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Oscillations of electrostatically trapped particles 
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Abstract-A kinetic theory of longitudinal ionic oscillations is presented which pertains to an 
earlier hypothesis that low frequency plasma oscillations monitored in the wake of Ariel I 
Satellite are due to ions trapped in the potential trough behind a moving satellite. The treat- 
ment is one-dimensional. A self-consistent potential distribution in the trough is obtained from 
a linearized analysis, suitable for a potential trough of small depth. Dispersion relation of the 
plasma oscillations for the trapped particles are obtained. The conditions for instability of the 
oscillation are given. The present analysis further confirms the earlier hypothesis as stated 
above. 

1. INTR~DUCTI~N 

WHEN a large conducting body with a negative surface potential moves at a meso- 
thermal speed* in a rarefied plasma, e.g. an artificial satellite orbiting in the upper 
ionosphere, a negative potential valley is found (LIU and JEW, 1967; LIU, 1969b) to 
develop in the near wake behind the moving body. It was later shown theoretically 
(LIu, 1967; LIU, 1969a) that ions should be trapped in the potential valley where 
they perform longitudinal oscillations of low frequencies. It was demonstrated 
(LIu, 1967; LIU, 1969a) that these ion oscillations might account for thelowfrequency 
fluctuations found in the wake of Ariel satellite I when Langmuir probe was used to 
measure the electron density and temperature of the ionosphere. The connection 
between the above mentioned ion oscillations and the high frequency oscillations 
found in the ionograms of the top sounder Alouette satellites has been discussed 
(LIu, 1967; LIU, 1969a). 

It should be recognized that the discussions presented by LIU (1967) and LIU 

(1969a) were developed on the basis of some crude approximations, e.g. the dispersion 
relation of longitudinal ion oscillations in an inhomogeneous electrostatic field was 
obtained using essentially Langmuir-Tonks derivation for a homogeneous plasma 
with minimum modification for field inhomogeneity; thereby neglecting the micro- 
scopic velocity distribution of the particles. These previous analyses also left 
unanswered the question of wave amplification and damping which are crucial in the 
problem particularly when there is coupling between the oscillations of high and 
low frequencies. It is to provide a microscopic or kinetic analysis of the ion oscilla- 
tions hence to present a more convincing discussion on the plasma behavior of the 
electrostatically trapped particles that the present study is ascribed. 

Consider the symmetric potential valley in the near wake of a satellite (LIU and 
JEW, 1967). A meaningful one-dimensional model can be constructed if the dis- 
cussion is restricted to the potential distribution along the line of symmetry in the 
wake. Since our interest is primarily on the oscillations of the trapped ions whose 
Larmor radii in question are much larger than the width of the potential valley we 

* A mesothermal speed refers to a value which is much larger than the thermal speed of ions 
and yet much smaller than that of elect,rons. 
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may ignore the geomagnetic field effect in constructing an idealized model which has 
a potential distribution self consistent with Poisson and collisionless Boltzmann 
equations (CIE~PMAN and COWLING, 1939; GINZBURG, 1961). 

(1.1) 

(1.2) 

(1.3) 

Note that F and f denote ions and electrons distribution function respectively. As 
stated before, a large conducting body with a negative surface potential moves at a 
mesothermal speed, A < V, < a, where V,, is body velocity; A, a, the mean ion and 
electron thermal speed respectively, in a fully ionized rarefied plasma. Let, C, = 
v + ‘v,, where v denotes the thermal velocity, equations (1.1-1.3) become 

(1.4) 

(1.5) 

(1.6) 

The present study, therefore, consists of two parts: (1) the steady state solution for 
the self-consistent potential distribution in the trough; (2) the dispersion relation 
of the longitudinal plasma oscillations in the trough. In part (2) the formulation is 
valid for the full range of oscillation frequencies; the solution for the low frequency 
oscillations (K/K~ < 1) only is given here. From the results of dispersion relation we 
are able to discuss the damping and amplification of the disturbances as functions 
of the characteristics of ambient plasma and the potential trough. 

2. STEADY STATE DISTRIBUTION OF PLASMA (IN THE TROUGH) 

Consider a one-dimensional potential trough along the x-axis with its origin at 
the minimum potential point (see Fig. 1). It is assumed that the trough symmetric 
with respect to its midpoint (x = 0) is filled with fully ionized plasma having ion 
density n,(x) and electron density n,(x). It is assumed that the potential distribution 
in the trough is truncated at, points A and B, where the potential v w 0 and the ion 
density is nio; electron density n,,. It is postulated that the trough is surrounded 
by the ambient plasma of singly-charged ions and electrons of temperatures Ti and 
T,. It, is of importance to provide a bi-thermal state which characterizes the day- 
time characteristics of upper ionosphere. It is assumed that the plasma is collision- 
free which again is valid for the tenuous upper ionosphere. 

