory and methodology 
for finding the solution is available. Assume a solution exists. Let 2 
be the n x p matrix of elements zij = zj(xi) and let Y be the n-component 
column vector Y = ly,, yz, . . . , y,]‘. The normal equations are (9), 

ZTZK = ZT Y, (9) 

and the solution is K = [ZTZ]-iZT Y. 
If at least one of the k, appears nonlinearly in Eq. (l), we have a 

problem in nonlinear regression. There is no general theory for finding 

closed solutions of problems in nonlinear regression, nor are there 
uniformly successful iterative numerical methods. A large number of 
different methods have been proposed for solving nonlinear search 
problems. The many methods available [2-51 can be classified under the 
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general headings (1) gradient methods, (2) methods that use an iterative 
linearization technique, (3) multivariate Newton-Raphson methods, 
(4) iterative methods of direct solution of the normal equations, (5) 
pattern searches, (6) iterative sequential paucivariate searches. The very 
multiplicity of methods for nonlinear least squares attests to the difficulties 
of the problem. Properly, these many methods represent the tactics of 
attacking problems in nonlinear least squares. But no matter what 
tactic or combination of tactics is used, two significant features stand 
out above all others. The difficulties in finding solutions to these problems 
increase enormously with increase in the dimensions of the parameter 
space. Furthermore, for all of these methods we need an initial estimate 
of the solution, and performance of these methods depends markedly 
on how good the initial estimate is. For these reasons it seems appropriate 
not to look for more tactics but to seek a more general approach, a 
strategy for attacking nonlinear problems in least squares. 

2. A GLOBAL STRATEGY 

Generally, good strategies are obtained once we can define strategic 
principles that focus on the major difficulties in a class of problems. 
The strategic principles for problems in nonlinear least squares follow 
almost immediately from the previous discussion: 

1. Whenever possible, transform the problem to a problem in linear 
regression. 

2. Reduce the dimensionality of any nonlinear search as much as 
possible. 

These principles may be implemented in the following manner. Sup- 
pose that Eq. (4) describes the measurements and that the sum of squares 
to be minimized in K-space is Eq. (6). Of thep parameters kI, k2, . . . , k,, 
some may appear linearly in f, others nonlinearly. The trick is to find 
a transformation that maximizes the number of parameters that appear 
linearly. No rules can be laid down on how to do this but this is the sort 
of facility gained from experience. Suppose the transformation is such 
that z is the new dependent variable, u is the new independent variable, 
and there are p parameters that may be functions of the parameters 

kl, k,, . . . , k,. We label the new parameters; suppose CQ, . . . , a, appear 
linearly and yl, . . . , y, appear nonlinearly, so that the transformed model 
is given by Eq. (10) 

zi = %&(oi9 Y) + wh(% Y) + . . . + a2g,(ui, Y) + 77i (10) 

where vi now represents the error in the transformed model. Note that 
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on the left-hand side of (lo), zd may also be a function of the nonlinear 
parameters yl, . . . , y,. Choose an initial estimate for y; then the linear 
parameters can be considered to be functions of y determined as the 
minimum of the sum of squares. 

Q* = 3 pi - c a,gAui, Y)]’ 
3 

(11) 

Thus a is determined as an implicit function of y in a one-step linear 
regression and the dimensionality of the problem is reduced by r. In 
effect, Q* is used to restrict the search to a subspace of the parameter 
space. It is important that the minimization in y be carried out in terms 
of the original sum of squares, expressed now as a function of y. 

Q = 2 bi - f(xi, 1~11~. (12) 

The sum of squares surface (12) in y-space is the locus of the minima of 
(11). Thus the search is now reduced to a two-stage process, one stage 
being the solution of a simple linear regression. Starting with estimates 
yrr, . . . , yslr determine CITY, . . . , tlrl as the minima of (I 1) and then 
calculate the original sum of squares (12). Then, use one of the standard 
search methods in y-space but each time the sum of squares (12) is to be 
determined, the appropriate c( is first found by minimizing (11). If a 
search method is used that requires the calculation of derivatives, it is 
usually easier to use finite difference approximations to the derivatives 
because c( is determined implicitly as a function of y. 

3. EXAMPLES 

A. Enzyme Kinetics 

The initial velocity of many one-substrate enzyme reactions is ade- 
quately described by an equation of the form of Eq. (13) [6-81. 

v_!X- 
K+x’ 

(13) 

In Eq. (13) v is the initial velocity of an enzyme reaction that follows the 
reaction scheme 

E + S + ES + E + products. 