Under the steady state, the distributions of ions, F,(x, v) and electrons, f,,(x, v) 
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Fig. 1. Potential distributions in the trough. 

and electrostatic potential, &,(x), are governed by the following set of equations: 

V2y, = -4rre 
[S 

O” P,(x, w) av - 
-03 

The Lagrangian equation subsidiary to (2.1) can be written 

(2-l) 

(2.2) 

(2.3) 

dX dV 
-= 

v + v, e 3% (2.4) --- 
M ax 

which is integrated to 

gM(w + VJ2 + epo = const. (2.5) 

Thus the general solution of (2.1) becomes 

F 0 - FcI[W(V + VJ2 + eq4-J = *A exp 
(v + V,)” VO - 1 - __ A2 

kTi 
(2.6) 

the equilibrium distribution of Maxwell-Boltzmann, where A2 _= 2kTJM and A 
denotes the thermal speed of ions. 

Similarly we have the steady state electron distribution, from the use of (2.2) 

fO=d~jaexp - [ 
(v + ‘vJ2 WO 

a2 +kT, 1 
(2.7) 

also the Maxwell-Boltzmann distribution where a2 = 2kTJm with a denoting the 
thermal speed of electrons. 
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Substitution of (2.6) and (2.7) into (2.3) leads to 

Vzy, = -47fe n, exp ( [-g-J -%OxP[gg). WV 

Here we introduce another crucial assumption for simplification of analysis: 
eq+,/kTi Q 1 and ep,/kT, < l* which imply that both thermal energies kT, and 
kT, are large compared with the electric potential energy of the particles. Under 
the present assumption, (2.8) can be linearized to 

V2v, = Q),,(&-~ + 3L,-2) - kTileAD2 + kT,le&2 (2.9) 

after dropping the second and higher order terms of epo/kTi and eq,/kT,; note that 

AD2 = kT,/(4re2ni,,); Ad2 = kTej(4re2neo) (2.10) 

where Jo, Ad denote the Debye shielding length for ions and electrons respectively. 
It can be shown that (2.9) is satisfied by 

pl,, = b cash ; + 
Ad2kTi AD2k T, 

e(L2 + ADZ) - e(Ad2 + ADZ) 
(2.11) 

where A’ 3 2r,1,/(i1,2 + AD2)i12 and b, a constant. 
To estimate the truncated distance X,, we obtain from (2.11) by putting p,, = 0 

and cash X/A’ M 1 + XB2/231’2 + . . . assuming lx/A’] < 1 also eb/kT, Q 1 and 
eb/kT, < 1 which is justifiable, 

(2.12) 

andX, = -X,. Notice that for a negative potential trough (see Fig. 1) ne,,/ni,, > 1, 
for ion trapping (BOHM and GROSS, 1949; BERNSTEIN, GREENE and KRUSKAL, 1957), 
which always results in a positive value in the bracket of (2.12). To simplify the 
analysis, we choose two straight lines which connect two terminal points in x axis to 
vrnin point respectively, to replace parabolic variation for potential trough distribu- 
tion. Thus the steady state potential distribution in the trough can be expressed as 

where 
To= *ax-- (2.13) 

tl =t k(E - 1)y2(1 + ;%J 
and 

(2.14) 

(2.15) 

* Recent work by ANDERSON and ARTHURS (1968) who solved the Poisson equation (2.8) 
without these low-potential restrictions by using a complementary variational principle gives a 
solution which has the same functional form as our solution (2.11) except with different con- 
stants. In view of the above cited reference, these low-potential assumptions can be removed 
provided appropriate adjustment for the parameters a and y in the linear approximation (2.13) 
are made accordingly. 



Oscillations of electrostatically trapped particles 73 

3. TRANSIENT STATE PLASMA PERTURBATIONS 

When the plasma particles in the potential trough are disturbed, they must so 
deviate from the respective steady state such that the resultant distributions F, f 
and rp must satisfy the Poisson equation (1.6) and the time-dependent collisionless 
Boltzmann equation (1.4) and (1.5) along with prescribed boundary conditions. 