S stands for the substrate, which is present at concentration x, and E 
stands for the enzyme; V is the maximal velocity of the reaction and K 
is the concentration at which v = V/2. Equation (13) is derived by writing 
the differential equations for the reaction scheme and assuming that 
initial conditions hold (i.e., no products present) and that the concentra- 
tion of enzyme-substrate complex is constant. The latter condition is 
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usually referred to as the steady-state, or more often, the pseudo-steady- 
state, assumption [9, lo]. Data on the initial velocity of an enzyme 
reaction {(xi, ui); i = 1, . . . , n} are usually fitted with use of a trans- 
formation to a linear regression as in Eq. (14) or (15). 

1 1 -=_ +K_!; 
0 v I/ vx 

x K 1 -_= 
V 

v+jJx. 

(14) 

(15) 

Usually K/V and l/V are determined by fitting Eq. (14) or (15) to the 
transformed data points (l/x,, l/vi) or (xi, xi/vi) and K and V are calcu- 
lated therefrom. Note that the values of K and V obtained in this way 
are not necessarily the same as those obtained by fitting Eq. (13) directly; 
in practice the difference is often small in terms of the experimental error. 
The difference arises from the transformation in the errors. Equation 
(13) can also be used to fit the concentration of binding sites per unit 
surface area that are combined with a chemical compound that is present 
at concentration x in the medium around the surface. 

For multisubstrate reactions the velocity can be written as a rational 
function of powers and cross-products of various substrate concentrations 
[ll-161 and hence may be written as in Eq. (16). 

v = %I + %Ul + WZ + . * * + u,u, 

Bouo + Au1 + . . * + B&n + A+1. 
(16) 

With use of the inverse transformation l/v,, there are n + 2 linear 
parameters /IO, . . . , /3,+1 and n nonlinear parameters ul, . . . , M,. 

B. Active Transport 

A simple example of a function that appears in the study of active 
transport [17-191 of certain compounds by cells is shown in Eq. (17). 

Y= 
Xl 

Ax, + Bx, + C 
+ k(x, - XJ. (17) 

The data obtained experimentally are (xii, xZi, ri) for i = 1, . . . , n. Let 

v= Xl 

y - k(x, - x2) * 
(18) 

Then, Eq. (19) 
vi = Ax,~ + Bxzi + C (19) 
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is a linear regression with sum of squares Q*. 

Q* = 2 [vi - Ax,~ - Bx,~ - Cl”. (20) 

The original sum of squares is given by (21). 

Q=T yi- 
[ 

Xii 

A% + Bx‘g + c 
- k(X,i - x2J 

1 
2. (21) 

Thus if we choose a value for k, say kl, this value determines vi and A, B, 
and C are obtained as the minimum for Q*, Eq. (20). Thus what appears 
at first to be a four-parameter nonlinear least squares problem reduces 
to a one-dimensional nonlinear least squares and a search over a range 
of values of k is easily carried out to minimize the original sum of squares 

(21). 

C. Fitting Sums of Exponentials 

Frequently it is necessary to fit a sum of exponentials of the form of 
Eq. (22) to a set of data. 

yi = ZA, exp(ajx,). (22) 
j=l 

In this case the parameter set is already divided into m linear parameters 

A,, . . . , A,,, and m nonlinear parameters aI, . . . , M, and there is no need 
to use any transformation. Given the data set {(xi, yi); i = 1, . . . , n}, 
choose a set of initial values for a. Then the solution of the remaining 
linear regression in A,, A,, . . . , A, minimizes the original sum of squares 

for the given a. 

Q = 7 [hi - C Aj enp(crlx,)]2. j (23) 

Thus the problem reduces to a search in a-space. 
As defined by Eq. (22) there are multiple minima due to symmetry 

properties but these can be avoided by redefining the parameters in the 
exponents. We avoid the details of this problem because it is a long 
digression from the main point of this article. 

4. SOME UNFINISHED PROBLEMS 

An interesting problem arises when a transformation can be found to 
convert the problem to one in linear regression, as for the initial velocity 
of one-substrate enzyme reactions (Eq. (13)). The minimum in the trans- 
formed problem is usually different from but near to the minimum in the 
original nonlinear problem. This arises because the transformation 
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involves a transformation in the distribution of errors and the least 
squares method gives equal weight to each experimental point. This can 
be minimized by taking replicates at each point and using the inverse of 
the estimated error variance to weight each point in the sum of squares. 
In practice the easiest way around this difficulty is to use the parameter 
estimates obtained from the transformed problem as initial estimates for 
the original nonlinear least squares problem. Surprisingly, the two minima 
often do not differ by much. 

It seems intuitively obvious that if the sum of squares surface is 
unimodal in the parameter space, the two-stage process must converge 
on the minimum. However, some more theoretical work is needed on 
defining as generally as possible the conditions under which the two-stage 
process must converge to the minimum of the sum of squares surface of the 
parameter space in the original nonlinear least squares problem. 
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