We shall start with the self-consistent system of equations for longitudinal 
electrostatic oscillations suitable for three-dimensional problems. Let 

F = F,,(x, v) + F,(x, v, t) 

f = f&x, v) + f,(x, v, t) (3.1) 
Y) = 5Mx) + %(4 t) 1 

where F, < F,, fi < f,, and v1 < cpo. When (3.1) is substituted into the Poisson 
equation (1.6) and the time-dependent collisionless Boltzmann equation (1.4) and 
(1.5), we obtain, after the use of (2.1), (2.2) and (2.3), the &first order system of 
equations : 

(3.2) 

ah Vl e ayl afo e a9Jo afl -~+(V+VO).~x+~~.~+mdK.dv=O (3.3) 

V2vl = -4n.e ( ~_~Fl dv -/_mfl dv) (3.4) 

along with the following boundary conditions 

F, =fi = 0 and 90 = 93 = 0 at 1x1 = 1. (3.5) 

Applying (3.5) to (3.2) and (3.3) with the following Laplace transform with respect 
to time and Fourier (finite) transforms with respect to space 

P,(o, K; x, v) = F,(t, x v)eiat -i~W-x) & ax’ 

ql(w K; x) = pl(t, Xyeiwt-i~4x’-~) at ax’ (3.6) 

a 00 
&(W, K; x, v) = 

ss 
fi(t, xr, V)eiwt-i4r’-x) at ax’ 

-1 0 

and simplifying, we obtain the transformed collisionless Boltzmann equation for 
ions as follows : 

t?CX K a& 
- - i [K . (v + V,) - co] P, - soi + ; 2 

MIMI* av 

(1 = 0 (3.7) 
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a m 

9oi = 
- SI -a 0 

F,(i = 0, X’, y)ei~l-ir*w-r) & (jx’ 

P,(v + V,) = _2& ,-cv+ww* 

ccc 
% = E, and eY 

r”i =Ei* 1 (3.8) 

For one-dimensional case, let V, 11 K, the direction of propagation and @ the angle 
between vectors v and K, then (3.7) becomes (BERNSTEIN, 1958; LIU and HUNT, 
1968), the direction of x being aligned with x-axis, 

This is a first order ordinary differential equation. The integrating factor can be 
expressed as 

B’ 
=P si B 

--i g [KW COS fl - (0 - Kv,)] dV. 
I 

Multiplying (3.9) by the above integrating factor makes the equation an exact 
differential, which can then be integrated. The solution is thus obtained as 

x exp -i z [KV sin p’ - (m - Kv,)p’] (3.10) 

where 

Mv 
x exp -i ecx [KV sin /_?’ - ( 

Making use of the identities 

co9 Be -izsinB = ;f Jn(z)e-inp 

&zsinB = s Jn(x)ei@ 

(3.10) becomes 

(3.12) 

ad;1 
X [(l f yi)K + Ei(--i + KX)]$, f iZiK x 
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where J,, and J, denote the Bessel function of the first kind for order 12 and m 
respectively. w’ = w - KVO is the Doppler frequency (STIX, 1962). 

Similarly, we have the electron parts as follows: 

ji = _ % z T 2 eaB’m~~e 2 Jn (!Zfff) Jm ($) 

v--, 
11% co 

- ye)K - g;,(-i + /CC)]+, - i?&K (3.14) 

where 

O,, = E exp ( i; [KU sin #L!l - (0 - KvO)p] 

x exp 
1 

_iF!, 
eu 

.K'V Sin p’ - (IX 

a co 

Qoe = 
- ss fi(t = 0, x’, V)ei~-w-x) & (j-J 

-a 0 

Kvo)fi’l I 
(3.15) 

r,(v + V,) = -2& e-(v+Vo)%* 

When the transforms (3.6) are substituted into (3.4) which, after simplification, 
becomes 

K2& = 45% (j&v -/@v). (3.16) 

Note that 

(3.17) 

Integrating over p space, and noting the orthogonality of Bessel functions we have 

s 2n 

Jn(S)Jm(t)e 
0 

Hence (3.17) becomes 

[(1 + pi)K + &(---i + KX)]$j, + iitiK 2 

m dv 2n - 

R s 

co 

xc -mM+v 

1 

lzeu s s 
GOi q?. (3.18) 

--oo 0 
v-- 

MCO’ 

Substituting (3.13), (3.14) and (3.18) into (3.16), we have 

H(w, K; +jjl = y(W, K; 2) (3.19) 
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where 

(3.20) 

1 
X 

nea 
d’V - [(I - pe)K - it,( --i + KX)] 

21-p 
MUlo’ 

00 nea xc ___ s 1 

n --m mKWrv 
v---p, 

mw 

In the low frequency case as ion oscillation, the wave vector gradient of the potential 
C& is relatively small, and again the coel?icient &K or &K is no more greater than the 
other terms, accordingly the wave vector gradient term is neglected in our simplified 
model calculation. The validity of this assertion can be verified posteriorly.* 

The perturbed potential in time-coordinate of physical space can be shown as 
(STIX, 1962; JACKSON, 1960) 

(3.22) 

The behavior of time-dependent plasma disturbance shall be determined by the 
structure of the integrand in (3.22). It is noted that this integrand is made up of 
two parts-the denominator H(o, K; x) is prescribed in terms of the equilibrium 
properties of the plasma; the numerator, y(w, K; x), the initial perturbations & and 
&,. Since the unperturbed distribution functions for both ions and electrons in 
velocity space given in (2.6) and (2.7) are single-hump functions, and the initial 
perturbations &, (3.8), and 9,,, (3.15), are entire functions of v, considering v as a 
complex variable (STIX, 1962 ; JACKSON, 1960). The possibility of damping, growing 
or steady state oscillations of the plasma is governed by the poles of the integrand 
of (3.22). The numerator, the entire functions of v, will not have poles in the complex 
plane, so the time-dependencies of &(K, t; x) shall be determined completely by the 
zeros of H(co, K; x). The equation 

H(W, K; x) = 0 (3.23) 

is often called the dispersion relation since it shows the relation o = W(K, x) in the 
solution. Based on these arguments, we have dispersion relation as follows: 

K2 
~ = [(l + $?i)K + Zi( -i + KX)] 1 J-1 Gv 
2nopi2 1L 

lnea Jn2 (g) zdv 
v-- 

MW’ 

+ [(l - %)K - ye’e( --i + KS)] 1 /:m ms ‘,,, Jn2 (m$) 2 ok. (3.24) 
1E 

v-7 
mm 

* See Discussion at the end of Section 3. 
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Note that (M&/ea) N 0(Mv2/eiZ) N O(Mv2/ey,,) where v = C, - V,, is the ionic 
velocity measured with respect to the moving body (V,) and also that the condition 
for a particle (M, v) to be trapped in a potential trough (Q) is (+Mv2)/ey,, < 1 

(BOHM and GROSS, 1949). Consequently the argument (M&/ea) of the Bessel 

function in equation (3.24) which governs the oscillation characteristics of the trapped 
ions must comply with the condition Mtcv2/ea < 1. Using the small argument 
expansion for Bessel function (MAGNUS and OBERHETTINGER, 1954) 

Jn(x) w 
2n 

z”l?(n + 1) 

and also the orthogonality of Bessel functions, (3.24) becomes 

V3 

* ea ’ . . ’ 
Mf7.l’ 1 

x 2 dv + [(l - %)K - it,( --i + KX)] 

1 mK V3 
___- 
412(2) etlm’ 

+ * . . 
X ecr 1 x0 

v-y 
. av au. (3.25) 

m w 

Note that P, and& are the unperturbed distribution functions, namely Maxwellian 
or Gaussian; hence the plasma dispersion function, Z(t) can be introduced as 
follows (FRIED and CONTE, 1961): 

Z(l) = $--) _t xey 5 dx = 2iep5” s s ii _-m e-l2 dt. (3.26) 

This expression is valid for both Im 5 > 0, and Im 5 < 0 provided the analytical 
continuation concept has been applied (see Appendix). Making use of the relation 

s 
; $dTJ = n! ];m (v _fc)S+’ 0% (3.27) 

the general expressions I( 5) for ions and electrons, in terms of the plasma dispersion 
function are (see Appendix) 

s m El’, 
-_m (v - 5)” dv = 

1 5 
(?L - I)! A”--1 Z(n-l) 2 0 

s 

m 
.& 

~ --m (v - [)ndv = n ( _ j! An-l (f)“” z [6 ($““I 

(3.28) 

(3.29) 

respectively. Note that Z(“)(x) = dnZ/dxn; 6 = m/M; 8 = T,/T,. 
The integration of the dispersion relation (3.25) can be performed by the use of 
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the expressions (3.28) and (3.29), with terms of the second and higher orders (w, I 2) 
truncated, 

K2 KAY 
- = __ ( [(l + jj()K + t-$--i + KX)] [I/(X) (T - 2) 
TKn2 4cooco’ 

+ [(l - pe)K - E;,( -i + Kx)] 

(3.30) 

where u,, = ec+MA. 
Notice that the dispersion relation (3.30) depends, among other things, on the 

Doppler frequency W’ which is related to the particle velocity V. and field frequency 
WViaO’ = C0 - KV,,. When particles are trapped their Doppler frequencies approach 
zero. Since the oscillations of trapped ion is of interest here, o’ can be herein assumed 
small. Under this condition the plasma dispersion function can be expanded in the 
larger argument power series (FRIED and CONTE, 1961; FRIED and GOULD, 1961) 
namely 

= id(~) exp ( -12) - + (1 + & + & + . . .) . (3.31) 

Setting x = 0 in equation (3.30), we obtain the dispersion relation corresponding to 
the point of minimum potential which, after the substitution of (3.31) and simplifica- 
tion, becomes 

A@0 
lzO’ = 22/(7r)Va[(l + Pi) + (1 - ~$Y4--1’2] @O’(l ( 

+ Pi)(l - 2/(n)) 

+ @‘2s-7’2(1 - T&)(l - T44 d2)1 + K67,2[(1 + p ,,yy _ p )e1,2d_1,21 
e e 

x [( -w2 + W2)[6’!2(1 + y”,O)( - d\/(T) + 1) + 01’2(1 - Fe)( --2/(7r) 62 + l)] 

- [87’201’2(2/(~) - 1) + (1 - 2/(~)8~)][(1 + p,6) + (1 - g.)o”zW2]]) . (3.32) 

The real part determines the Doppler frequency; the imaginary part, the stability 
of the oscillations (STIX, 1962): e.g. the condition Im o’ < 0 implies amplification; 
Im o’ > 0, damping ; Im w’ = 0, neutra,l stat,e. The ima,ginary part of expression 
(3.32) can be further simplified by eliminating terms of order 8’12 and beyond. 

Im w’ NN - 
Ael’%o~i,(e + l)(l - l/(57)62) 

22/(7T)vo’,67’2K[(1 + v8,e) + (1 - pe)e1’2&1’2] 
(3.33) 

where 6 = m/M Q 1 and p, = eY/kT, 9 1. 
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Consequently, Im o’ always has negative values provided CI # 0 and 0 # 0. Accord- 
ingly, we may conclude that there is amplification for the longitudinal ionic oscilla- 
tions in a negative finite potential trough, provided the temperature ratio TJT, # 0. 

The neglect of the wave vector gradient (&&/aK) term of equation (3.21) in our 
simplified model for the determination of the neutral stability contour can be now 
justified a posteriori. Recall that near the neutral stability curve the condition 
Im 0’ ---f 0 prevails. It is seen from the integral (3.22) and the condition (3.23) that 
near the contour of neutral stability and under the condition d!fKV’/eC( < 1 the follow- 
ing condition becomes obvious: (a@,/i?~)/@, --j 0, as Im o’ -+ 0. 

4. DISCUSSIONS AND CONCLUSIONS 

On the basis of the present analysis which is valid for a negative potential trough 
of small depth, the longitudinal ionic oscillations in the trough appear always 
observable. This conclusion further confirms the preliminary prediction (LIu, 1967 ; 
1969a) that the low frequency plasma oscillations monitored in the wake of Ariel I 
Satellite appear to be the longitudinal oscillations of the trapped ions in the potential 
trough behind a Satellite. 

A word of caution concerning the effect of geomagnetic field which has been 
ignored in the present analysis is in order. The orientation of the magnetic field lines 
relative to the x-axis, along which the present one-dimensional potential trough is 
aligned, must be taken into account. It can be shown that when the external 
magnetic field B, is along z, and is parallel to the wave vector K the longitudinal 
motion is almost the same as in the absence of a magnetic field. This is physically 
reasonable since the electrons gyrate in many tight spirals during each oscillation 
along the direction of the magnetic field. The present analysis needs modification 
when there is a significant component of geomagnetic field normal to the stretch 
of the potential trough. 

The presence of above-mentioned longitudinal oscillations of the trapped ions 
could be indirectly responsible for the plasma ringing phenomena that have been 
excited by the Satellite Alouette 1 and other ionospheric probes at the approximate 
local plasma frequency, upper hybrid frequency and cyclotron frequency harmonics 
(CALVERT and GOE, 1963). It has been suggested that near these frequencies, the 
warm plasma electrostatic waves, which could normally carry the energy away, have 
near zero group velocity. The energy consequently remains in the vicinity of the 
antenna and manifests itself in the ringing. In view of the results of the present 
analysis, we would like to offer an alternative hypothesis concerning the source of the 
plasma ringing phenomena monitored on board of Alouette I and other ionospheric 
probes. 

In view of the non-homogeneity of the plasma and the relative motions between 
the ions and electrons in the satellite wake, it might be expected that available 
mechanisms for exciting electron oscillations are not lacking (BUNEMAN, 1958 ; 1964). 
We would like to draw particular attention to the finding of transient modification 
of plasma non-homogeneity by the ionic oscillations in a diode discharge in which 
there is a maximum concentration of plasma electrons (EMELEUS and JONES, 1966). 
It was found that in the interaction between the oscillations of ions and electrons, 
the ionic oscillations may cause the maximum and minimum electron concentrations 
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to shift in space. The coupling found between electronic and ionic oscillations is also 
noteworthy (EMELEUS and JONES, 1964). It is conceivable that the electron oscilla- 
tions observed on Alouette I may originate from the satellite wake. When the 
geomagnetic field is taken into account the other high frequency oscillations moni- 
tored on Alouette I can accordingly be interpreted. 
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To perform the integration in (3X5), we would like to discuss briefly a method of integration 
which has been used in evaluating such improper integrals (STIX, 1962; JACKSON, 1960). 
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C&tour I I 

Fig. Al. Jnkqration contours af I( 5) with polo at Im 5 > 0. 

Imv 

Clearly the analytic properties of 1( 5) depend among other things on those of*j?Itj). Physically, 
f((v) expressee the unperturbed equilibrium distribution of either electrons or ion,ne as the case 
may be. Shnuld the given equilibrium distribution be an analytic even function, it will also bs 
an entire fum&ion in the complex plane pathological on the real axis. Accordingly, (A.1) can 
be treated under &he f&owing oases: 

(I) %Vh@n Im < > 0, the prescribed contour akmg the real ‘u axis, namdy contour 1, in 
Fig. Al, can be replaced by oontour 2, and the integral 1( {f OIZ~ be evaluated 8s the principal 
value of the integral 

f 
M X(5) = P ‘(” ,jc,. - 

_,‘fi - i (A.21 

(2) Whf3ltt Im c < 0, there is a p&e in the Sower < plane, Since&z) is an ex&ire functiin, the 
c-rneept of analytical ~onti~~~t~on ertn be applied by introd~Gng copltonr 3 (see Fig. AZ) following 
LANDAU (1946). Actually the integration of I( 5) in (A-1) along contour 3 is equivalent to that 
along cont!our 4 plus residue of the pole at v = & It has been s.hnwn by VAN .KGWJJN (1955) thaL 

where s denotes a, jn~jt0si~~all~ small value, and B denokes IXrae’s f%fur&.ion (Dm~c, 1941). 
The introdurrtion of (A.3) into (A.f) leads to 

6 
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The expression (A.4) can be generalized to (JMXSON, 1960) 

s m 1 aY 
--dv=P 

_-4) v - 5 avn 
s 

_,,fs; dv + n-if’“‘( [) 

where /(“j(v) denotes the nth derivative off with respect to v. 

NOTATION 

P(a, v, t) 
f(x, v, 4 
M 
m 

2, t) 
k 

Ti 

T&3 
2kT, 

A2 = M 

a2_2kT, - 
?n 

k T, A,2 = ___ 
4Z&Q, 

kT 
13 = e 

4i7e2n,, 

ion distribution function 
electron distribution function 
ion mass 
electron mass 
stream velocity 
potential distribution 
Bolt)zmann constant 
ion temperature 
electron temperature 

ion density 
electron density 
wave number 

Y 
47rt?%io 

WBi2 = - 
M 

%a 
2 _ 4ae2n,0 -~ 

rn 

ea 
wo =m 

aJ’ = w - KV, 
S = m/M 
0 = TJTi 

Subscripts 
0 
i 
e 
1 

see Fig. 1 
a potential trough constant (see equation (2.14)) 
a potential trough constant (see equation (2.15)) 

undisturbed state 
ion 
electron 
perturbation state. 


